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Plane Waves and Photons

 

6.1 Introduction

 

One of the most important solutions to the propagation equation in vacuum
corresponds to plane waves, which are only functions of time and one spatial
coordinate. In general, the phase of the plane is defined by the relativistically
invariant quantity  Such plane waves represent clas-
sical solutions to the electromagnetic wave equation, but they assume a
particularly important role in electrodynamics because they offer a natural
introduction to the quantum electrodynamical concept of the photon. In
addition, plane wave solutions form the basis of the Fourier analysis of wave
propagation, which is a powerful mathematical tool to study linear problems
where the principle of superposition applies. In this respect, plane waves
are closely linked to the Green functions presented in Chapter 5 and repre-
sent their natural mathematical complement.

In this chapter, the vacuum propagation equation is first considered, and its
plane wave solutions are described. We then consider the same type of waves
but now confined in a box by a set of boundary conditions. The connection
with the quantization of the free electromagnetic field and photons is then
made, and a detailed analysis of the properties of the quantized electromag-
netic field is given, including its statistical characteristics. Finally, virtual pho-
tons and the Coulomb field are discussed. The goal of this chapter is to provide
a useful introduction to some aspects of QED and to offer a background for
the question of vacuum fluctuations; this approach is also essential to the
understanding of the Casimir effect and Hawking–Unruh radiation.

As discussed in Chapter 2, the propagation of electromagnetic waves in
vacuum is described by the wave equation for the free electromagnetic field,

(6.1)

where the four-potential satisfies the Lorentz gauge condition,

(6.2)

φ kµxµ k x⋅ ωt.–= =

∂µ∂ µAν Aν 0,= =

∂µAµ 0,=
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and where  is the four-gradient operator;  is
the d’Alembertian operator, also called the electromagnetic wave propagator. 

We can seek a general solution of Equation 6.1 in terms of a superposition
of plane waves, where the four-potential is described by a Fourier transform:

(6.3)

Here,  is the four-wavenumber, which is the Fourier conjugate
of the four-position, . 

The terminology often used to describe the Fourier transform in Equation 6.3
refers to the four-wavenumber space as momentum space, since for quantum
states, there is a direct correspondence between the four-momentum and four-
wavenumber:

(6.4)

The obvious advantage of the Fourier transform is that the d’Alembertian
operator yields a very simple result when applied to the complex exponential
in the Fourier integral: we now have, for the wave equation,

(6.5)

At this point, it is important to note that the various Fourier modes are
orthogonal; in other words,

(6.6)

As a result, the nontrivial solution to Equation 6.5 implies that the following
condition be satisfied for all values of the four-wavenumber:

(6.7)

This is the well-known dispersion relation for electromagnetic waves prop-
agating in vacuum. Within the context of the aforementioned momentum
space terminology, we see that the vacuum dispersion relation corresponds
to the mass-shell condition for photons, namely,

(6.8)

∂µ ( ∂0, ∇)–= = ∂µ∂ µ ∆ ∂0
2–=

Aµ xλ( ) 1
2π

----------- 
  4

Ã µ kλ( ) −ikλxλ( )exp d4kλ.∫∫∫∫=

kµ (ω/c, k)=
xµ (ct, x)=

pµ hkµ.=

Aµ xλ( ) 1
2π

----------- 
  4

−kµkµ( )Ã kλ( ) −ikλxλ( )exp d4kλ∫∫∫∫ 0.= =

−ikλxλ( )exp ikλ
′ xλ( ) d4exp xλ∫∫∫∫ −i kλ kλ

′–( )xλ[ ]exp d4xλ∫∫∫∫=

2π( )4δ 4 kλ kλ
′–( ).=

−kµkµ ω2

c2
------ k2– 0.= =

pµ pµ h2kµkµ 0 p2 E2

c2
----- ,–= = =
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which implies that photons are massless, since all their energy corresponds
to momentum, as opposed to a particle with rest mass 

 

m

 

0

 

, for which
. In the previous chapter, concerned with the propagation of elec-

tromagnetic waves in a vacuum enclosed by boundary conditions, we have
seen that, in general, the presence of boundaries discretizes the free modes of
the vacuum and introduces a cutoff frequency 

 

ω

 

0

 

, such that the dispersion
relation is modified to read ; within this context, the photons
are seen to acquire an effective rest mass, . Indeed, the photons
trapped at cutoff by the boundary conditions have energy but no momen-
tum, which is exactly the definition of rest mass. However, a more detailed
analysis of the situation shows that the trapped modes correspond to stand-
ing waves, which can be understood in terms of counterpropagating waves;
thus, the zero momentum of the trapped wave stems from the fact that
photon pairs with finite energy but opposite momenta form the cutoff mode.

Provided that the condition  is satisfied, any superposition of
plane waves described by Equation 6.5 is a solution of the wave equation
in vacuum. A single free electromagnetic mode, described by the Fourier
amplitude , corresponds to a plane wave, with four-
wavenumber 

 

k

 

λ

 

, and the scalar  is the relativistically invariant
phase of that wave. In Chapter 8, where the dynamics of an electron in a
plane wave is studied, we will generalize plane waves to include free elec-
tromagnetic modes where the four-potential is a function of the phase and
satisfies the gauge condition, which now corresponds to the transversality
condition. We have

(6.9)

and the Lorentz gauge condition now requires that

(6.10)

In particular, if we choose the spatial 

 

z

 

-axis to coincide with the direction of
propagation of the wave, we see that a purely transverse four-potential,
where , will automatically satisfy the gauge condition.

 

6.2 Quantization of the Free Electromagnetic Field

 

We now turn our attention to the question of the quantization of the free
electromagnetic field. So far, we have considered the electromagnetic field
as a classical field, describable in terms of continuous functions of the four-
position, or the four-wavenumber, when we work in momentum space. This
model of the field is extremely useful when applied to a large number of

pµ pµ m0
2c2–=

c2kµkµ ω0
2+ 0=

m0 hω0/c2=

kµkµ 0=

Ã µ(kλ
′ ) Ã µ0δ 4(kλ kλ

′ )–=
φ kλxλ–=

Aµ xλ( ) Aµ φ( ) Aµ kλxλ( ),= =

∂µAµ φ( ) ∂φ
∂xµ-------- dAµ

dφ
---------- kµ

dAµ

dφ
---------- 0.= = =

Aµ(xλ) [0, A⊥(φ),0]=
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370 High-Field Electrodynamics

phenomena, including wave propagation, diffraction, and interference. In
particular, a large variety of optical phenomena can be described within this
framework, which forms the basis of geometrical and classical optics, includ-
ing coherent radiation generation in microwave devices, Fourier optics, and
dispersion theory. However, under certain circumstances, this description
proves inadequate, and the concept of the photon, or quantum of the elec-
tromagnetic field, must be introduced. Such special situations include the
physics of vacuum fluctuations, the Casimir effect, and Hawking–Unruh
radiation, which require a detailed knowledge of the statistical properties of
the free electromagnetic field; the study of the coherence and space–time
correlation characteristics of light, as exemplified by squeezed states; and
the physics of radiative corrections which play a major role in Compton
scattering, particularly in the case of multiphoton interactions at relativistic
field intensities; finally, QED concepts, such as the Schwinger critical field
and the description of the Coulomb field in terms of virtual quanta rely
intrinsically on the concept of the photon.

We start from Maxwell’s equations, as expressed in the absence of sources:

(6.11)

for the source-free equations, and

(6.12)

in vacuum. In this case, we introduce the vector potential only, as we shall
work in the Coulomb gauge. We simply have

(6.13)

and the transversality condition, which is equivalent to the fact that the
vector potential is divergence-free,

(6.14)

We note that such a divergence-free vector potential will be used in Chapter 8,
where the focusing and diffraction of electromagnetic waves will be studied
in detail. In that case it will prove useful to introduce a generating vector
field G, defined such that  thus automatically satisfying the
Coulomb gauge condition described by Equation 6.14. Finally, using the
definition of the fields in terms of the vector potential, we obtain the prop-
agation equation,

(6.15)

∇ E ∂tB+× 0, and ∇ A⋅ 0,= =

∇ B 1
c2
----– ∂tE× 0, and ∇ E⋅ 0,= =

E −∂tA, and B ∇ A,×= =

 ∇ A⋅ 0.=

A ∇ G× ,=

∆ 1
c2
----∂t

2– 
  A 0.=
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Plane Waves and Photons 371

To quantize the free electromagnetic field, we need to derive the corre-
sponding Hamiltonian; it will prove useful to start by Fourier transforming
the vector potential into three-momentum space, which is the conjugate of
the usual three-dimensional space. In addition, we will consider that the
field is subjected to spatial boundary conditions. Instead of a continuous
spectrum, a discrete spectrum results from this procedure, and the vector
potential can be described by a Fourier series. Finally, a cubic box is used,
which further simplifies the mathematical expression of the potential. With
this, we have

(6.16)

where a is the size of the box, and where the wavenumber spectrum satisfies
the periodic boundary conditions at the edge of the box:

(6.17)

Finally, it is customary to introduce the normalization factor  for
convenience. Following Mandel and Wolf, in the remainder of the derivation,
we will use a more compact notation, where Equation 6.16 now reads

(6.18)

and the summation is performed over the three spatial indices labeling the
normal modes of the box; the wavenumber is defined as 

Within this context, the Coulomb gauge condition implies that

(6.19)

because the complex exponential functions are orthogonal, we must also
have

(6.20)

We can now use Equation 6.18 into the wave equation 6.15; the Laplacian
operating on complex exponentials takes a very simple form, and we find that

(6.21)

A xµ( ) 1

ε0a3
-------------- Al mn t( ) i kl x km y kn z++( )[ ]exp

n
∑

m
∑

l
∑ ,=

kl l
2π
a

------ , km m
2π
a

------ , kn n
2π
a

------ , l ,m ,n Z.∈= = =

1/ ε0a3

A xµ( ) 1

ε0a3
-------------- Ak t( )eik ·x,∑=

klmn k kl x̂ += =
km ŷ kn ẑ.+

1

ε0a3
-------------- ik Ãk t( )eik ·x⋅

k
∑ 0;=

k Ãk t( )⋅ 0.=

1

ε0a3
-------------- −k2 1

c2
---- ∂t

2– 
  Ãk t( )eik ·x

k
∑ 0.=
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372 High-Field Electrodynamics

Again, the orthogonality of complex exponentials implies that each term in
the sum is identically equal to zero: each mode of the box satisfies the
propagation equation

(6.22)

Equation 6.22 corresponds to a harmonic oscillator of frequency  and
can be solved to obtain

(6.23)

where the complex conjugate quantity guarantees that the vector potential
is a real vector field.

