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Abstract 

       All two-beam interferometry eventually reduces to quantitative measurement of the effective fringe visibility (or degree 
of coherence) in some form. We present generalized analytical and experimental results of visibility for the cases of two 
beam Poynting vectors both collinear (scanning fringe mode) and non-collinear (spatial fringe mode) with different 
polarizations and frequencies. This leads to a much broader and deeper understanding of the roles of material dipoles (beam 
splitters & detectors; both classical and quantum) in measured coherence effects that are not explicitly addressed in the 
traditional coherence theory. Coherence theory should be presented as correlation between sensing dipole undulations that 
are simultaneously induced by superposed light beams rather than as correlation between the optical fields. This generalized 
understanding of the physical processes behind coherence phenomenon will open up (i) better understanding of the nature 
of light and (ii) many more innovative approaches to quantitative interferometry. 
Key words: Coherence, degree of coherence, correlation function, interferometry; superposition principle, locality of 
interference fringes, interference of polarized light, interference of light of different frequencies. 
 
 

1. INTRODUCTION 
 

       We “see” the presence of light energy only through the “eyes” of material dipoles [1]. So the key theme of this paper is 
to establish that the optical coherence theory should be presented as correlation between the simultaneous dipole 
stimulations induced by the simultaneously present (superposed) light fields. We get deprived of visualizing the light-
matter interaction processes, if we present “coherence” only as the correlation between the optical fields. We also believe 
that this is one of the central reasons behind plausible interpretation of optical interference as “non-local”. We should 
faithfully apply all that is demanded by our “successful” theories to appreciate the roots of their successes and their 
limitations towards further advancement of our theories. Quantum Electrodynamics (QED) claims photons to be Bosons 
implying that they can occupy the same physical space without interacting with each other. An obvious example is the 
recoverability of a laser beam unperturbed after sending it through a pin hole with a focusing lens before it. It is the 
Classical Electrodynamics (CED) that has never formally recognized non-interference between well formed light beams 
even though it is obvious from our daily observations. Images we form on our retina by intercepting a light beam from a 
sight of our interest generally remains stable even though the beam comes to us after crossing through innumerable other 
light beams propagating in different directions.  
       Well formed optical beams do not interact with each other to modify or re-distribution their field energy distributions 
[1]. This is obvious from the fact that two intersecting laser beams remain unperturbed after their crossing region unless we 
insert some interacting material medium within their crossing volume. Superposition (interference) fringes never become 
manifest without the aid of interacting material dipoles that are allowed to interact simultaneously with all the beams 
superposed on them. So, optical coherence should be presented as correlation of dipoles stimulations induced by the fields. 
However, the current coherence theory, developed during the 1st half of the 20th century and formalized during the 2nd half 
of the 20th century, including its quantum mechanical version, has been serving us well that is supported by a wide variety 
of experimental measurements. So, the current mathematical theory must have captured the essential aspects of light-matter 
interaction processes, even though the present coherence theory is formulated as field-field correlation. This is simply 
because the mathematical process of normalization of the correlation function eliminates the light-matter interaction 

