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Inhomogeneous Vacuum: An Alternative Interpretation of Curved Spacetime ∗
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The strong similarities between the light propagation in a curved spacetime and that in a medium with graded
refractive index are found. It is pointed out that a curved spacetime is equivalent to an inhomogeneous vacuum
for light propagation. The corresponding graded refractive index of the vacuum in a static spherically symmetrical
gravitational field is derived. This result provides a simple and convenient way to analyse the gravitational lensing
in astrophysics.
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Gravity is still not unified with other three fun-
damental forces.[1−3] The problem probably arises
from the geometrization of the gravitation, which may
lose some important physical details. Since vacuum
is the only medium between the gravitational mat-
ters, physicists are more interested in the investi-
gation of the relation between the vacuum and the
gravitation.[4−15] Through such investigations the true
mechanism of gravitation will be hopefully found and
a workable theory of quantum gravity may finally be
established.[13−15]

Some recent theoretical and experimental pro-
gresses have shown that the vacuum can be influ-
enced by electromagnetic field. Ahmadi and Nouri-
Zonoz,[16] Rikken and Rizzo,[17] Dupays et al.[18] have
pointed out that the light propagation in vacuum can
be modified by applying electromagnetic fields to the
vacuum. This indicates that vacuum is actually a spe-
cial kind of optical medium[16,18] and may also have
its inner structure. Actually, the structure of quan-
tum vacuum has been investigated in quite a number
of papers recently.[19−21] Besides the electromagnetic
field, the existence of matter can also influence the
vacuum. For example, the vacuum inside a micro-
cavity is modified due to the existence of the cavity
mirrors, which will alter the zero-point energy inside
the cavity and cause an attractive force between the
two mirrors known as the Casimir effect,[22,23] which
has been verified experimentally.[24,25]

The refractive index of vacuum, as a special optical
medium, may be changed under the influence of gravi-
tational matter. In fact, there has been a long history
of such an idea. In 1920, Eddington[26] suggested that
the light deflection in solar gravitational field can be
conceived as a refraction effect of the space (actually
the vacuum) in a flat spacetime. The idea was further

studied by Wilson,[27] Dicke,[28] Felice,[29] and Nandi
et al.[30−32] Recently, this thought of vacuum has been
investigated further by Puthoff[13,14] and Vlokh.[33] In
Puthoff’s paper, the influence of gravitational field on
the vacuum refractive index is analysed through the
vacuum polarization. Vlokh discussed the value of this
refractive index.

In our recent paper,[15] we analysed some simple
cases of gravitational lensing by using an approxi-
mated expression of the refractive index for the vac-
uum outside the gravitational matter system. In this
Letter, we emphasize the strong similarities between
the light propagation in a curved spacetime and that
in a medium with graded refractive index. These sim-
ilarities suggest that an inhomogeneous vacuum may
be the physical reality of the curved spacetime. We
provide a general method to derive exactly the corre-
sponding graded refractive index of the vacuum in a
static spherically symmetrical gravitational field both
for outside and inside the gravitational matter system,
and point out that the refractive index profile is sim-
ply a unified exponential function of the gravitational
potential for a weak gravitational field. We show that
even the long puzzling central image missing problem
in gravitational lensing[34] can now be solved clearly
with the use of the obtained refractive index profile.

One of the strong similarities between the light
propagation in a curved spacetime and that in an in-
homogeneous medium locates in Fermat’s principle.
Landau and Lifshitz have derived from the general rel-
ativity Fermat’s principle for the propagation of light
in a static gravitational field as δ

∫
g
−1/2
00 dl = 0,[35]

which can be rewritten as follows[15]

δ

∫
dt

dτ

dl

ds
ds = 0, (1)
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where dl is the length element of the passing light
_

P0P measured by the local observer, while ds is that
measured by the observer at infinity; dτ represents
the time interval measured by the local observer for
a light ray passing through the length dl, while dt is
the corresponding time measured by the observer at
infinity (Fig. 1).

Fig. 1. Light deflection caused by a curved spacetime.

On the other hand, the light propagation in a
medium with graded refractive index n satisfying the
conventional Fermat’s principle:

δ

∫
nds = 0, (2)

where ds is the length element of the passing light
measured by the observer in a flat spacetime.

It is well-known that the light deflection in a
medium is caused by the inhomogeneous refractive in-
dex n, while the light deflection in a gravitational field
is caused by the curved spacetime, i.e., the dt/dτ (re-
lated to the curved time) and dl/ds (related to the
curved space) as shown in Eq. (1). The similarity be-
tween the relativistic Fermat’s principle and the con-
ventional Fermat’s principle gives us such an idea: a
special inhomogeneous optical medium with graded
refractive index may be the physical reality of the
curved spacetime. Since only vacuum exists between
gravitational matters, we suppose that vacuum is just
this special optical medium.

An inhomogeneous vacuum means its refractive in-
dex is not constantly 1 as one considers usually. To ob-
tain this special refractive index of vacuum, let us see
another strong similarity between the curved space-
time and the inhomogeneous medium. The general
relativity gives the angular displacement dφ of the co-
ordinate radius R in a curved spacetime as[36−38]

dφ =
dR

R/
√

A(R)

√[ R/
√

B(R)
R0/

√
B(R0)

]2

− 1

, (3)

where R0 is the coordinate radius at the point P0 of
the light ray nearest to the gravitational matter M ,
A(R) and B(R) come from a static and spherically

symmetric metric of the standard form

dT 2 = B(R)c2dt2 −A(R)dR2 −R2(dθ2 + sin2 θdφ2).
(4)

For the light propagation in a medium of a spher-
ically symmetric refractive index n, the angular dis-
placement dφ of the corresponding radius r in a flat
spacetime can be derived from the Fermat’s principle
as[39,15]

dφ =
dr

r

√( nr

n0r0

)2

− 1
, (5)

where r0 and n0 represent the radial distance and re-
fractive index at the point closest to the centre, re-
spectively.