The transversality condition described in Equation 6.20 must be satisfied
by the solution given in Equation 6.23; it is customary to introduce two
polarization vectors that are mutually orthogonal and perpendicular to the
direction of propagation of the mode under consideration:  and  are two
unit vectors defined such that ; in addition, ;
finally, . The vectors  form a right-handed,
orthonormal basis, and the Fourier coefficients of the vector potential can be
projected on this basis:

(6.24)

We note that the polarization vectors can be rotated arbitrarily in the plane
perpendicular to the direction of propagation of the mode under consider-
ation; furthermore, the basis obviously depends on the mode, as it is defined
with respect to . Within this context, the indices 1 and 2 represent
the two possible polarization states of the mode indexed by k; different
combinations of the two vectors will correspond to linear, elliptical, and
circular polarization states. For a detailed presentation of the polarization
states and their properties under spatial rotations, we refer the reader to
Mandel and Wolf.

The vector potential for an arbitrary combination of eigenmodes of the
box can now be expressed as

(6.25)

where σ = 1, 2 represents the polarization. 
Although the presentation given here is not covariant, Equation 6.25 can

be recast as

(6.26)

k2 1
c2
---- ∂t

2+ 
  Ãk t( ) 0.=

ω2

c2
----- k2=

Ãk t( ) a ke−iωt a −k
∗ eiωt+ ,=

e ⊥1
k e ⊥2

k

k e ⊥1
k⋅ k e ⊥2

k⋅ 0= = e ⊥1
k e ⊥2

k⋅ 0=
e ⊥1

k e ⊥2
k× k/ k e �

k== (e ⊥1
k ,e ⊥2

k ,e �
k)

a ⊥ a k1 e ⊥1
k a k2e ⊥2

k .+=

e �
k k/ k=

A xµ( ) 1

ε0a3
-------------- a kσ e ⊥σ

k e−iωt a −kσ e ⊥σ
−k eiωt+( )eik ·x

σ
∑

k
∑ ,=

A xµ( ) 1

ε0a3
-------------- a kσ e ⊥σ

k e
ikµxµ

a −kσ e ⊥σ
−k e

−ikµx µ

+ 
 

σ
∑

k
∑ ,=
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Plane Waves and Photons 373

where , and satisfies the vacuum dispersion relation 
for each mode of the box.

Again, we emphasize that, strictly speaking, each mode of the box corre-
sponds to an eigenwavenumber, , satisfying the disper-
sion relation

(6.27)

As mentioned earlier, for conciseness, the three indices corresponding to the
triple set of boundary conditions are implicitly included in the summation
∑k. We also note that the oscillation frequency of a given eigenmode is inde-
pendent of its polarization state; thus there is a degeneracy of the modes in
terms of polarization.

To expand the vector potential in terms of the spatial eigenmodes of the
box, we write  in which case Equation 6.25 takes the form

(6.28)

The fields can now be evaluated by using Equation 6.13; the partial time
derivative and the curl operators take very simple forms, and we find

(6.29)

and

(6.30)

To proceed with the quantization of the free electromagnetic field, we now
need to derive the Hamiltonian of the system, which corresponds to the field
energy of the eigenmodes derived above; we start with the electromagnetic
energy density, which is given by . The total field energy in the box
is thus

(6.31)

where the electric field and magnetic induction are given by Equations 6.29
and 6.30. The orthogonality of the complex exponentials considerably simplifies
the energy integral: the eigenmodes of the box do not interfere; in other words,

kµ (ω/c, k)= kµ kµ 0=

kµ
lmn (ωlmn /c,klmn )=

ωl mn
2

c2
----------- kl mn

2 l 2 m 2 n 2+ +( ) 2π
a

------ 
 

2

.= =

a kσ t( ) a kσ= e−iωt,

A xµ( ) 1

ε0a3
-------------- a kσ t( )e ⊥σ

k eik ·x akσ
∗ t( )e ⊥σ

−k eik ·x+[ ]
σ
∑

k
∑ .=

E xµ( ) i

ε0a3
-------------- ω a kσ t( )e ⊥σ

k eik ·x a kσ
∗ t( )e ⊥σ

−k e−ik ·x–[ ]
σ
∑

k
∑ ,=

B xµ( ) i

ε0a3
-------------- ω a kσ t( ) k e ⊥σ

k×( )eik ·x a kσ
∗ t( ) k e ⊥σ

k–×( )– e−ik ·x[ ]
σ
∑

k
∑ .=

ε0E2

2
---------- B2

2µ0
--------+

H
1
2
--- ε0E2 xµ( ) 1

µ0
-----B2 xµ( )+ d3x,

a3∫∫∫=
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374 High-Field Electrodynamics

we have

(6.32)

For the magnetic field energy, we are led to evaluate the product

(6.33)

The aforementioned orthogonality of the box eigenmodes results in a diag-
onalization of the summations over modes and polarizations, and we find
that the electromagnetic energy contained within the boundaries is

(6.34)

as expected, the modes do not interfere. The total field energy is given by
the sum of the energy of each of the vacuum eigenmodes excited within the
box.

At this point, we need to describe the electromagnetic field within the
context of Hamiltonian formalism; the commutation of the corresponding
canonical variables will then enable us to quantize the field in terms of
photons.

A generalized position, qkσ, and a generalized momentum, pkσ, must be
associated to each eigenmode and polarization state of the system. Further-
more, these canonical variables must be such that the dynamics of the system
obey Hamilton’s equations,

(6.35)

and

(6.36)

The following choice of generalized coordinates yields the desired equations
of motion:

(6.37)

(6.38)

i k k′–( ) x⋅[ ]exp d3x
a3∫∫∫ a3δ kk ′

3 .=

k e ⊥σ
k×( ) k e ⊥σ ′

−k×( )⋅ k2 e ⊥σ
k e ⊥σ ′

−k⋅( ) k2δσσ ′ .= =

H 2 ω2 a kσ t( ) 2;
σ
∑

k
∑=

∂H
∂pkσ
-----------

∂qkσ

∂t
----------- ,=

∂H
∂qkσ
-----------

∂ pkσ

∂t
------------ .=

qkσ t( ) a kσ t( ) a kσ
∗ t( )+[ ],=

pkσ t( ) −iω a kσ t( ) a kσ
∗ t( )–[ ].=
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Using the definition  it is easily seen that 

(6.39)

In addition, taking the partial derivative of the generalized momentum with
respect to time yields the following result:

(6.40)

It is now easy to verify that the Hamiltonian can be expressed as

(6.41)

and that Hamilton’s equations 6.35 and 6.36 are satisfied by the choice of gen-
eralized coordinates used here. The fact that the eigenmodes are orthogonal
is reflected in the fact that each mode contributes energy to the Hamiltonian
independently of the other modes: there is no interference between modes.
Furthermore, Equation 6.41 indicates that each mode corresponds to an
harmonic oscillator, with a frequency satisfying the vacuum dispersion rela-
tion, Equation 6.26. In the quantization of the field, each oscillation mode
will be identified with a quantum of radiation, thus introducing the concept
of the photon.

Using Equations 6.36 and 6.38, we can define the amplitude of the box
eigenmodes in terms of the canonical variables,

(6.42)

and the potential and fields can then be expressed in terms of the canonical
variables:

(6.43)

(6.44)

a kσ t( ) a kσ e iωt– ,=

∂
∂t
----- qkσ t( )[ ] pkσ t( ).=

∂
∂t
----- pkσ t( )[ ] −ω2qkσ t( ).=

H p, q( ) 1
2
--- ω2qkσ

2 t( ) pkσ
2 t( )+[ ],

σ
∑

k
∑=

a kσ t( ) 1
2
--- qkσ t( ) i

ω
---- pkσ t( )+ ,=

A xµ( ) 1

2 ε0a3
----------------- qkσ t( ) i

ω
---- pkσ t( )+ e ⊥σ

k eik ·x





σ
∑

k
∑=

qkσ
∗ t( ) i

ω
---- pkσ

∗ t( )– e ⊥σ
−k e−ik ·x





,+

E xµ( ) i

2 ε0a3
----------------- ωqkσ t( ) ipkσ t( )+[ ]e ⊥σ

k eik ·x{
σ
∑

k
∑=

ωqkσ
∗ t( ) ipkσ

∗ t( )–[ ]– e ⊥σ
−k e−ik ·x },
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and

(6.45)

The quantum mechanical description of the electromagnetic field can be
achieved by now considering the canonical variables as operators and iden-
tifying the corresponding Poisson bracket with the commutator:

(6.46)

Within the quantum context, the Hamiltonian of Equation 6.41 must now
be considered as an operator acting on the state vector of the electromagnetic
field; the result of this operation is the corresponding electromagnetic energy
level. Because we are considering a system enclosed by a set of boundary
conditions, the resulting energy spectrum is discrete. This is a very general
result, and quantum numbers can be associated with each set of boundaries.
In this case, each mode is indexed by three numbers corresponding to the
triple set of spatial boundaries imposed on the electromagnetic field. For
unbounded systems, the discrete spectrum is replaced by a continuum; for
example, above the ionization threshold, the electron wavefunction can
extend to infinity, and the energy spectrum becomes continuous. Additional
quantum numbers can reflect internal symmetries, or, in the case of the
electromagnetic field, indicate the state of polarization of the corresponding
quantum state. The two different possible values for σ simply correspond
to the fact that the photon is a spin-1 particle. The aforementioned degener-
acy of the electromagnetic energy level in terms of the polarization illustrates
the fact that the photon spin does not contribute to its energy.

6.3 Creation and Annihilation Operators

We now turn our attention to the well-known photon creation and annihi-
lation operators; these can be defined in terms of the generalized position
and momentum, , and , and are closely related to the eigenmode
amplitudes, : 

(6.47)

B xµ( ) i

2 ε0a3
----------------- qkσ t( ) i

ω
---- pkσ t( )+ k e ⊥σ

k×( )eik ·x





σ
∑

k
∑=

qkσ
∗ t( ) i

ω
---- pkσ

∗ t( )– k e ⊥σ
−k×( )e−ik ·x





.–

qkσ t( ), pk ′σ ′ t( )[ ] ihδkk′
3 δσσ ′.=

qkσ pkσ
a kσ

akσ t( ) i

2hω
--------------- ω qkσ t( ) ipkσ t( )+[ ] 2ω

h
------- a kσ t( ),= =
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and

(6.48)

Here, the notation  refers to the Hermitian conjugate of the operator
; in terms of matrix properties, if M = (Mij) is the original matrix, its

Hermitian conjugate is given by . A matrix is said to be Hermitian
if ; it is anti-Hermitian if  finally, the important prop-
erty of unitarity is satisfied if . Matrices and operators are closely
related in quantum mechanics; in fact, the matrix element of a given operator
corresponds to its projection in terms of quantum states: ,
where we have used Dirac’s notation.