parameter, the linear susceptibility factor (1)χ  to polarized dipole undulation induced by the electric vector E of the light 
wave.  
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       What are the scientific and engineering utilities of raising such a “trivial” issue, a normalizing factor?  Refocusing our 
attention to this susceptibility factor (1)χ  will re-direct our attention in doing proper physics – trying to understand and 
visualize the invisible light-matter interaction processes. Since engineering innovations derives from emulating physical 
processes allowed by nature and its rules, a deeper understanding of the physical processes behind light-matter interaction 
would open up the possibility of many more practical innovations, especially, in light of the emergence of nano photonics 
where the nano matter clusters are straddling between classical quantum domains. For fundamental physics, several 
quantum mechanical interpretations become questionable. How can superposition fringes be formed “non-locally” when 
sub-nanometric detecting molecules must first experience all the superposed light waves on them before they can generate 
the superposition (interference) fringe patterns? Could it be correct that only the absence of knowledge (information) by 
human experimenters as to “which way light (photons) travel” is at the root of generation of fringes? 
       CED has not succeeded in defining any force that can mediate direct interactions between well-formed light beams for 
our routine laboratory experiments. And QED calculation demands almost un-attainable high intensity to make pure 
photon-photon interactions observable unaided by any material medium. So, we can safely conclude that well-formed light 
beams do not interfere with each other in the absence of interacting material media.  
       We “see” light only through our subjective interpretation by our cerebral neural net of the information sent to it through 
several intermediate transformations triggered by the original transformation induced on our retinal molecules. Neither the 
retinal molecules can respond to all the key parameters of the light beams nor can they transfer all the detailed 
transformations experienced by them all the way to the macro observation (interpretation) system. Photons are not painted 
with different colors by the creator and yet we see vivid colors all around us; the brain is a marvelous interpreter for our 
survival! 
        Such observational limitations are scientifically applicable to all of our light sensors connected to reading instruments. 
All information about light-matter interactions and the follow-on measurable transformations is gathered indirectly through 
“band limited” macro instruments. Further, the registered transformation is based on the involvement of a limited number 
of parameters of the light beam and the sensing material dipoles. Thus, even the interactions are “band-limited” and vary 
from sensor to sensor. We do not yet know the true nature of light [2,3]! 
       Can we know the nature of light any better? If we focus our attention to understand the real physical processes behind 
light-matter interactions and consistently try to visualize the invisible processes using our evolving theories, we will be able 
to gather more and more information about the true nature of light even within the current bounds of CED and QED. And, 
eventually, we should be able to formulate the next theory that is better than the current QED. Is “non-interference of light” 
a scientifically useful hypothesis for further exploration of the nature of light [3, see ch.6 of 2]?  
       The purpose of this article is to draw upon the previous publications [1,3,4] on this concept and generalize this 
hypothesis to “coherent” light beams of different polarizations and different frequencies and present a consistent 
methodology to compute and measure correlations (fringe visibility) for superposed light beams based on responses of 
material sensors. We will demonstrate that our approach brings better and more coherent understanding of the light-matter 
interactions and hence the nature of light.  
       This paper is being presented in the section “On the Fringe” appropriately implying that the contents of this paper do 
not belong to the mainstream thinking. Accordingly, we appreciate the acceptance of this paper by the SPIE organizing 
committee members. This is especially heartening for one of the authors (CR) since his papers on the same basic theme of 
“coherence” have been rejected three times earlier by two major international optics conferences. 
 
 

2. COHERENCE THEORY AS WE KNOW IT 
 
       From complex analytical signal theory, it has been established [5] that Michelson’s fringe visibility V( )τ in a two-
beam interferometer is the same as the modulus of the normalized autocorrelation function ( )γ τ . The interferometer 
generates two relatively delayed signal envelopes, and( )a t (a t )τ− , from the same original signal 

( ) exp[ 2 ]a t i tπν− with an optical carrier frequencyν : 

       max min max min( ) = ( ) ( ) ( )V I I I Iγ τ τ ≡ < > − < > < > + < >                                  (1) 
The normalized degree of coherence or the autocorrelation between two superposed fields is presented as: 
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Then one can derive the autocorrelation (or Wiener-Khintchine) theorem. It states that the normalized autocorrelation 
function and the normalized Fourier intensity spectrum form a Fourier transform pair. Note that the pair of conjugate 
variables for the Fourier transform is frequency and delay ( , )ν τ , both being physical parameters in real experiments: 

2 22 2

0 0
( ) ( )      and    ( ) ( )i i

norm norm
a v e d a v e dπντ πντγ τ τ γ

∞ ∞−= =∫ ∫ τ τ                           (3) 

Eq.2 represents actual temporal coherence due to relative delayτ forcing superposition of unequal amplitudes and hence 
reduced visibility; there are no other optical frequencies present in the original signal ( ) exp[ 2 ]a t i tπν− . Eq.3 represents 

spectral coherence provided
2( )
norm

a v is the actual physical spectrum of the signal we are using and it is CW. But we have 
abandoned the difference between the temporal coherence due to a time finite signal with a single carrier frequency and the 
spectral coherence due to CW signal with true frequency spread originated at the source. This is due to identification of the 
actual carrier frequenciesν of ( )a ν  with the Fourier’s mathematical frequencies f of  because we need to use the 
original Fourier theorem [Eq.4] to derive the autocorrelation theorem of Eq.3. 

