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Abstract We show that the Lorentz force law, FL1 = q1(E + v1 ×B) being the charge on particle 1
interacting with the electromagnetic fields due to all other particles, can be written in a pure field form
FL1 = −∇1U

EM . In this expression UEM is the total electromagnetic energy of the system of particle
1 and all other particles. In deriving this result we review the old but not widely known results that
Maxwell’s equations follow uniquely from Special Relativity, and that the Lorentz force law follows
from applying Hamilton’s variational principle to this result.

For a two particle system, the standard view is that the electromagnetic force on particle 1 is the
result of the charge of particle 1 interacting locally with the field of particle 2, and conversely. Both
charges 1 and 2, and fields 1 and 2 are needed. In our approach, the fields of all particles contribute
to the electromagnetic interaction everywhere, over all of space. The charges of the particles do not
enter the theory except incidentally, via Gausss law. This has novel interpretational consequences. In
particular, it allows a charged particle to be replaced by its electric and magnetic fields, much as a
particle in quantum mechanics is replaced by its complex valued wavefunction.
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1 Introduction

Lorentz derived his Lorentz transformation laws from the invariance properties of Maxwell’s electro-
magnetic equations. This Special Relativity (SR) was widely known but not widely accepted until
Einstein famously derived it from simple assumptions of certain invariances of space, time and the
speed of light. Today it is well known, if not widely known, that all of Maxwell’s electromagnetism
(EM) follows from applying further invariance principles to special relativity. In particular it is often
stated that the Lorentz force law is a separate yet essential supplement to Maxwell’s equations (see
for example page 2 of Jackson [1] or page 782 of Ohanian [2]). We deduce therefore that is not widely
known, although it is well known to some, that by supplementing Maxwell’s equations by Hamilton’s
variational principle, the electromagnetic force laws follow also from this additional basic principle (see
page 473 and 475 of Misner, Thorne and Wheeler [3]).

In this paper we start from SR (Einstein) and summarise Doughty’s [4] use of the invariance of SR
(and essentially nothing else) to get Maxwell’s EM. That is, we extend Einstein’s arguments to get the
laws of Coulomb, Faraday, Maxwell, Lenz, et al, from symmetry and invariance considerations, and
not from experiment (but the result is of course fully in concordance with experiment). We then show
that the Lorentz force law can be derived from the energy density of the electric and magnetic fields
(which satisfy Maxwell’s equations), together with considerations of the global conservation of energy.
That is, only energy conservation is needed to be added to Doughty’s arguments to get the Lorentz
force.

Although much of our derivation can be found scattered in the literature (see for example section
1.11 of Jackson [1] and in General Relativistic language in[3]), our approach enables us to take a further
step, one of interpretation. The new interpretation is a change to the relationship of electric charges
and electric currents to electric and magnetic fields. Specifically we have a duality between charges
and currents and electric and magnetic fields. The duality is similar to the duality between quantum
particles and their wave functions.

In section 2 we give our perspective on some key aspects of the standard, historical, approach to
deriving the Lorentz force law. In section 3 we give the elements of a Lorentz invariant derivation of
Maxwell’s equations from SR. In section 4, rather than following Misner, Thorne and Wheeler [3] who
use the apparatus of General Relativity to derive the Lorentz force law, we consider the electrostatic
situation of the fields due to two charged spheres, q1 at r1, and q2 at r2. In brief, the argument is that
electrostatic energy density u(r) of the combined field at a point r, E1(r) + E2(r), is integrated over
all space to give the total electrostatic energy of the system UE . Then, by Hamilton’s principle, the
change to this total energy when one charge moves, gives the force that acts on that charge.

In more detail, the energy density is

u(r) =
1

2
ε0(E1(r) + E2(r))2

=
1

2
ε0(E1(r)2 + E2(r)2) + ε0E1(r) ·E2(r) (1)

and the total electrostatic energy is

UE =

∫
all space

u(r) dV (2)

Observe that the value of UE changes whenever the location of either of the two charges changes, but
only as a result of the term E1(r) ·E2(r).

The electrostatic or Coulomb force, FC , due to the field of q2 on the field of q1 is the ratio of the
energy change to the position change

FC = − lim
δr→0

δUE

δr
r̂

= −∇UE (3)

In the Lorentz force law as usually expressed, the fields act on charges. However in our approach the
forces arise directly from changes to the total energy in the total EM field.
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Section 4 shows this explicitly for the electrostatic situation above. We will evaluate the integral
(2) for two charged spheres, and then differentiate it with respect to δr to obtain the Coulomb force
law. From Coulomb’s force, FC , we may obtain the Lorentz force, FL, via Lorentz transformation to
another inertial frame (a relativistic boost). The reader can carry out similar steps to calculate the
force on a test charge inside a parallel plate capacitor, and for the force between two current carrying
wires. Some interesting pedagogical issues arise in these familiar situations.