Because the new operators introduced in Equations 6.46 and 6.48 are
normalized, the commutation relation takes the simple form

(6.49)

in addition, it is easily verified that each operator commutes with itself.
Next, we need to express the Hamiltonian operator, which yields the

energy spectrum of the quantized electromagnetic field in terms of the cre-
ation and annihilation operators. We start from Equation 6.41, and replace

(t) and (t) by their expressions in terms of  and . Adding
Equations 6.46 and 6.48, we first have

(6.50)

Subtracting Equation 6.48 from Equation 6.46, we also find that

(6.51)

Substituting in the definition of the Hamiltonian, given in Equation 6.41, we
first have

(6.52)

Special care must now be taken in expanding the operator products in the
brackets; in particular, their order must be preserved, and we can use the
fact that each operator commutes with itself:

(6.53)

akσ
† t( ) 1

2hω
--------------- ω qkσ t( ) ipkσ t( )–[ ] 2ω

h
------- a kσ

† t( ).= =

akσ
† (t)

akσ(t)
M† (Mji

∗ )=
Mij Mji

∗= Mij Mji
∗ ;–=

(M†M)ij δij=

Mij i〈 |M j| 〉=

akσ t( ), ak ′σ ′
† t( )[ ] δkk′

3 δσσ′;=

qkσ pkσ akσ t( ) akσ
† (t)

2ω
h

------- qkσ t( ) akσ t( ) akσ
† t( )+[ ].=

i 2ω
h

------- pkσ t( ) akσ t( ) akσ
† t( )–[ ].=

H
1
2
---

hω
2

------- akσ t( ) akσ
† t( )+[ ]2 hω

2
------- akσ t( ) akσ

† t( )–[ ]2
–

 
 
 

.
σ
∑

k
∑=

akσ t( ) akσ
† t( )+[ ]2

2akσ t( )akσ
† t( ),=
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and

(6.54)

Substituting into the expression for the Hamiltonian, we find

(6.55)

Note that the operators are normalized so that the Hamiltonian has the
correct dimension of energy, like the photon energy . 

To begin addressing the question of vacuum fluctuations, the Hamiltonian
operator can be recast in a more suggestive form. We use the commutation
rule given in Equation 6.49 and write it down explicitly:

(6.56)

We then have

(6.57)

and for , and , Equation 6.56 yields

(6.58)

Finally, the Hamiltonian takes the form

(6.59)

and the zero point fluctuations of the vacuum state appear clearly. The
lowest energy level of each harmonic oscillator is , where the frequency
is defined as the cutoff frequency of the mode in question:

 

6.4 Energy and Number Spectra

The energy spectrum generated by the Hamiltonian operator can now be
established. In this section, we will continue using Dirac’s notation for quan-
tum states and follow the discussion of Messiah, as presented by Mandel
and Wolf. Before deriving the energy spectrum, we recall the definition of
an operator eigenstate and the associated eigenvalue: for a given operator,

akσ t( ) akσ
† t( )–[ ]2 −2akσ

† t( )akσ t( ).=

H
1
2
--- hω akσ t( )akσ

† t( ) akσ
† t( )akσ t( )+[ ].

σ
∑

k
∑=

hω

akσ t( ), ak ′σ ′
† t( )[ ] δkk′

3 δσσ ′ akσ t( )ak ′σ ′
† t( ) akσ

† t( )ak ′σ ′ t( ).–= =

akσ t( ) ak ′σ ′
† t( ) akσ

† t( )ak ′σ ′ t( ) δkk′
3 δσσ ′+ ,=

k′ k= σ ′ σ=

akσ t( ) akσ
† t( ) akσ

† t( )akσ t( ) 1+ .=

H hω akσ
† t( )akσ t( ) 1

2
---+ ,

σ
∑

k
∑=

1
2
---hω

ω ωlmn=
= l 2 m 2 n 2+ + (2π/a).
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Plane Waves and Photons 379

Ω, the quantum state  is an eigenstate with eigenvalue , if the
following condition is satisfied

(6.60)

In other words, the action of an operator on one of its eigenstates is very
simple; the resulting state is just the original state multiplied by the eigenvalue.
This concept is directly related to the diagonalization of the operator. If we
consider orthonormalized eigenstates, the matrix elements of the operator
take a diagonal form, with

(6.61)

For an in-depth presentation of Dirac’s notation, as well as Hilbert spaces
and their application to quantum mechanics, we refer the reader to Messiah
and to Cohen–Tannoudji, Diu, and Laloe.

In the Hamiltonian, the spectrum is governed by the operator 
; the factor  simply corresponds to the vacuum level and appears

as a shift of the entire spectrum. Thus, our task is to determine the eigenvalue
spectrum of the photon number operator, . The mathematical
approach we will follow here was originally presented by Dirac and starts
by considering an eigenstate  of the operator  whereby

(6.62)

and where  is the corresponding eigenvalue. 
We now focus on the action of the creation operator on this eigenstate by

evaluating the new quantum state . 
At this point, we need to derive the commutation relation between the

photon number operator and the creation and annihilation operators:

(6.63)

where we recognize the commutator described in Equation 6.56. 
With this, we can rewrite Equation 6.63 as

(6.64)

We can proceed in the same way to evaluate

(6.65)

ψn| 〉 λn C∈

Ω ψn| 〉 λ n ψn| 〉.=

Ωmn ψm〈 |Ω ψn| 〉 ψm〈 |λ n ψn| 〉 λn ψm |ψn〈 〉 λnδmn.= = = =

akσ
† (t)akσ(t) =

Nkσ t( ) 1
2
---hω

Nkσ(t )

ηkσ| 〉 Nkσ t( ),

Nkσ t( ) ηkσ| 〉 nkσ ηkσ| 〉,=

nkσ

akσ
† ηkσ| 〉

akσ t( ), Nk ′σ ′ t( )[ ] akσ t( )Nk ′σ ′ t( ) Nk ′σ ′ t( )akσ t( )–=

akσ t( )ak ′σ ′
† t( )ak ′σ ′ t( ) ak ′σ ′

† t( )ak ′σ ′ t( )akσ t( ),–=

akσ t( ), Nk ′σ ′ t( )[ ] akσ t( ), ak ′σ ′
† t( )[ ]ak ′σ ′ t( ) δkk′

3 δσσ ′ak ′σ ′ t( ).= =

akσ
† t( ), Nk ′σ ′ t( )[ ] akσ

† t( )Nk ′σ ′ t( ) Nk ′σ ′ t( )akσ
† t( )–=

akσ
† t( )ak ′σ ′

† t( )ak ′σ ′ t( ) ak ′σ ′
† t( )ak ′σ ′ t( )akσ

† t( ).–=
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380 High-Field Electrodynamics

Again, we use the commutation relation between  and  to obtain

(6.66)

Equation 6.66 can now be used to evaluate the quantum state : we
first consider the action of the photon number operator on this new state,

(6.67)

and use Equation 6.66 for , and , which yields

(6.68)

Since  is an eigenstate of the photon number operator, Equation 6.68
reduces to

(6.69)

which clearly shows that the quantum state  is also an eigenstate
of the photon number operator, with eigenvalue ; this can be formally
stated as

(6.70)

where  is a constant to be determined. Taking the norm of Equation 6.60,
we find that

(6.71)

The quantum state  can be evaluated by using the commutator

(6.72)

we then see that we can rewrite the operator  as follows:

(6.73)

and the sought-after quantum states are given by

(6.74)

With this, we can now evaluate the constant : 

(6.75)

akσ(t) akσ
† (t)

akσ
† t( ), Nk ′σ ′ t( )[ ] akσ

† t( ), ak ′σ ′ t( )[ ]ak ′σ ′
† t( ) −δkk′

3 δσσ ′ak ′σ ′
† t( ).= =

akσ
† ηkσ| 〉

Nkσ akσ
† ηkσ| 〉 akσ

† t( )Nkσ t( ) akσ
† t( ), Nkσ t( )[ ]–{ } ηkσ| 〉,=

k′ k= σ ′ σ=

Nkσ akσ
† ηkσ| 〉 akσ

† t( )Nkσ t( ) akσ
† t( )+[ ] ηkσ| 〉 akσ

† t( ) Nkσ t( ) 1+[ ] ηkσ| 〉.= =

ηkσ| 〉

Nkσ akσ
† ηkσ| 〉 nkσ 1+( )akσ

† t( ) ηkσ| 〉,=

akσ
† (t) ηkσ| 〉

nkσ 1+

akσ
† t( ) ηkσ| 〉 χkσ ηkσ 1+| 〉,=

χkσ

ηkσ〈 |akσ akσ
† ηkσ| 〉 χkσ

2 ηkσ 1+ |ηkσ 1+〈 〉 |χkσ|2.= =

akσ akσ
† ηkσ| 〉

akσ, akσ
†[ ] akσ akσ

† akσ
† akσ– 1;= =

akσ akσ
†

akσ akσ
† akσ, akσ

†[ ] akσ
† akσ+= 1 akσ

† akσ+ 1 Nkσ+ ,= =

akσ akσ
† ηkσ| 〉 1 Nkσ+( ) ηkσ| 〉.=

χkσ

|χkσ|2 ηkσ|akσ akσ
† |ηkσ〈 〉 ηkσ〈 | 1 Nkσ+( ) ηkσ| 〉,= =
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and we know that  is an eigenstate of  as presented in Equation
6.62; therefore, we have

(6.76)

which yields the important result

(6.77)

where  is a phase factor.
It is now easy to prove by recurrence that the repeated application of the

creation operator increases the photon number by one unit each time. Ignor-
ing the phase factors, which do not contribute to the amplitude of the
eigenvalue spectrum, we have

(6.78)

We now proceed in exactly the same manner with the annihilation operator
acting on the eigenstate , and consider

(6.79)

We can now use the commutation rule derived in Equation 6.64, for ,
and , to obtain

(6.80)

which, in turn, yields

(6.81)

This demonstrates that  is an eigenstate of the number operator,
with eigenvalue ; thus, we have

(6.82)

The normalization constant is evaluated as follows:

(6.83)