( )a f

2 2

0
( ) ( ) ,  where  ( ) ( )i ft i fta t a f e df a f a t e dtπ π∞ ∞−= =∫ 0∫                                    (4)  

Some how we have been ignoring the fact that the derivation of Eq.3 using Eq.4 requires the assumption that the cross 

terms of
2( )
norm

a v are zero, or there are no “interference” between different optical frequencies. In the optical domain this 
assumption is correct only as long as we use slow detectors and electronics that are incapable of responding to the 
heterodyne beat current produced in the photo detector [3]. In fact, this assumption of non-interference of different 
frequencies lies at the heart of success of Michelson’s Fourier transform spectrometry grounded on Eq.3. 
Treating and ( )a f ( )a ν as identical implies that the Fourier’s theorem [Eq.4] is a principle of physics; however, we have 
not formally declared so. Correctness of a particular mathematical linear superposition theorem cannot over ride the 
necessity of real physical interaction process in nature, which can generate new optical frequencies from an incident single 
carrier frequency. Another note of interest is that spatial coherence in general is a manifestation of a mixture of spectral 
and temporal coherence for the most generalized signal like spontaneous emission consisting of many pulses with many 
different carrier frequencies. 
       In the following sections we devote our attention to the roles played by material media in light-matter interactions to 
register superposition effects due to two beams of “coherent” light. “Coherent” in the sense that each light pulse 

( ) exp[ 2 ]a t i tπν− has duration long enough (number of cycles) for the interacting materials either to absorb from or re-
direct energies out of the incident light beams. But the observed fringe visibility will be dictated by the properties of the 
interacting material dipoles. 

 
3. ALL OPTICAL TWO-BEAM SUPERPOSITION INTERFEROMETERS REQUIRE UNDERSTANDING 

BEAM SPLITTER FUNCTION 
 
       Consider the final beam splitter BS2 of a Mach-Zehnder interferometer (Fig.1) shown enlarged on the right hand side 
of the diagram under two different conditions – (i) the Poynting vectors are collinear when the interferometer is in the 
scanning fringe mode and (ii) the Poynting vectors are non-collinear when the interferometer is in the spatial fringe mode. 
Obviously, in the absence of the beam splitter BS2, the two well defined coherent beams, although intersecting each other 
within a finite volume, will emerge out unchanged without any “memory” of the experience of their temporary 
superposition. This is what we mean by non-interference of well formed light beams. In the presence of the beam splitters, 
when the phases of the two beams are given the right value and the reflection and transmission conditions for the two 
beams are such that their Poynting vectors are collinear, a 50% beam splitter can act as a 100% transmitter or a 100% 
reflector. We know that such superposition (interference) effect cannot become manifest without the active participation of 
the boundary molecules of the beam splitter and without the simultaneous presence of both the beams. Obviously, the sum 
of the energies in the two directions must be conserved. Let us re-discover the necessary condition. The incident beams are 
generated from the same laser with single frequency and parallel polarization with a relative phase delayτ . Then the 
complex dipole stimulation amplitudes are, assuming (1)

x xd aχ= : 
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The corresponding registered intensities are: 
2 2 2 2 2
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Figure 1.  A typical Mach-Zehnder interferometer with polarizers in two of its arms. The final beam splitter is shown enlarged under two 
conditions – the Poynting vectors are collinear (right top) and non-collinear (right bottom). For convenience of depicting the different 
properties experienced by the beams, the representative rays are slightly physically displaced. 
 
Conservation of energy tells us that . But, here we require that the sum of 2 2 1t r+ = rightD  and upD must remain constant 

and equal to the sum of and . This would be possible only if the interference terms in Eq.7 are of opposite sign to 
cancel each other, requiring either t or  to assume negative value or a 

2
1d 2

2d
r π -phase jump in only one of the two directions. 

And classical electrodynamics tells us that it is the “external” reflection that undergoes the requiredπ -phase jump [6]. 