2 History and perspective

In terms of the underlying conceptual ideas, Coulomb’s law, as with Newton’s law of gravity, was
historically expressed in terms of action at a distance of one charge acting directly on another charge

FC12 =
1

4πε0

q1q2
r212

r̂12 (4)

where the relative separation vector between the charges is

r12 = r2 − r1 (5)

and we write r12 = r12r̂12 where r12 is the magnitude of the vector r12 and r̂12 its direction.
Equation (4) describes mathematically the experimental observations made by Coulomb in the

1780’s, that there exists a force between two static charges separated in space and that the magnitude
of this electrostatic force is directly proportional to the magnitude of each charge and inversely pro-
portional to the square of the distance separating the two charges. Coulomb’s force law, eq(4), treats
the two charges symmetrically, however the action at a distance aspect of the law is contrary to the
precepts of Lorentz relativity and so this formulation can only be used in electrostatics.

To visualize the mechanics of the magnetic force between two bodies, in 1852 Faraday introduced
lines of force [5]. When iron filings are spread over paper and brought near a bar magnet, the iron filings
orient themselves end to end in lines from one pole of the magnet to the other. Faraday interpreted
these lines as being the lines of force. Faraday also showed experimentally that these lines of force
do not fit action at a distance models [5]. The lines of force were modified by Maxwell to tubes of
force. This modification allowed Maxwell to make fluidic assumptions about the force and to derive
a mathematical theory of electromagnetic fields. Maxwell believed these tubes of force propagated
through the ether, creating a tension between bodies that was the electromagnetic force [6,7].

The concept of fields acting as intermediaries allows an object to act on a distant object, and
allows the incorporation of retarded fields to allow for the travel time of the information, resolving this
problem with Coulomb’s force law, eq(4). The electric field E1 at point r2 generated by the charge q1
at r1 is equal to

E1 =
q1

4πε0r212
r̂12 (6)

The introduction of this field concept in the nineteenth century thus allowed Coulomb’s law to be
replaced by a new law which describes the local interaction of the field due to charge q1, on charge q2,

FE12 = E1q2 (7)

Likewise the effect the field due to charge q2 on charge q1 is

FE21 = E2q1 (8)

These two equations satisfy Newton’s third law, since FE12 = −FE21. We say the charge q1 interacts with
the electric field E2, and also that the field E2 acts on the charge q1 to give the force law of eq(8).
This is often called the electrostatic Lorentz force law. Despite the name, it first appeared in a paper
by Maxwell in 1861 [8]. Three years later, in 1864, Maxwell has this force law as one of his original
eight electromagnetic equations [6].

The force laws, eq(7) and eq(8), involve the action of a field (due to one charge) on the other charge,
and are thereby unsymmetrical. However, together with the use of retarded fields, this “Maxwell–
Lorentz” electrostatic force law not only resolved the “instantaneous action at a distance” issue of
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Coulomb’s law, it also included the principle of superposition. The principle of superposition is part of
the definition of a vector field, and is thus intrinsic to all of Maxwell’s equations. As with Coulomb’s
law, the force experienced by one charge due to a static discrete distribution of other charges may be
calculated using the principle of superposition, either by adding the force vectors or by adding the field
vectors.

Given the absence of magnetic monopoles, lifting the restriction that the charges be stationary
with respect to one another introduces magnetic fields. There is no law equivalent to Coulomb’s law
for magnetism and so action at a distance is not an issue that arises. The magnetic force on a charge
q is calculated using the magnetic Lorentz force law

FM12 = q1(v1 ×B2) (9)

where B2 is the magnetic field produced from charge or charges q2 moving at some velocities v2 with
respect to the laboratory frame.

The magnetic field at a point r1 can be calculated using the Biot-Savart law

dB2(r1) =
µ0

4π

i2ds2 × r̂12
r212

(10)

relating an infinitesimal magnetic field dB2 at r1 due to a infinitesimal current element i2ds2 at r2.
The general Lorentz force law, which incorporates both electric and magnetic fields, is the sum of

forces (7) and (9)

FL = q1(E2 + v1 ×B2) (11)

This law may be derived from the electrostatic force (7) in a frame where the magnetic field is zero,
to the frame with the non-zero magnetic field, by means of a Lorentz boost. The Lorentz force law
provides an electrodynamic theory of charges where both the electric and magnetic fields are mediators
for electromagnetic force and both fields act on the charge q1.