ηkσ| 〉 Nkσ

|χkσ|2 1 nkσ+( ) ηkσ ηkσ〈 | 〉 1 nkσ+( ),= =

χkσ 1 nkσ+ e
iθ kσ,=

θ kσ

akσ
† t( )[ ]m ηkσ| 〉 1 nkσ+( ) 2 nkσ+( )… m nkσ+( ) ηkσ m+| 〉, m N.∈=

ηkσ| 〉

Nkσ t( )akσ t( ) ηkσ| 〉 akσ t( )Nkσ t( ) akσ t( ), Nkσ t( )[ ]–{ } ηkσ| 〉.=

k′ k=
σ ′ σ=

akσ t( ), Nkσ t( )[ ] akσ t( ),=

Nkσ t( )akσ t( ) ηkσ| 〉 akσ t( )Nkσ t( ) akσ t( )–[ ] ηkσ| 〉=

akσ t( ) Nkσ t( ) 1–[ ] ηkσ| 〉=
nkσ 1–( )akσ t( ) ηkσ| 〉.=

akσ t( ) ηkσ| 〉
ηkσ 1–

akσ t( ) ηkσ| 〉 κkσ ηkσ 1–| 〉.=

ηkσ〈 |akσ
† t( )akσ t( ) ηkσ| 〉 |κkσ|2 ηkσ 1– |ηkσ 1–〈 〉 |κkσ|2= =

ηkσ〈 |Nkσ t( ) ηkσ| 〉 nkσ,= =
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382 High-Field Electrodynamics

and

(6.84)

Furthermore, the annihilation operator can be applied repeatedly to the
eigenstate , reducing the photon number by one unit each time; this can
be summarized as

(6.85)

Whereas the spectrum generated by the creation operator is unbounded, as
shown in Equation 6.68, there is a lower limit to the annihilation spectrum.
This is easily understood by considering the fact that the norm of an eigen-
state must be definite positive. By examining Equation 6.83, we see that

. The only way to guarantee a lower bound
to the photon number spectrum is to define the norm of the lowest state as
equal to zero:

(6.86)

This has an interesting consequence for the spectrum of the Hamiltonian:
defining the energy operator for each electromagnetic mode, we have

(6.87)

The lowest energy level for a given mode is thus

(6.88)

which corresponds to the vacuum energy of the mode under consideration.

6.5 Momentum of the Quantized Field

In Section 3.8, we have introduced the four-momentum of the electromag-
netic fields and its relation to the Poynting vector. In this section, the same
approach is modified to fit within the quantum formalism developed in this
chapter.

κkσ nkσ e
iϑ kσ.=

ηkσ| 〉

akσ t( )[ ]m ηkσ| 〉 nkσ nkσ 1–( )… nkσ m 1+–( ) ηkσ m–| 〉, m N.∈=

nkσ ηkσ〈 |akσ
† t( )akσ t( ) ηkσ| 〉= 0≥

0|akσ
† akσ |0〈 〉 0.=

H hω Nkσ t( ) 1
2
---+

σ
∑

k
∑ Hkσ .

σ
∑

k
∑= =

0|Hkσ|0〈 〉 1
2
---hω,=
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We begin by considering the form of Maxwell’s equation within the photon
formalism established in the preceding sections. The temporal evolution
of an operator, , is governed by the Heisenberg equation, which states that

(6.89)

where [O,H ] is the commutator between the operator in question and the
Hamiltonian. 

This is not surprising if we remember the principle of correspondence, which
associates the four-gradient operator to the four-momentum: ; the
time-like component of this equation shows the close relation between the
energy, or the Hamiltonian, and the time-derivative operator.

The first result that can be obtained from Equation 6.89 is that the photon
number operators are time-independent, since they commute with the
Hamiltonian. Furthermore, the evolution of the creation and annihilation
operator is governed by

(6.90)

Using the definition of the electric field and magnetic induction in terms of
the generalized coordinates and momenta, as expressed in Equations 6.44
and 6.45, and the relations between the creation and annihilation operators
and the conjugate positions and momenta, given in Equations 6.47 and 6.48,
we can derive the evolution of the electromagnetic field in the Heisenberg
picture. We first have

(6.91)

for the electric field operator, , and

(6.92)

for the magnetic induction operator, . Using the Heisenberg equation, we
then find that

(6.93)

which are identical in form to Maxwell’s equations in vacuum.

O

ihdO
dt
------- O , H[ ],=

pµ ih∂µ→

i
dakσ

dt
----------- ωakσ , i

dakσ
†

dt
----------- −ωakσ

† .==

E xµ( ) 1

a3
-------- hω

2ε0
-------- iakσ 0( )e ⊥σ

k e
ikµxµ iakσ

† 0( )e ⊥σ
−k e

−ikµxµ– ,
σ
∑

k
∑=

E

B xµ( ) 1

a3
-------- h

2ωε0
------------ iakσ 0( ) k e ⊥σ

k×( )e
ikµxµ iakσ

† 0( ) k e ⊥σ
−k×( )e

−ikµxµ–
σ
∑

k
∑ ,=

B

∇ E xµ( ) ∂tB xµ( )+× 0,=

∇ B xµ( ) 1
c2
---- ∂tE xµ( )–× 0,=
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384 High-Field Electrodynamics

The Poynting vector, S = E × H, is closely related to the momentum of the
electromagnetic field, as it essentially represents the electromagnetic momen-
tum density; moreover, in vacuum, we have the simple relation, ,
between the magnetic induction and field. Therefore, we have

(6.94)

Here, we have used the fact that for the quantization of the electromagnetic
field, a cubic cell of side a is used.

A direct generalization of G to a Hermitian operator, G, using the substi-
tution of the electric field and magnetic induction by their operator coun-
terparts, is not possible because E and B do not commute. Therefore, a slight
modification of expression 6.94 is required, and we symmetrize it by writing

(6.95)

The electromagnetic field operators can now be introduced, as expressed in
Equations 6.91 and 6.92, and we have

(6.96)

In Equation 6.96, the symbols  indicate that the Hermitian conjugate must
be added to the original expression. Because of the orthogonality of the
photon modes, the volume integrals yield , and the sum over the
wavenumber is diagonalized. We now have

(6.97)

The double cross-products are

(6.98)

B µ0H=

G S
c2
---- vd

V∫ ε0 E B vd×
V∫ ε0 E B xd× yd z.d

a3∫∫∫= = =

G
ε0

2
---- E B B E×–×( ) xd yd z.d

a3∫∫∫=

G
ε0

2
---- 1

a3
-------- 

  2 hω
2ε0
-------- h

2ωε0
------------

σ
∑

k
∑

σ
∑

k
∑=

× d3x
a3∫∫∫ iakσ e ⊥σ

k e
ik µxµ iakσ

† e ⊥σ
−k e

−ik µxµ–



× iakσ k e ⊥σ
k×( )e

ik
µ

xµ iakσ
† k e ⊥σ

−k×( )e
−ik

µ
xµ– †+





.

+ †

a3δ kk±
3

G h
4
--- iakσ e ⊥σ

k iakσ
† e ⊥σ

−k–[ ] iakσ k e ⊥σ
k×( ) iakσ

† k e ⊥σ
−k×( )–[ ] †+×{ }.

σ
∑

σ
∑

k
∑=

e ⊥σ
k k e ⊥σ

k×( ), e ⊥σ
k k e ⊥σ

−k×( )××

e ⊥σ
−k k e ⊥σ

k×( ), e ⊥σ
−k k e ⊥σ

−k×( ).××
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Using the formula, a × (b × c) = , we have

(6.99)

where the last equality holds because the polarization vector and wavenum-
ber are orthogonal for real photons: . The Kronecker symbol simply
reflects the fact that the polarization vectors are orthogonal and of unit
length. The double sum over polarization states is now reduced to a single
sum, and we finally obtain

(6.100)

where we have used the fact that the terms  and  are anti-
symmetrical.

This important result can be compared with Equation 6.55 for the energy,
and we see that we can group the energy and momentum of the quantized
field in a single four-operator:

(6.101)

The transformation properties of this operator under the Lorentz group are
identical to that of the four-wavenumber, as the photon number and polar-
ization state must be independent of the observation frame; in other words,
photons cannot be created or annihilated, nor can their polarization be
flipped by switching reference frame.

6.6 Angular Momentum of the Quantized Field

Proceeding in the same manner as for the momentum, we begin with clas-
sical theory and define the angular momentum of the electromagnetic field
as follows:

(6.102)

It is immediately seen that we can decompose the angular momentum into
two components,

(6.103)

(a c)b⋅ (a b)c⋅–

e ⊥σ
k k e ⊥σ

k×( )× e ⊥σ
k e ⊥σ

k⋅( )k e ⊥σ
k k⋅( )e ⊥σ

k– δσσ k,= =

e ⊥σ
k k⋅ 0=

G h
2
--- akσ

† akσ akσ akσ
†+( )k,

σ
∑

k
∑=

akσ a−kσ akσ
† a−kσ

†

Gµ
1
2
--- akσ

† akσ akσ akσ
†+( )hkµ.

σ
∑

k
∑=

J r( ) x r–( ) S
c2
---- d3x×

V∫ ε0 x r–( ) E xµ( ) B xµ( )×[ ] d3x.×
V∫= =

J r( ) J 0( ) r G,×–=
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386 High-Field Electrodynamics

where G is the electromagnetic field momentum discussed in the previous
section. 

We will return on the classical intrinsic angular momentum of the field,
J(0), in the next section. Here, we follow the procedure outlined in the
preceding section; in particular, we symmetrize the operator to guarantee that
it is Hermitian:

(6.104)

Thus far, we have not shown that this operator does not explicitly depend
on time. The fact that for the four-momentum operator we have 
is borne out by the commutation of this operator with the Hamiltonian;
therefore, the question reduces to that of the time-independence of the intrin-
sic angular momentum of the electromagnetic field.

To perform this demonstration, we return to the Heisenberg equations for
the field operators, as expressed in Equation 6.93. We then have

(6.105)

where we have used the fact that , the antisymmetrical nature of
the cross-product operator, with a × b = −b × a, and the fact that the field
operators commute with each other at a fixed time: ,
where F represents either E or B.