The strong similarity between Eqs. (3) and (5) in-
dicates again that an inhomogeneous vacuum may be
the physical reality of the curved spacetime. From
these two equations and the boundary conditions at
infinity, the refractive index of this inhomogeneous
vacuum can be derived as follows:

n =
R

r
√

B(R)
, (6)

where R/r can be figured out through the integration
of the following equation:

dR

R/
√

A(R)
=

dr

r
. (7)

Equations (6) and (7) provide a general method for
finding the vacuum refractive index profile of a static
spherically symmetric gravitational field, where the
coefficients A(R) and B(R) can be obtained from the
Schwarzschild solutions. The Schwarzschild exterior
solution (R ≥ RM , RM is the radial coordinate at the
surface of the gravitational matter system) gives[38]

A(R) =
(
1− 2GM

Rc2

)−1

, (8)

B(R) = 1− 2GM

Rc2
, (9)

where G is the gravitational constant, c is the veloc-
ity of light in vacuum without the influence of grav-
itational field. The Schwarzschild interior solution
(R ≤ RM ) gives[38]

A(R) =
[
1− 2GM(R)

Rc2

]−1

, (10)

B(R) = exp
{
−

∫ ∞

R

2G

R2c2

[
M(R) +

4πR3p(R)
c2

]

·
[
1− 2GM(R)

Rc2

]−1

dR

}
, (11)

where M(R) =
∫ R

0
4πR2ρ(R)dR, ρ(R) is the mass

density, and for an ordinary gravitational matter sys-
tem, the pressure p(R) = 0.

Combining Eqs. (8)–(11) with Eqs. (6) and (7) will
give the exact expressions of the exterior and interior
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refractive index, respectively.[40] It is interesting to see
that if the gravitational field is not extremely strong,
i.e., GM/Rc2 or GM/rc2 ¿ 1, the two expressions
approach a unified form as follows:

n = exp
(
− 2Pr

c2

)
, (12)

where Pr is the gravitational potential at position
r, that is, outside the gravitational matter system
Pr = −GM /r, and inside the gravitational matter
system Pr = −{GM(rM )/rM +

∫ rM

r
[GM(r)/r2]dr}

(rM is the radial coordinate in flat spacetime corre-
sponding to RM in curved spacetime).

The above result is derived from a single static
spherically symmetric gravitational matter system.
For a multi-body system, the total gravitational po-
tential will be the superposition of each potential;
therefore, the refractive index of vacuum can be ex-
pressed as

n = exp
(
− 2Pr

c2

)

= exp
[
− 2

c2
(Pr1 + Pr2 + Pr3 + · · ·)

]
= n1n2n3 · · · ,

(13)

where Pr1, Pr2, Pr3, · · · and n1, n2, n3, · · · are the gravi-
tational potential and the corresponding refractive in-
dex caused by each gravitational body respectively.
This expression may be extended to arbitrary dis-
tributed matter systems. Figure 2 shows such an ex-
ample, where the brighter grey around the three ce-
lestial bodies represents the higher value of refractive
index, and the closed curves are the isolines, i.e. the
denser the lines, the quicker the change of vacuum re-
fractive index.

The result given by Eq. (12) or Eq. (13) provides a
convenient optical way to describe the effect of grav-
itational lensing. In Ref. [15], we simulated the light
path and the image shape of gravitational lensing by
using Eq. (12). We found that a source star can give
rise to two lensing images located at both sides of the
lens body. The two images are both elongated tan-
gentially. If the source star, the lens body and the
observer are in a line, the two images will be intercon-
nected to form a ring-like image known as the Einstein
ring. These results are in agreement with the known
facts.

By using the vacuum refractive index, other prob-
lems of the gravitational lensing such as the calcula-
tion of the time delay between the two lensing images,
the estimation of the lens mass, the determination of
the Hubble constant and so on, can also be treated in
a simple optical way.[15]

Fig. 2. Refractive index profile of a gravitational mat-
ter system composed of three celestial bodies of different
masses.

In addition, the refractive index given by Eq. (12)
or Eq. (13) makes it possible to study optically the
formation of the central image, which is predicted by
the general relativity but not observed in almost all
known cases of gravitational lensing. This problem
has puzzled people for many years.[34] Our computer
simulations show that the larger the distance from the
observer (or from the source) to the lens body, or the
larger the mass of the lens body, the closer the cen-
tral imaging ray to the lens centre, where the prob-
ably denser blocking matter leads to little chance of
finding the central image of a gravitational lensing.[40]

This accounts for the central image missing in almost
all observations of gravitational lensing.

In summary, we have shown the two strong sim-
ilarities between the light propagation in a curved
spacetime and that in a medium with graded refrac-
tive index: one is in Fermat’s principle; the other is
in angular displacement formula. The similarities in-
dicate that the vacuum around the gravitational mat-
ter is probably a special optical medium with graded
refractive index, which may be the physical interpre-
tation of the curved spacetime in general relativity.
The similarities provide a general method for calculat-
ing the corresponding refractive index of the vacuum.
Together with the Schwarzschild exterior and interior
solutions, this refractive index can be exactly figured
out. For a weak gravitational field, the refractive in-
dex profile is simply a unified exponential function of
the gravitational potential for the vacuum both out-
side and inside the gravitational matter system. The
result provides a simple optical way to analyse the
gravitational lensing. We anticipate our work to be a
stimulus to the quantum vacuum based investigation
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of the gravitational force.
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