Historically, the Faraday-Maxwell approach led to Maxwell’s equations, and then Lorentz, Poincaré
and others found the invariance properties of the equations were not those of Galileo and Newton, but
involved time in a new way. In 1905 Einstein reversed this process and showed that these Lorentz and
Poincaré transformations followed from extending the Galilean spatial transformations to spacetime,
that is special relativity (SR), by assuming the invariance of the speed of light. In the next section we
review the argument that Maxwell’s equations follow from SR.

3 A Lorentz Invariant Derivation of Maxwell’s Equations

The above historical approach to deriving the Lorentz force law is usually the approach taken in
undergraduate texts on electromagnetism. In this approach the Lorentz force law (11) (or its non-
relativistic limit, (7)) is also used to derive Maxwell’s equations. Several modern authors give a different,
Lorentz invariant approach to Maxwell’s equations that does not use the Lorentz force law. One such
derivation is provided in chapter 18 of Doughty [4]. The argument is, in outline:

First use Einstein’s logic to deduce special relativity from the homogeneity of space and time,
isotropy of space, and the invariance of the speed of light. Second ask for the simplest non-trivial
vector field Aµ, such that AµA

µ is a Lorentz scalar. The derivative (or 4-curl) of this field is a second
rank anti-symmetric tensor called the electromagnetic (or Faraday) tensor and written Fµν

Fµν = ∂µAν − ∂νAµ (12)

The electric and magnetic field components are contained in this tensor, Ei = F 0i and Bi = F jk.
Maxwell’s field equations can be written as the derivative of this tensor and its dual

∂νF
µν = µ0J

µ and ∂ν F̃
µν = 0 (13)

where the source Jµ is another 4-vector, the electromagnetic current density.
Next, construct the energy-momentum tensor Tµν of the electric field. Because energy-momentum

is a physical quantity that can be measured, it cannot have any gauge-freedom and so the energy-
momentum tensor is constructed in terms of the gauge-invariant tensor Fµν . Quoting Doughty: “Tµν
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must be a proper tensor symmetric with respect to µ and ν. No symmetric tensor may be constructed
from terms having only a single factor of Fµν combined with the universal tensors ηµν and εµνλρ.
Noting also that Tµν for a particle is quadratic in the time derivatives żµ of the dynamical variables,
we consider quadratic combinations of Fµν which itself contains spacetime derivatives of Aµ”.

Because the indices µ and ν cannot both be on a single factor of Fµν in any term of Tµν , there
are only two independent terms that may be used 1. The first of these is a term of the form FµλF νλ
which is symmetric in µν. The second term is obtained by instead placing the indices on a factor of
ηµν = diag(1,−1,−1,−1) the Minkowski metric which is also symmetric. One must then multiply by
the invariant quadratic FλπF

λπ to ensure the there is common dimensionality.
The electromagnetic energy-momentum tensor must therefore be of the form,

Tµν = aFµλF νλ + bηνµFλπF
λπ (14)

where a and b are constants.
By demanding that this tensor be conserved identically as a result of the free field Maxwell equations

and by coupling the electromagnetic field to any system for which the energy details are known, the
constants a and b may be solved for. One finds that a = 1/µ0 and b = −a/4. The electromagnetic
energy-momentum tensor is therefore 2:

Tµν =
1

µ0

(
FµλF νλ −

1

4
ηµνFλπF

λπ

)
(15)

The energy density is then recognised as the T 00 component of the electromagnetic energy momentum
tensor

T 00 =
1

2
(ε0E

2 +
1

µ0
B2) (16)

This argument allows Doughty and others to derive Maxwell’s equations from special relativity.
This reverses the historical approach which starts with Coulomb’s law, and by a series of generalisa-
tions and other extensions, arrives at Maxwell’s equations and their invariance properties, the Lorentz
transformation laws. Thus Maxwell’s equations imply special relativity, and vice versa.

4 Coulomb’s Law From Hamilton’s Principle

In this section we show that by considering the fields generated by the charges, and not the charges
themselves, we are able to express the electrostatic force symmetrically in terms of retarded fields. We
evaluate the integral (2) for two charges, and then differentiate it with respect to δr12.

The electric fields associated with the two charges q1 and q2 are given by Gauss’s law, a special
case of Maxwell’s equations, eq(13)

E1(r) =
q1

4πε0r21
r̂1, E2(r) =

q2
4πε0r22

r̂2, (17)

where r1 and r2 are the vectors from q1 and q2 respectively to a given point r in space where the
electric fields are measured. The vectors r̂1 and r̂2 point radially outward from the charges.