When and are equal and  t and are 1d 2d r 0.5 (a 50% beam splitter), one can engender 100% reflection or 100% 
transmission with the right choice of the delay numberντ along with the negative sign for the “external” reflection.  
       We are underscoring this “trivial” undergraduate physics to make the point that one cannot redirect a “photon” in an 
interferometer without the mediation of the beam splitter boundary molecules receiving light waves from both the 
directions with the “external” reflection condition experiencing a π -phase jump. Bell’s theorem for “single photon 
interference” must incorporate this critical contribution of the classical dielectric boundary [Ch.6 of Ref. 2] for interference 
with Poynting vectors collinear. The simultaneous presence of real light waves from both the directions on the beam splitter 
boundary is essential to generate the energy re-direction capability of a passive dielectric boundary (for the “interference” 
effects to become manifest). That even (non-absorbing) passive material dipoles actually dictates re-direction of EM field 
energy is well known in classical physics from the explanation for the Brewster angle. At this angle ( tan B nθ = ), the 
reflection of a beam becomes zero when the incident state of polarization is parallel to the plane of incidence because the E-
vector induced undulation inside the medium (refracted direction) becomes parallel to the direction of reflection and dipoles 
cannot radiate along its axis of undulation [11]. Tracking the fringe position shift, due to this π -phase jump for non-
collinear spatial fringe set up, is a tedious experimental task. 
 

4. LOOKING DEEPER INTO LIGHT-MATTER INTERACTIONS BY VARYING DIFFERENT LIGHT 
PARAMETERS 

 
4.1. Generic fringe visibility function for two-beam superposition 
       Let us develop our formulations for two well formed collimated light beams with steady frequencies, steady linear 
polarizations and steady phases. Their duration is longer than our recording time and hence the fields can be treated as 
continuous (CW). The cases for shorter duration of light pulses have been treated in an earlier paper [4]. Traditionally such 
a pair of beams will be called coherent. However, if the two beams have different frequencies or same frequencies with 
polarizations orthogonal, the fringe visibilities will be zero when we use slow detector. We should not assign “coherence” 
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or “incoherence” properties to light beams without reference to detecting devices. When the parameters of a light beam 
(frequency, polarization, amplitude and phase) vary with time, the detector is forced to record a time average result based 
on it’s over all intrinsic time constant of integration. If the rate of fluctuations of the composite field parameters is much 
slower than our detector’s response time, we will be able to record time varying visibility of the fringes. For example, if we 
use a pico second streak camera and the field parameters are stationary for the duration of tens of pico seconds or longer; 
the camera will display fringes of time varying visibility. But, if under the same conditions of field fluctuations, we use a 
detector and a recorder with response times in the nano second domain, the recorded fringe visibility will be poor or zero. 
Obviously, the “coherence” of the optical fields has not become zero. Waves are a collective phenomenon; and they must 
have phase steady undulations at least over a couple of cycles to display their frequency parameter while interacting with 
quantum devices. 
       The fringe visibility for generic two beam superposition (different frequencies but polarizations), explicitly recognizing 
the linear first order susceptibility, can be derived as follows, where (1) ˆxχ are the unit dipole vector undulations induced by 

the electric vectors : xa
21
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The fringe visibility has to be measured out of the sinusoidally oscillating fringes in time.  
2 2 (1) (1)

1 2 1 2 1 22 cos  [ ];    cos  ˆ ˆV a a a aϕ ϕχ χ= + ⋅ =                                             (9) 
If the two beams of Eq.8 carry the same frequency and same state of polarization, then the detected fringes are time 
independent. Most of our interferometers work under this condition if the light is not pulsed.     

(1) 2 [1 cos 2 ]A VD πντχ +=                                                                  (10) 
Because visibility parameter in Eq.8 and 9 can be expressed without reference to the dipolar properties of the interacting 
materials, we have been safely ignoring the experimental fact that it is the joint stimulation of the material dipoles that 
really produce the fringes due to the superposed light beams. That is why this paper attempts to extract more information 
about the nature of light by explicitly focusing on the light-matter interaction processes. 
 