Next, we have

(6.106)

Identifying B ≡ a, we find that

(6.107)

J r( )
ε0

2
---- x r–( ) E B B E×–×( )× d3x

a3∫∫∫ J 0( ) r G× .–= =

∂tGµ 0=

dJ 0( )
dt

-------------
ε0

2
---- x ∂

∂t
----- E B B E×–×( )× d3x

a3∫∫∫=

ε0

2
---- x ∂E

∂t
------- B E ∂B

∂t
-------

∂B
∂t
------- E×–×+× B ∂E

∂t
-------×–× d3x

a3∫∫∫=

ε0

2
---- x c2 ∇ B×( ) B E ∇ E×( )×–×[×

a3∫∫∫=

∇ E×( ) E B c2 ∇ B×( )×–× ] d3x+

x µ0
−1 ∇ B×( ) B ε0 ∇ E×( ) E×+×[ ]× d3x,

a3∫∫∫=

ε0µ0c2 1=

[Fi(x, t), F j(x, t)] 0=

∇ a b⋅( ) a ∇⋅( )b b ∇⋅( )a a ∇ b×( )× b ∇ a×( ),×+ ++=

∇ a2( ) 2 a ∇⋅( )a a ∇ a×( )×+[ ],=

a ∇ a×( )× 1
2
---∇ a2( ) a ∇⋅( )a.–=

∇ B×( ) B× B ∇⋅( )B 1
2
---∇ B B⋅( ).–=
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Taking the cross-product of Equation 6.107 with the position vector, x, we
then have

(6.108)

To simplify this expression, we first show that

(6.109)

We start with

(6.110)

as can be seen by considering a given component of 

(6.111)

We can then use Equation 6.110 to write

(6.112)

because  
Multiplying Equation 6.112 by 1/2 yields the desired result.
Next, we consider the term . In tensorial form, we will show that

(6.113)

where the symbol  denotes the tensorial product:

(6.114)

Using Einstein’s convention, we can express the three-divergence of the
tensorial product as follows:

(6.115)

x ∇ B×( ) B×[ ]× x B ∇⋅( )B 1
2
---∇ B B⋅( )– .×=

−1
2
---x ∇ B B⋅( )[ ]× 1

2
---∇ x B B⋅( )[ ]× .=

∇ f u( )× f ∇ u×( ) u ∇f× ,–=

∇ ( f u):×

∇ f u( )×[ ]i ∂ j f uk( ) ∂k f uj( )–=
u= k∂ j f f ∂ juk uj∂k f f ∂kuj––+
u= k∂ j f uj∂k f– f ∂ juk ∂kuj–( )+

− u ∇f×( )i= f ∇ u×( )i.+

∇ x B B⋅( )[ ]× ∇ B2x( )×=

B2 ∇ x×( ) x ∇B2×–=

−x ∇B2,×=

∇ x× 0.=

x B ∇⋅( )B[ ]×

x B ∇⋅( )B[ ]× ∇ B x B×( )⊗[ ],⋅=

⊗

u v⊗ T, Tij uivj.= =

∂iTij ∂i uivj( ) vj ∂iui( ) ui∂i( )vj,+= =
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or

(6.116)

Identifying u ≡ B, and , we then find that

(6.117)

As the divergence of the magnetic induction is always equal to zero, we
have to show that

(6.118)

This last equality is easily demonstrated in coordinate form:

(6.119)

Here, we have used the relation 
Therefore, we have shown that

(6.120)

A similar relation can be derived for the electric field operator:

(6.121)

Note, however, that for the electric field, the equivalent to Equation 6.118
works because the absence of charges in vacuum yields .

Having expressed the integrand in Equation 6.105 in terms of a curl and
a divergence, we can transform the volume integral into a surface integral

∇ u v⊗( )⋅ v ∇ u⋅( ) u ∇⋅( )v.+=

v x B×≡

∇ B x B×( )⊗[ ]⋅ x B×( ) ∇ B⋅( ) B ∇⋅( ) x B×( ).+=

∇ B x B×( )⊗[ ]⋅ B ∇⋅( ) x B×( ) x B ∇⋅( )B[ ].×= =

B ∇⋅( ) x B×( )[ ]i B ∇⋅( ) x B×[ ]i=
B ∇⋅( ) xjBk xkB j–( )=
xj B ∇⋅( )Bk xk B ∇⋅( )B j–[ ] Bk B ∇⋅( )xj B j B ∇⋅( )xk–+=
x B ∇⋅( )B[ ]×{ }i B k B ∇⋅( )xj B j B ∇⋅( )xk–+=
x B ∇⋅( )B[ ]×{ }i B k B i∂i( )xj B j B i∂i( )xk–+=
x B ∇⋅( )B[ ]×{ }i B kB iδij B jB iδik–+=
x B ∇⋅( )B[ ]×{ }i B kB j B jBk–+=
x B ∇⋅( )B[ ]×{ }i.=

∂ix j δij.=

x ∇ B×( ) B×[ ]× −1
2
---∇ x B B⋅( )[ ] ∇ B x B×( )⊗[ ]⋅–× .=

x ∇ E×( ) E×[ ]× −1
2
---∇ x E E⋅( )[ ] ∇ E x E×( )⊗[ ]⋅–× .=

∇ E⋅ 0=
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by applying the divergence, or Gauss, theorem:

(6.122)

In our case, we find

(6.123)

where the surface corresponds to that of the a × a × a cube used to quantize
the free electromagnetic field. 

The periodic boundary conditions on each surface of the cube imply that
the fields have the same values on opposite surfaces, whereas the vectors n ×
x are opposite; thus, the first integral vanishes, and Equation 6.123 reduces to

(6.124)

The second equality in Equation 6.124 derives from the fact that

(6.125)

or

(6.126)

Equation 6.124 can also be written in component form:

(6.127)

where  is the completely antisymmetrical Levi–Civita tensor.
Using Equations 6.91 and 6.92, the components of the electric field and

magnetic induction operators can be expressed in terms of creation and
annihilation operators. For the electric field, we have

(6.128)

∇ A⋅( ) d3x
V∫ n A⋅( ) ds,

S∫=

∇ A×( ) d3x
V∫ n A×( ) ds.

S∫=

dJ 0( )
dt

------------- 1
2
--- n x× µ0

−1B2 ε0E2+( )[ ] sd
S∫=

+ n µ0
−1B x B×( )⊗ ε0E x E×( )⊗+[ ]⋅{ } s,d

S∫

dJ 0( )
dt

------------- n µ0
−1B x B×( )⊗ ε0E x E×( )⊗+[ ]⋅{ } sd

S∫=

µ0
−1 n B⋅( ) x B×( ) ε0 n E⋅( ) x E×( )+[ ] s.d

S∫=

niTij ni uivj( ) niui( )vj,= =

n T⋅ n u v⊗( )⋅ n u⋅( )v.= =
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−1BkBl ε0EkEl+( ) s,d
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εijk
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390 High-Field Electrodynamics

where we have introduced

(6.129)

Similar expressions can be defined for the magnetic induction operator.
We can now write

(6.130)

Before considering the order of the operators in Equation 6.130, which is
important, a few words about the terminology used here will be useful. The
plus and minus signs refer to positive and negative frequencies, respectively;
however, the operator labeled with a plus sign corresponds to annihilation
operators only, while its counterpart is composed entirely of creation oper-
ators. We also note that in the so-called normal or Weyl ordering of operators,
creation operators must appear to the left of annihilation operators. In other
words, photons must first be created, before annihilation occurs. We see that
in Equation 6.130, the only term that is not normally ordered is 
however, because  and  commute, the order can be reversed so that
Equation 6.130 is now entirely in normal order:

(6.131)

At this point, a physical argument can be used to reduce the integral remain-
ing in Equation 6.127: one must consider the limit where the cubic volume
used to quantize the free electromagnetic field goes to infinity as a3. In this
case, the normally ordered operators in Equation 6.131 have a vanishingly
small expectation value for photons localized away from the boundary at
infinity, and the angular momentum is conserved.

6.7 Classical Spin of the Electromagnetic Field

We now return to the intrinsic angular momentum of the electromagnetic
field in vacuum, which is related to the spin of photons. In the classical
approach to this problem, the magnetic induction is expressed in terms of

Ei
+ xµ( ) 1

a3
-------- hω

2ε0
-------- iakσ 0( )e ⊥σ

k e
ik µxµ

i
,

σ
∑

k
∑=

Ei
− xµ( ) 1

a3
-------- hω

2ε0
-------- −iakσ

† 0( )e ⊥σ
−k e

−ikµxµ

i
.

σ
∑

k
∑=

Ei xµ( )E j xµ( ) Ei
+ xµ( ) Ei

− xµ( )+[ ] E j
+ xµ( ) E j

− xµ( )+[ ]=

Ei
+ xµ( )E j

+ xµ( ) Ei
+ xµ( )E j

− xµ( )+=

Ei
− xµ( )E j

+ xµ( ) Ei
− xµ( )E j

− xµ( ).+ +

Ei
+E j

−;
Ei

+ E j
−

Ei xµ( )E j xµ( ) Ei
+ xµ( )E j

+ xµ( ) E j
− xµ( )Ei

+ xµ( )+=

Ei
− xµ( )E j

+ xµ( ) Ei
− xµ( )E j

− xµ( ).+ +
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the scalar potential, so that

(6.132)

Furthermore, the gauge condition is chosen so that φ = 0 and ∇ ⋅ A = 0; we
then have

(6.133)

or, in terms of components,

(6.134)

The intrinsic angular momentum is then given by

(6.135)

which translates to

(6.136)

as expressed in terms of coordinates. In order to apply the divergence the-
orem, as stated in Equation 6.122, the integrand is recast as follows:

(6.137)

The quantity ∂nxj = δnj, and the surface integral vanishes, so we are left with

(6.138)

We now make use of the contraction formula,

(6.139)

E B× E ∇ A×( ).×=

E ∂tA, B– ∇ A× ,= =

Ei ∂tAi,– Bi ∂ jAk ∂kAj– εijk∂ jAk= .==

J x S×
c2

------------ d3x
V∫ ε0 x E B×( )× d3x,

V∫= =

Ji ε0εijk x j E B×( )k d3x
V∫=

ε0εijk x jεklmElBm d3x
V∫=

ε0εijkεklm xj ∂tAl–( )Bm d3x
V∫=

ε0εijkεklm xj ∂tAl( )εmnp ∂nAp( ) d3x
V∫–=

ε0εijkεklmεmnp xj ∂tAl( ) ∂nAp( ) d3x,
V∫–=

xj ∂tAl( ) ∂nAp( ) ∂n xj ∂tAl( )Ap[ ] ∂nxj( ) ∂tAl( )Ap xjAp ∂n ∂tAl( )[ ]– .–=

Ji ε0εijkεklmεmnp δnj ∂tAl( )Ap xjAp ∂n ∂tAl( )[ ]+{ } d3x.
V∫=

εklmεmnp δknδlp δkpδln,–=
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to reduce Equation 6.138 to

(6.140)

The term ∂l(∂t Al) is equal to zero:

(6.141)

Moreover, we have

(6.142)

As a result, Equation 6.140 further simplifies to read

(6.143)

The first term can be related to the angular momentum operator,

(6.144)

and depends on the reference frame because of the term xj. On the other
hand, the term

(6.145)

is frame-independent and corresponds to the spin of the free electromagnetic
field. For a circularly polarized plane wave, we have

(6.146)

and

(6.147)