A pictorial representation of the two charge system is given in Figure 1. In the spherical coordinates
(r, θ, φ) of the figure, q1 is at (R, π, 0) and q2 at (R, 0, 0).

The energy density of the system is

u12(r) =
ε0
2

(E1(r) + E2(r))2

=
ε0
2
E1(r)2 +

ε0
2
E2(r)2 + ε0E1(r)E2(r) cos θ12 (18)

1 To be precise, there are a total of four second-rank tensors quadratic in Fµν . However one of these is not
proper and another is a linear combination of the other two proper tensors.

2 A more rigorous derivation of the special relativistic electromagnetic energy-momentum tensor using
Noether’s theorem can be found in chapter 19 of Doughty [4].
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Fig. 1: Two charges q1 and q2 separated in space by r12. The energy density at any point inside the
circle is negative. Outside the circle it is positive.

where θ12 is the angle from r̂1 to r̂2.
The integrals over all space of the first two terms, u1 = 1

2ε0E
2
1 and u2 = 1

2ε0E
2
2 , are independent of

the positions of q1 and q2, and so the u1 and u2 terms can be ignored in the calculations of the force.
It is clear that these terms describe the self-interactions. We assume that the charged objects have a
finite radius, so the integrals are finite and constant.

The interaction energy density term is

u1,2 = ε0E1 ·E2

= ε0E1E2 cos θ12 (19)

Substituting the expressions for E1 and E2 and using some trigonometry, see Figure 1, one finds
after some relatively straightforward calculations that the total interaction energy for the two charge
system is given by

U1,2 =
q1q2
4πε0

1

r12
(20)

and the force between the two charges is

F12 = −∇12U1,2

= − ∂

∂r12
U1,2 r̂12

=
q1q2

4πε0r212
r̂12 (21)

which is Coulomb’s law.
There are some notational subtleties in the expression above, in that F12 is the force on q2 due to

q1, ∇12U1,2 denotes the change in U1,2 as a function of variations in r12, U1,2 is the total interaction
energy in the electric field due to the system of q1 plus q2, and r12 is the vector from q1 to q2. If we
hold a charged sphere q1 stationary at r1, and move a second charged sphere q2 at r2 by a distance
δr2, then δr12 = δr2.

An interesting observation is that the interaction energy U1,2 is negative inside the sphere of radius
R = 1

2r12 centred midway between the two charges: U1,2 = 1
2R −

π
4R . The interaction energy inside

this sphere contributes an attractive component to the force between two like charges. This volume
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contributes around −23% to the total energy. On the boundary of this sphere the interaction energy
density is zero because the fields are orthogonal. Outside the sphere the interaction energy density is
positive, giving rise to the overall repulsive force between like charges. The volume outside radius R
contributes about 123%.

There exist several noteworthy regions of space within which the total interaction energy is zero.
One of these is found by asking: what must the radius R0 of a sphere concentric with the aforementioned
sphere of radius R be so that the interaction energy inside this sphere vanishes? See Figure 2(a). A
straightforward calculation reveals that R0 is approximately 1.62R.

Secondly, the net field contribution is zero from the infinite slab between the charges, that is the
region of space where −R ≤ z ≤ R. Indeed using cylindrical coordinates, it is easy to show that for
each value of z in this range, the negative contribution to

∫
f(r, θ) r2 sin θ dr from inside the sphere of

radius R = 1
2r12 centered at the coordinate origin, cancels the contribution from R to ∞, see Figure

2(b).
Thirdly, the negative interaction energy inside the sphere of radius R is also cancelled by another

sphere of radius 2R centered on either of the two charges, as shown in Figure 2(c). This result follows
by evaluating the integral eq(2) for a sphere centered on q1. Alternatively, this can be seen from the
fact that the field of point charge q1 for r > R, is the same as that of a uniform shell of radius R with
total charge q1. The shell has zero field inside r, and therefore both shell and point charge have zero
interaction energy with q2 in the volume inside r, as long as r < 2R.

As an explicit demonstration of our claim that the Coulomb force law follows from the EM energy
density and Hamilton’s variational principle, we have evaluated the force between two charges at rest.
It is not difficult to repeat the point charge calculation for a test charge in a capacitor, and the force
between a pair of current-carrying wires, but each example carries some subtleties in choosing coordi-
nate systems and the limits of the respective integrals. Boosting any of these results to a moving frame
using the Lorentz transformation laws, which are the transformation laws for Maxwell’s equations,
leads to the full, relativistic Lorentz force law for the interactions between moving electric charges and
for interactions between electric currents.