Ji ε0εijk δknδlp δkpδln–( ) δnj ∂tAl( )Ap xjAp ∂n ∂tAl( )[ ]+{ } d3x
V∫=

ε0εijk δknδlp δkpδln–( ) δnj ∂tAl( )Ap xjAp ∂n ∂tAl( )[ ]+{ } d3x
V∫=

ε0εijk δ jk ∂tAl( )Al ∂tAj( )Ak– xjAl∂k ∂tAl( ) xjAk∂l ∂tAl( )–+[ ] d3x.
V∫=

∂l ∂tAl( ) ∂
∂xl
-------

∂Al

∂t
--------- ∂

∂t
-----

∂Al

∂xl
--------- ∂t ∇ A⋅( ) 0.= = = =

εijkδ jk εijj 0.= =

Ji ε0εijk x jAl∂k ∂tAl( ) ∂tAj( )Ak–[ ] d3x.
V∫=

Li ihεijkx j∂k,=

Si ε0εijk– ∂tAj( )Ak d3x,
V∫=

S ε0 A ∂A
∂t
-------× 

  d3x ε0 E A×( ) d3x,
V∫=

V∫=

A A0 x̂ kµxµ( )cos ŷ kµxµ( )sin±[ ],=

∂A
∂t
------- c∂A

∂x0
-------- A0 ck0–( ) x̂ kµxµ( )sin ŷ kµxµ( )cos±–[ ].= =
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The corresponding spin density is 

(6.148)

6.8 Photon Spin

Using Equation 6.145 and the symmetrization technique described for the
field momentum operator, we have

(6.149)

and we can replace the electric field and vector potential operators by their
expansions, as expressed in Equation 6.91 and

(6.150)

With this, we have

(6.151)

The reduction of the volume integral is identical to that used for the field
momentum operator, and the commutation relations for the creation and
annihilation operators, as expressed in Equation 6.49, can be used to obtain

(6.152)

Further simplification can be achieved by an appropriate projection basis for
the polarization states. In particular, for linear polarization, we have

(6.153)

dS
dV
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-------× 
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ck0ε0A0
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394 High-Field Electrodynamics

and we find that

(6.154)

We recover the classical result derived in Section 6.7: the spin is in the
direction of propagation of the wave.

6.9 Vacuum Fluctuations

In this section, we give a short overview of the well-known question of
vacuum fluctuations of the free quantized electromagnetic field. For consid-
erably more detailed descriptions, we refer the reader to the textbooks by
Mandel and Wolf, Loudon, Dirac, and Pauli, which are listed in the references
to this chapter.

The key idea is that the lowest energy level for photons, corresponding to
the vacuum state, has both a nonzero energy eigenvalue and nonzero fluc-
tuations. In turn, this physical fact is at the origin of some of the divergence
problems encountered in QED before the renormalization program was com-
pleted by Feynman, Schwinger, Tomonaga, and Dyson.

In the following discussion, the vacuum state will be labeled by the bra
and kets  and  respectively. As discussed in Section 6.4, the expectation
value of the creation and annihilation operators is zero for the vacuum state:

(6.155)

on the other hand, the energy eigenvalue of the vacuum state is

(6.156)

as shown in Section 6.4.
We now turn our attention to the expectation value of the field operator

in the vacuum state. As discussed earlier, any given field operator can be
written in terms of creation and annihilation operators, with

(6.157)

S ih akσ
† akσ

1
2
---δσσ+ 

  k
k
------± 1 δσσ–( )

σ
∑

k ,σ
∑=

i hk
k

------- akσ2
† ak1 akσ1

† ak2–( ).
k
∑=

0〈 | 0| 〉,

0 akσ
† 0 akσ 0= =〈 〉 ;

0 Hkσ 0〈 〉 1
2
--- hω,=

F xµ( ) 1

a3
-------- F kµ( )akσ e ⊥σ

k e
ikµxµ †+ ,

σ
∑

k
∑=
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Plane Waves and Photons 395

which reduces to

(6.158)

because of the mass-shell constraint kµkµ = k2 − (ω/c)2 = 0 for photons.
We can now use Equations 6.155 and 6.158 to show that the vacuum expec-

tation value for any field operator F is zero:

(6.159)

The vacuum fluctuations for the field operator F are defined as

(6.160)

Therefore, we need to evaluate the vacuum expectation for the square of the
field operator, namely,  This quantity will involve four different
expectations values:

(6.161)

Using the nonzero expectation value, we can formally write

(6.162)

The only nonzero value can be derived explicitly by using the commutation
relation in Equation 6.57:

(6.163)

We then find that

 

(6.164)
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396 High-Field Electrodynamics

Using this last result into Equation 6.162, we have

(6.165)

Thus, we obtain the sought-after value for the vacuum fluctuations:

(6.166)

If we use an infinite series of modes, the series diverges; this is the purely
quantum divergence of the vacuum encountered in QED. Introducing a high
cutoff frequency allows one to effectively truncate the series, thus yielding
a finite result. The other QED divergences include the vacuum polarization
problem and the classical Coulomb divergence of the field energy for a point
charge; the latter will be discussed in Chapter 10.

6.10 The Einstein–Podolsky–Rosen Paradox

The Einstein–Podolsky–Rosen, or EPR, paradox is related to the question of
locality in quantum mechanics, as described mathematically by Bell’s ine-
qualities. An excellent presentation of this problem is given by Mandel and
Wolf, as referenced in the bibliography, and we will restrict our discussion
to a basic outline of the ideas underlying the EPR paradox.

The basic idea behind the EPR paradox can be described as follows: for
initially correlated, or entangled, two-particle states, such as photons pro-
duced in a cascade with ∆J = 0, the measurement of a variable on the first
particle completely predetermines the result of the measurement of the cor-
responding variable on the second particle, independent of the space–time
distance at which the particles are located at the time of measurement.
Quantum mechanically, the entangled state can be represented by

(6.167)

where the numbers 1 and 2 refer to each particle, and where all wavefunc-
tions are normalized.
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The difficulty with the EPR paradox arises because of the nonlocal char-
acter of the entangled state, which allows the observer to know the state
of the second particle without a direct measurement or even the time for
the measurement performed on the first particle to perturb the second
particle.

A classical analog can be constructed by considering an initial correlated
state. For example, one could slice a coin along its middle plane, so that the
head and tail are separated. Each half of the original coin can be placed in
a box, which can then be transported over a great distance, say one to New
York and one to Paris. When one experimentalist opens one of the boxes and
looks at the side of the coin that is enclosed, she also immediately knows the
“state” of the coin on the other side of the Atlantic. The initial correlation
remains, allowing for an instantaneous correlation. Note, however, that no
information is transported faster than light in the process. Furthermore, we
should strongly emphasize the fact that there are fundamental differences
between the classical and quantum cases. In particular, in the quantum
experiment, the polarization can be measured against an arbitrary reference
axis, provided that this axis is contained in a plane perpendicular to the
direction of propagation of the photon.

The EPR paradox can be illustrated by considering an experiment with
correlated photons produced in a cascade decay. This example is useful
because it closely approximates experiments performed by Aspect and his
group, and Mandel and Ou, which clearly demonstrated a violation of Bell’s
inequality, thus ruling out any hidden-variable interpretation of the EPR
paradox. In this analysis, we closely follow the presentation of Mandel and
Wolf and strongly encourage the reader to consult their book on optical
coherence and quantum optics, referenced in the bibliography, for an in-
depth discussion of the subject. Two photons polarized orthogonally are
considered:

(6.168)

Here, the  state corresponds to the first photon polarized
along the x-axis, while the second photon is necessarily polarized along the
perpendicular axis, the y-axis, while the  state describes the
first photon being polarized along the y-axis, and the second one, necessarily,
parallel to the x-axis. The z-axis corresponds to the direction of propagation
of photon 1, while photon 2 propagates in the opposite direction. In the
entangled state  the direction of polarization of an individual photon is
unknown, but their polarization states are 100% coupled.

A linear polarizer is inserted along the path of each photon, characterized
by the angle θ1,2 with respect to the x-axis, and a detector is positioned after
each polarizer; the quantum efficiency of each detector is η1,2. We now com-
pute the probabilities Pi(θi) of detection of each photon, when the respective

ζ| 〉 1
2

------- 11x, 01y, 02x, 12y| 〉 01x, 11y, 12x, 02y| 〉–( ).=

11x, 01y, 02x, 12y| 〉

01x, 11y, 12x, 02y| 〉

ζ| 〉,
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polarizers are set at the angles θi:

(6.169)

Here, we have introduced the field dynamical variables,

(6.170)

which simply reflect the effect of the polarizers on the photons. The results
obtained in Equation 6.169 are readily understood: the probability for each
randomly polarized photon to pass through the corresponding polarizer is ,
and the quantum efficiency of the detectors reduces the probability of detec-
tion, as reflected in Equation 6.169; these probabilities are independent of the
polarizers’ settings. Let us now consider the more interesting joint detection
probability,

(6.171)

which clearly introduces a correlation between the polarizers.
Using random variable analysis, the conditional detection probability of

the second photon can be expressed in terms of the probability detection of
the first photon:

(6.172)

If the quantum efficiency of the detector for photon 2 is close to 100% and
the polarizers are set orthogonally, so that θ1 − θ2 = ±π/2, Equation 6.172
shows that the conditional detection probability of the second photon
approaches 100%: the photons are clearly polarized orthogonally. Further-
more, the polarization state of the second photon can be known by deter-
mining that of photon 1, without a measurement on photon 2, and
instantaneously, independent of the separation between the two photons at
the time of the measurement on the first photon. However, as shown by
Mandel and Wolf, causality is preserved, as the polarization axis of the first
photon is not set by the direction of polarizer 1; it merely serves as a reference
axis to measure a random variable.
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†â1 |ζ〈 〉
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†â2 |ζ〈 〉
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2
----- .= =

âi âix θicos âiy θi,sin+=

1
2
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P12 θ1,θ2( ) η1η2 ζ | â1
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†â2â1 |ζ〈 〉=
1
2
---η1η2 θ2

1 θ2
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1 θ2
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1
2
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2378_frame_C06  Page 398  Friday, November 16, 2001  12:06 PM

© 2002 by CRC Press LLC 



Plane Waves and Photons 399

In closing, we outline the derivation of Bell’s inequality, where two observ-
ables, A and B, parameterized by the variables α and β, are considered.
Moreover, measurements of A and B can only yield two possible values, say
0 or 1. For example, in the case of polarizers the photons can either be
transmitted or absorbed, and the parameter is the angle of the polarizer, θ.

Bell considers the average correlation between the observables:

(6.173)

The key idea behind Bell’s derivation is to test the validity of so-called
“hidden variable” theories; therefore, the correlation in Equation 6.173 is
explicitly expressed as

(6.174)

where η represents the hidden variable, while ρ(η) is its normalized proba-
bility density:

(6.175)

Locality is implicit in Equation 6.174, in the sense that A does not depend
on β, while B does not depend on α.

We now examine the quantities |C(α, β) − C(α, β′)| and |C(α′, β) + C(α′, β′)|.
We first have

(6.176)

since, by definition, |A(α, η)| = 1. For the same reason, namely |A(α ′,η)| = 1,
we also have

(6.177)

Adding Equations 6.176 and 6.177 together, we can thus write

(6.178)

Furthermore, since |B(β, η)| = |B(β ′,η)| = 1, we have

(6.179)

C α,β( ) A α( )B β( )〈 〉 .=

C α,β( ) A α,η( )B α,η( )ρ η( ) dη∫ ,=

ρ η( ) dη∫ 1.=

C α, β( ) C α, β ′( )– A α, η( ) B β, η( ) B β ′, η( )–[ ] ρ η( ) dη∫ ,≤

B β, η( ) B β ′,η( )– ρ η( ) dη,∫≤

C α ′, β( ) C α ′, β ′( )+ A α ′, η( ) B β, η( ) B β ′, η( )+[ ] ρ η( )dη∫ ,≤

B β, η( ) B β ′, η( )+ ρ η( ) dη.∫≤

C α, β( ) C α, β ′( )– C α ′, β( ) C α ′, β ′( )++

≤ B β, η( ) B β ′, η( )–[∫ B β, η( ) B β ′, η( )+ ]ρ η( ) dη.+

B β, η( ) B β ′, η( )– B β, η( ) B β ′, η( )++ 2.=
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Using the result given in Equation 6.179, together with the normalization of
the hidden variable probability density, described in Equation 6.175, we
obtain Bell’s inequality:

(6.180)

Note that the hidden variable has now disappeared, by virtue of the inte-
gration. Bell’s inequality provides a test of the correlation between dichoto-
mic observables, such as those discussed in the case of correlated photons
being analyzed by linear polarizers. Using the transmission probability
through a polarizer, which can be obtained by setting the quantum efficien-
cies equal to unity (η1 = η2 = 1), we have

(6.181)

It is clear that for a careful choice of polarizing angles, we can set up a
violation of Bell’s inequality; in other words, we can find a set of angles, θ1, θ2,

 such that

(6.182)

For example, the angles θ1 = 0, θ2 = π/8,  and  yield 
in clear violation of Bell’s inequality. Such experiments have been performed,
ruling out the possibility of local, hidden-variable theories for quantum
mechanics.

6.11 Squeezed States

This interesting example of quantum effects in nonlinear optics is closely
related to other subjects, including quantum nondemolition (QND) measure-
ments, optical phase conjugation and degenerate four-wave mixing, as well
as parametric down-conversion and the production of entangled quantum
states. In the same general field of modern physics, we find topics such as

C α, β( ) C α, β ′( )– C α ′, β( ) C α ′, β ′( )++ 2.≤
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2
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θ2′ 3π/8,= θ1′ π/4,= 2 2,
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cavity QED, the slowing down of light to extremely low speeds and its
storage as a coherent spin state in atoms, as well as Bose–Einstein conden-
sation. A number of recent publications and review articles on these very
interesting developments are referenced in the bibliography.

The basic idea behind squeezed states is that conjugate variables for the
vacuum state satisfy Heisenberg’s uncertainty principle,

(6.183)

in a very specific way. For properly normalized variables, we have ∆p = ∆q =
 Within this context, a squeezed state will have one of its conjugate

variables below the vacuum level, while the other variable will be above the
vacuum level, to properly satisfy the uncertainty principle. In phase space, this
corresponds to a circle of surface  for the vacuum state, and to an ellipse,
with the same surface, for the squeezed state.

More precisely, if we consider the normalized operators

(6.184)

which are defined in terms of the creation and annihilation operators and
correspond to generalized coordinates and momenta, we find that their
commutator is

(6.185)

while the corresponding Heisenberg uncertainty relation takes the form

(6.186)

With these definitions, a squeezed state can be constructed mathematically
by introducing a phase angle, θ, and introducing the new operators

(6.187)

It is then easily seen that

(6.188)

∆p∆q h,≥

h.

h

q̂ â† â,+=

p̂ i â† â–( ),=

q̂, p̂[ ] 2i,=

∆q̂2〈 〉 ∆p̂2〈 〉 1.≥

q â†eiθ âe iθ– ,+=

p i â†eiθ âe iθ––( ).=

)
)

∆ q ∆q̂ θcos ∆p̂ θ,sin+=

∆ p ∆q̂ θsin– ∆p̂ θ,cos+=

)
)

2378_frame_C06  Page 401  Friday, November 16, 2001  12:06 PM

© 2002 by CRC Press LLC 



402 High-Field Electrodynamics

which also lead to Heisenberg’s uncertainty relation,

(6.189)

however, it is clear that for some values of θ, we can have  
or   thus constituting a squeezed state.

Degenerate four-wave mixing gives rise to squeezed states, as do other
nonlinear interactions. This particular interaction results from the mixing of
two input or pump waves in a χ(3) medium, producing two output signals:
a signal and an idler wave. The pump waves can typically be treated clas-
sically, while the output signals exhibit quantum mechanical features, includ-
ing squeezing and optical phase conjugation.

Closely related and of considerable interest is the concept of quantum
nondemolition (QND) measurements, where a particular variable,  is cre-
ated experimentally, which obeys the commutation relation

(6.190)

This means that measurements of this particular variable at different times
will yield the same result: the variable is not influenced by the measurement
process. A good example of an experimental situation producing a QND
variable is the Kerr effect, which also involves a χ(3) nonlinearity.

For detailed discussions of these concepts, we refer the reader to Mandel
and Wolf, as well as the articles listed in the bibliography.

6.12 Casimir Effect

The quantum vacuum fluctuations described in Section 6.9 give rise to an
interesting phenomenon, the Casimir effect. In the presence of boundary
conditions, the mode structure of the vacuum excitations is modified, as a
discrete spectrum emerges, with a cutoff frequency, instead of the continuum
of free space; in turn, this produces a differential radiation pressure, which
is manifested as a force on the boundary surface.

The simple case of two parallel conducting plates is considered here, for
the sake of illustration. If the surface of the plates is much larger than their
separation  we can consider that the minimum axial wavenum-
ber will be given by

(6.191)

∆ q
2

〈 〉 ∆ p
2

〈 〉 1;≥) )

∆ q
2

〈 〉 1,<) ∆ p
2

〈 〉 1,>)

∆ q
2

〈 〉 1,>) ∆ p
2

〈 〉 1,<)

Θ̂,

Θ̂ t1( ), Θ̂ t2( )[ ] 0, t1, t2.∀=

S( >> ∆z ),

k∆z π.=
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Plane Waves and Photons 403

We can then compute the vacuum energy in the cavity:

(6.192)

Here, we have approximated the sum by an integral and introduced a high
wavenumber cutoff, k∗, to avoid divergences. The Casimir pressure, P, is
given by deriving the work of the force on the plates required to balance the
variation of the energy between the plates. We have

(6.193)

which yields

(6.194)

Although the numerical factor is wrong, the scaling of the force with the
plate separation is correct and has been measured experimentally. We also
note that, depending on the type of boundary condition, for example con-
ductor or dielectric, the pressure can be positive or negative. Furthermore,
the exact scaling of the Casimir force is related to the dimensionality of
space–time, as probed by the quantum vacuum modes. Finally, it has been
speculated that this type of effect can give rise to so-called “false vacuum” states,
with negative energy densities giving rise to a cosmological constant. It has
also been proposed by Thorne and co-authors that stable wormholes and
time machines could be built from such false vacua.

6.13 Reflection of Plane Waves in Rindler Space

Most of the text and derivations in this section were produced by J. R. Van
Meter.

W 1
2
--- hω

k ≥π /∆z ,σ
∑=

� ∆zS hck( )k2dk
π /∆z

k∗

∫

hc∆zS k4

4
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=

hc∆zSk∗4

4
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4
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--------–=
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404 High-Field Electrodynamics

6.13.1 Background

In recent years, much attention has been given to the interaction of uniformly
accelerating systems with quantum fields, particularly with regards to the
thermal Fulling–Davies–Unruh radiation. In contrast, relatively little attention
has been given to the interaction of uniformly accelerating systems with clas-
sical fields. However, the latter domain seems deserving of study for several
reasons. First, this subject represents physics fundamental to both classical
electrodynamics and general relativity. For example, it is instructive to study
a uniformly accelerating charged particle in a classical context to understand
how a radiation field in inertial coordinates can appear as a static field in
accelerated coordinates, as well as to explore the approximate behavior of the
Coulomb field in Schwarzschild space–time. More generally, because of the
mathematical similarity between Rindler and Kruskal coordinates, any result
obtained for a uniformly accelerated system may be extendable, at least qual-
itatively, to a corresponding system in the vicinity of a black hole horizon (as
already demonstrated by the deep parallels between Fulling–Davies–Unruh
radiation and Hawking radiation). 

Another motivation for studying the interaction of uniformly accelerated
systems with classical fields is that such analyses might shed some light on
corresponding problems in quantum field theory. Boyer’s program of
approximating quantum electrodynamics with the semiclassical model of
stochastic electrodynamics (SED) is noteworthy in this context. In the meth-
odology of SED, the quantum electrodynamical vacuum is approximated by
an infinite sum over momenta of plane waves, each with a random phase
and an infinitesimal amplitude calculated so as to give a total energy per
plane wave of  This model has proven very interesting, as one can
match quantum electrodynamical results when calculating the Casimir effect
for various boundary configurations. It appears that this model may also be
used to derive the thermal effects on a system accelerating uniformly through
vacuum, in agreement with quantum field theory.

Of particular interest here is the question of whether Fulling−Davies−
Unruh radiation can be backscattered into an inertial laboratory frame, and
the possibility of addressing this issue within the framework of semiclassical
vacuum fluctuations in Rindler space–time. Various proposals have been put
forth for laboratory measurements of backscattered Fulling−Davies−Unruh
radiation, including that of Tajima and Chen utilizing an ultrahigh intensity
laser to strongly accelerate electrons. Despite some controversy and slight
confusion in the literature, the emerging consensus amongst quantum field
theorists seems to be that a uniformly accelerating system will not measur-
ably reradiate Fulling−Davies−Unruh radiation into an inertial frame. How-
ever, these studies only considered scalar vacuum fields; whether this null
radiation result holds for the case of the electromagnetic tensor field has yet
to be demonstrated theoretically or experimentally. Whether a uniformly
accelerating system will reradiate Fulling−Davies−Unruh radiation into the
inertial lab frame thus remains an open question of modern physics. The
problem explored in this section might prove germane to the issue.

1
2
---hω.
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Plane Waves and Photons 405

The present discussion considers the interaction of a uniformly accelerating,
perfectly conducting plane mirror with a plane wave at normal incidence.
In this regard, the present study is self-contained and represents an original
contribution to fundamental classical electrodynamics, particularly by pro-
viding physical insight into the relationship between Rindler and Lorentz
transformations. This work is especially motivated by its potential relevance
to the case of a uniformly accelerating mirror interacting with a quantum
field in the vacuum state. 