5 Discussion

We have reviewed the old but not well known result that Maxwell’s equations follow from special
relativity. By supplementing Maxwell’s equations by Hamilton’s variational principle that force is
related to the gradient of energy, F = −∇U , we have shown that the Lorentz force law is contained
within both Maxwell’s equations and special relativity, a result not quite so old, and even less widely
known.

Many authors, and essentially all undergraduate texts, follow the historical development and deduce
Maxwell’s equations by a series of extensions to Coulomb’s force law, the first extension being Faraday’s
concept of lines of force. These lines of force were introduced as acting on charges and currents, but
Maxwell recognised that the fields have merit in themselves, as is reflected in the homogeneous Maxwell
equations which contain only the fields, and give rise to electromagnetic waves.

In the standard formulation, the Lorentz force law eq(11) has electric and magnetic fields as the
mediators of electromagnetic force and it gives the electromagnetic force on a (perhaps moving) test
charge through the electric and magnetic fields at the position of the test charge. This means that
the Lorentz force law is essentially local, what happens in the rest of space does not affect the force
experienced by the test charge. However the Lorentz force law is not symmetric with respect to the
charge (or charges) that are the source of the field, and the charge that is being acted upon by the
field.

Our expression for the Lorentz force law is new, it is in terms of the interactions of fields on
fields, not fields on charges. Our approach thus requires a re-interpretation of the usual statements
that electromagnetic fields do not interact with other electromagnetic fields but only with charges and
currents (for an example see the statement on page 226 of Aitchison and Hey [9]).

We have shown that working with only the fields, one is able to obtain a force law which is both
Lorentz invariant and symmetrical. The fields of the charges are the mediators of the force, but this
time not through the interaction of the fields with the test charge at a single point in space, but rather
through the interaction of the fields with the fields from the test charge throughout the entire causally
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connected universe. Although the fields interact at points, and then as the energy density at points, the
net force at a time t results from considering all the points in space at that time t. We note that this
kind of dispersed interaction seems similar in some aspects to the delocalization of the wave function
in quantum mechanics before it collapses at (what is usually supposed to be) the point of interaction.

In our formulation, the Lorentz force law is non-local, in much the same sense that gravity is
non-local in general relativity. Consider only the Coulomb part. While the interaction energy density
u1,2 = ε0E1 · E2 is local, the Coulomb force comes from −∇12

∫
u1,2dV . The repulsive force between

two positive charges q1 and q2 separated by r12 comes not from the integral close to the charges, but
from the integral over all space. Indeed, the integral within the sphere of radius r12/2 leads to an
attractive contribution (of around 23%), a contribution that is overwhelmed by the repulsive integral
(of 123%) of the interaction energy density outside r12.

The fields-only approach, eq(3), proposed here is thus different from conventional EM in two re-
spects: It is symmetric with respect to the sources of the fields; and the force experienced by each of
the sources is determined by the electromagnetic fields due to all charges throughout all space.

There are a number of implications of this approach. There needs to be a re-interpretation of the
assumption that electromagnetic fields do not interact with each other. We have shown in this paper
that by laying aside this assumption and looking at the quadratic form that is the energy density, one
may successfully calculate the electromagnetic forces between charged particles. Our assumption is
that fields act on fields, but we emphasise that it is not through their linear superposition properties,
but rather through their non-linear, quadratic, contribution to energy density. In our approach, the
charges are essentially delocalized, and replaced by their electromagnetic fields in a manner similar to
the delocalization of particles in quantum mechanics, where the particles are replaced by their wave
functions.

Furthermore in our approach, the electromagnetic property of the charges themselves is reduced
to merely being the sources of the fields. Namely, the charges don’t interact with each other through
electric and magnetic fields, it is the fields themselves that interact through eq(3): F12 = −∇12U12.

Acknowledgements This work was inspired by a discussion between P.H.B. and M.v.d.M on topological
fields and the (inter)action of fields on fields. It is a pleasure to acknowledge the implicit contribution to
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(a) The interaction energy in the volume between the
sphere of approximate radius 1.62R and the sphere of
radius R is positive and cancels the negative interac-
tion energy of the smaller sphere.
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(b) The contribution from the volume between the two
charges (the part of space between z = −R and z = R)
is zero because the contribution for cylindrical coordi-
nate r in the range from 0 to the surface of a sphere of
radius R, cancels (for each value of z) the contribution
outside the sphere.
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(c) The negative interaction energy inside the sphere
of radius R is negated by another sphere of radius 2R
centered on either of the two charges.

Fig. 2: This figure shows three regions of space (each containing the sphere of radius R of negative
interaction energy) within which the total interaction energy is zero.
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