The pertinence of this analysis to the problem of an accelerating mirror
interacting with the quantum vacuum may be understood within the sto-
chastic electrodynamical framework as follows. In this model, each virtual
photon plane wave incident on the mirror will give rise to a reflected wave
that might or might not interfere significantly with the original incident
wave. However, each pair of incident/reflected waves will not interfere
significantly with any other wave, because of the relative randomization of
phases that characterizes the stochastic electrodynamical approach. Thus, in
computing the total spectrum, the waves will add incoherently, with the
possible exception of each incident wave with its corresponding reflected
wave. For the purpose of predicting the qualitative character of the spectrum,
it should therefore suffice to consider only an individual incident wave and
its reflected wave. The simplest case of normal incidence is the most natural
starting point for such an inquiry.

The incident and reflected fields are first transformed to Rindler coordinates
and the boundary condition imposed by the mirror, now fixed at a stationary
position in Rindler space, is found to determine the reflected wave function.
The reflected wave is then expressed in Minkowski coordinates, where its
physical meaning is more readily interpreted. To further explicate the physics
involved, an alternative means of solving for the reflected wave is presented,
which utilizes the Lorentz transform as well as a simple strategy for handling
retardation that exploits the unique geometric properties of this problem.
Both the case where the mirror accelerates uniformly for all time and the case
where the mirror is initially at rest and starts accelerating at t = 0 are consid-
ered in this section. Finally, some implications of these results are discussed.

6.13.2 Derivation of the Reflected Wave Using
the Rindler Transform

The problem outlined in the introduction can be summarized more precisely
as follows. A mirror moves with uniform proper acceleration such that

(6.195)

where a is a constant, and where τ is the proper time along the mirror’s world
line xν (τ), uν = dxν /dτ is the mirror four-velocity, and aν is its four-acceleration;
note that units are normalized so that the speed of light is equal to 1.

aν aν duν

dτ
-------- duν

dτ
-------- d2x

dτ 2
--------- 

 
2 d2t

dτ 2
--------- 

 
2

–= = a2,≡
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406 High-Field Electrodynamics

We are considering a one-dimensional problem, since the incident and
reflected electromagnetic radiation are plane waves at normal incidence; thus
Equation 6.195 reduces to

(6.196)

To simplify later results, we set z = a−1 at t = 0. Note that for t < 0, dz/dt < 0,
while for t > 0, dz/dt > 0. The more realistic case where dz/dt = 0 for t < 0 will
be explored in Section 6.13.3.

A plane wave with wave vector k = −k  is incident on the mirror. Given
the geometry of this problem, the electromagnetic field tensor reduces to

(6.197)

The incident wave is then given by

(6.198)

while the reflected wave can be assumed to be of the form

(6.199)

It is easily seen that Equations 6.198 and 6.199 satisfy Maxwell’s equations. 
We now consider the Rindler transform, which allows us to study the

incident and reflected waves in an accelerated frame where the mirror is at
rest at all times. Rindler coordinates are related to Minkowski coordinates by

(6.200)

and

(6.201)

where the coordinate transform has been scaled according to the mirror’s
acceleration, for convenience.

The Minkowski metric may be transformed to the Rindler metric:

(6.202)

aν aν ∂ 2z
∂ τ 2
--------- 

 
2 ∂ 2t

∂ τ 2
--------- 

 
2

–= a2.≡

ẑ
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The electromagnetic field tensor may be transformed by the well-known
formula

(6.203)

which yields

(6.204)

With this, the incident and reflected phase variables become

(6.205)

and

(6.206)

We thus obtain

(6.207)

and

(6.208)

It is easy to check whether these expressions satisfy the generally covariant
form of Maxwell’s equations in vacuum,  and Fµν,ρ + Fρµ,ν +
Fνρ,µ = 0, which, in the one-dimensional geometry of this problem, reduce to

(6.209)

F
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408 High-Field Electrodynamics

and

(6.210)

At this point, we note that the boundary condition for a perfect conductor
mandates that there be no transverse electromagnetic forces on the electrons
within the mirror. Mathematically, this condition is expressed as

(6.211)

where 
Since the field is transverse and  we have

(6.212)

In order to solve for the unknown function f in the expression for the reflected
wave, the incident and reflected electric fields in Equations 6.207 and 6.208
can now be used in Equation 6.212 to yield

(6.213)

A little algebra reveals that the only value for f, which satisfies Equation 6.213
while maintaining its space–time dependence exclusively on exp  in
order to satisfy Maxwell’s equations, is

(6.214)

The reflected wave in Rindler coordinates thus becomes

(6.215)

and

(6.216)
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Using Equation 6.206, the function f can be expressed in terms of Minkowski
coordinates as

(6.217)

and the reflected wave becomes

(6.218)

The physical reason for the unusual dependence on z − t will be made clear
in the next section. Here, we only point out that the apparent singularity in
the field at z = t does not pose any difficulty. For any finite time t, the position
of the mirror in our coordinates is greater than t: zm(t) > t; thus the point z = t
always lies behind the mirror, opposite to the side on which the plane wave
is incident, and therefore outside the region for which Equation 6.218 is valid.

6.13.3 Derivation of the Reflected Wave Using
the Lorentz Transform

We first consider a plane wave at normal incidence to a mirror with constant
velocity. In order to solve for the reflected wave, the problem is treated most
easily in the frame of the mirror, which requires a Lorentz transform of the
original expression for the incident wave:

(6.219)

and

(6.220)

where β is the relative velocity between the instantaneous rest frame of the
mirror and the reference frame.

Since we have

(6.221)

the incident wave can be expressed as

(6.222)
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The boundary condition now reads

(6.223)

which implies,

(6.224)

To satisfy both the boundary condition and Maxwell’s equations, the
reflected wave can only take the form

(6.225)

Lorentz transforming the reflected wave back to the original lab frame and
noting that

(6.226)

the reflected wave is found to be

(6.227)

To extend this result to the case of an accelerating mirror, we observe that a
ray of light reflected from an accelerating mirror at some time tr and position
zr , where it has velocity β, is indistinguishable from a ray of light reflected
from an identical mirror at the same time tr and the same position zr , but
with a constant velocity β0 which happens to equal β at that instant.

The retarded position zr and retarded time tr can be expressed in terms of
the retarded proper time τr of the mirror as follows:

(6.228)

The retarded Lorentz boost parameters γ and β thus satisfy the following
relations:

(6.229)

Hence, using Equations 6.228 and 6.229, and recalling the identity for hyper-
bolic functions, cosh2s − sinh2s = 1, we find

(6.230)
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Invoking the light-cone condition, zr − tr = z − t, the following identity is
finally obtained:

(6.231)

The reflected wave is therefore described by

(6.232)

which confirms the result obtained by the Rindler method. 
With this approach, several curious features of the reflected wave are under-

stood easily in terms of the Doppler shift. For example, the amplitude of the
reflected wave goes to zero as z goes to infinity because of an infinite redshift.
At larger z, the observed reflected wave originates from a point farther back in
the past on the mirror’s world line, when the mirror had larger acceleration
away from the observer. The resulting Doppler redshift of the reflected wave
therefore increases with z. Another interesting effect to note is that as time
increases, the velocity of the mirror asymptotically approaches the speed of
light and, correspondingly, its position asymptotically approaches the reflected
wave singularity at t = z. Thus, the amplitude of the field near the mirror
increases with time, which physically is due, of course, to Doppler blue-shifting.

By the reasoning above, the more realistic case in which the mirror is at
rest until uniform proper acceleration is initiated at some finite time can be
examined readily. Following the previous light-ray argument and consider-
ing the retarded quantities, it is clear that if the mirror is at rest for t < 0 and
begins to accelerate uniformly at t = 0, the reflected wave must be

(6.233)

As z increases, the Doppler redshift will decrease the amplitude and fre-
quency of the reflected wave only until z = t + 1/a; beyond this point the
reflected wave appears as a monochromatic plane wave because its retarded
“source” is now stationary.

In conclusion, the reflected wave from a uniformly accelerating mirror has
been derived using the Rindler transform and, alternatively, using the
Lorentz transform. The physics of the result obtained by the Rindler method
have been elucidated by the Lorentz transform approach, and the expected
Doppler effects have been plainly demonstrated. Further, both the case where
the mirror is always accelerating and the case where the mirror begins
acceleration at some finite time have been examined.
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412 High-Field Electrodynamics

We now attempt to interpret these results within the context of SED, wherein
the incident wave is taken to represent a virtual photon, so that it has an energy
density equal to ωd3k. Admittedly, in summing over the infinite momenta
of the vacuum, it is not completely clear how to compare meaningfully the
total infinite spectrum obtained from the incident and reflected fields with the
infinite spectrum of an unbounded vacuum. However, for the purposes of
making a qualitative prediction, we note that the amplitude of the reflected
field becomes arbitrarily large for small z − t. Thus, it seems reasonable to
assert that, within the framework of this model, a detector stationed at some
fixed position z sufficiently larger than 1/a will detect a pulse of radiation that
is significantly larger in amplitude than the vacuum noise as soon as the mirror
approaches sufficiently close. This semiclassical result seems to be in conflict
with the quantum treatment of the same problem; this might indicate that the
stochastic electrodynamical model breaks down in this situation. However,
the full SED and QED calculations must be performed before definitive state-
ments can be made in this regard; perhaps relevant experiments will also be
performed in the not-too-distant future.

6.13.4 Mathematical Appendix

It can be shown that the correct plane wave solution is recovered for the
reflected wave in the zero-acceleration limit. Taking this limit is not trivial,
however, because in the previous expressions it was assumed that the mirror
is located at z = 1/a when t = 0. To obtain meaningful results in the zero-
acceleration limit, it is therefore necessary to shift the z coordinate: 

(6.234)

For this purpose it will simplify matters considerably to use complex fields,
such that

(6.235)

and

(6.236)

Expressing the incident wave in the new coordinate system,

(6.237)
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the zero-acceleration limit can be taken to yield

(6.238)

where  
Now expressing the reflected wave in the new coordinate system

(6.239)

the zero-acceleration limit for the reflected wave can be taken as follows:

(6.240)

This result is exactly the reflected wave corresponding to the incident plane
wave in Equation 6.239 for a stationary mirror at z′ = 0.
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exp–=
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a
--– 1 a z′ t–( )–[ ]

 
 
 

exp–=

E0
a→0
lim ik

a
--– 

  ik z′ t–( )[ ]expexp–=

Ẽ0′ ik z′ t–( )[ ].exp–=
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