4.2. Light-matter interactions for different polarizations. 
       If the two states of linear polarizations are parallel to each other, then cos 1ϕ =  in Eq.9. If they are orthogonal to each 
other, the fringe visibility becomes zero as is well known; we have intensity without sinusoidal undulations. We should 
underscore that this continuous change in fringe visibility from unity to zero, based on the orientation angle between the 
two electric vectors, is mediated by the cosϕ  factor and is due to the unique behavior of the “sensing” material dipoles. In 
Section 3 we have underscored how a beam splitter can play active role in re-directing the energy from one beam into the 
other if the Poynting vectors are collinear. Of course, under this alignment conditions, the visibility has to be measured by 
scanning one of the mirrors to introduce relative phase delayτ . The same situation applies for polarized beams also, as 
long as the angle between the two polarizations is less than 900. When the Poynting vectors are non-collinear, τ varies with 
spatial locations and one can record fringes with a CCD camera or photographic plate.  
       But, why does fringe visibility (“coherence”?) decreases monotonically as cosϕ  and goes to zero for 900? Obviously 
the “coherence” properties (steady relative phase difference) of the two light beams have not changed. It is the dipolar 
properties of the materials that must dictate our observations. For all angles below 900 the dipoles simultaneously respond 
to all the E-vectors carrying complex amplitudes before absorbing energy according to cosϕ  law (Eq.9). Note that this is 

not Malus’ 2cos θ law of energy transmittance by a linear polarizer. When the two E-vectors are orthogonal, the dipoles 
cannot respond simultaneously to both the complex amplitudes; they separately respond to one or the other, generating 
zero-visibility intensity record. 
 
4.3. Different possible models for E-vector-dipole response for superposition of two beams with same optical 
frequency.  
       While deriving Eq.9 we have assumed that the dipoles directly respond to both the E-vectors following the 
mathematical vectorial dot product rule. The superposed light beams remain independent of each other, as we are claiming 
in this paper (non-interference of light). Let us now consider two alternate models to evaluate their suitability in explaining 
superposition effects. (i) Light beams interfere. Superposed E-vectors create resultant E-vector before interacting with 
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material dipoles. (ii) Material dipoles are polarized by the strongest E-vector. Then the projection of the other E-vectors is 
taken along this polarized direction for joint stimulations. We are assuming that the detecting molecules are embedded in an 
isotropic medium. The case for polarized crystalline detecting medium will be discussed in section 4.3.  

    
 
Figure 2.  Case (i), left diagram: Light beams interfere by themselves. The two superposed beams with two different electric vector 
orientations are considered. For the case depicted on the left, a resultant E-vector is constructed by the two fields by themselves in the 
free space before they interact with any materials. Case (ii), right diagram: Material dipoles are polarized by the strongest E-vector. 
The polarized material dipoles then take the projections of the weaker E-vectors to create the resultant response.  
 
4.3.1. Light beams interfere by themselves to create a resultant electric vector. The resultant field vector length and the 
complex amplitude can be expressed as (see Fig.2, left diagram):  

 2 2
1 2 1 2  and   ˆ ˆcos cos cos cosi t i t

res res res resa a a a a a e a a e ( )πν πβ βα α += + = + ν τ         (11) 

Here is a unit vector along the resultant vectorˆresa resa . The angles α and β are made by the vectors  and 1a 2a  with the 

resultant vector . Let us assumed that the detecting molecules are isotropic and the resultant E-vector resa resa dictates the 

direction of dipole stimulation. The light detecting molecules are now undulating along the direction represented by the 

unit susceptibility vector
resa

(1) ˆrχ . The detected intensity variation by changing the relative path (phase) delay τ between the 
two superposed beams can now be given by: 
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The visibility is now: 
                     2 2 2 2

1 2 1 2/   2 cos cos [ cos cosV a a a a ]β βα α= +                                                  (13) 
Unlike for the case of Eq.8, the energy absorbed (or re-directed) is less than the total incident energy due to the 
multiplicative cos2 factors as if Malus’ law is working. This is because of our choice of first creating a resultant E-vector 
using their geometric component from vector-sum algebra. The visibility of the fringes is reduced not only due to the 
unequal amplitudes 2 2

1 cosa α  and 2 2
2 cosa β , but also by the cosines of the two angles the two original electric vectors 

make with the resultant E-vector direction .  resa
       We know from basic experiments that when the two E-vectors are orthogonal to each other ( ), even 
coherent beams cannot produce interference fringes. But the visibility here depends upon the product of the two cosines of 

090ϕ α β= + =

α and β . Since neither α nor β can ever be 900, the visibility can never be zero. Hence this model of “light beams 
interact (interfere) to form a resultant E-vector” can be safely rejected.  
 
4.3.2. Material dipoles are polarized by the strongest E-vector. Here also we start with the assumption that our detecting 
molecules are isotropic and can respond to all E-vectors oriented in any and all directions but are overridden by the 
strongest E-vector. This model implies that the detecting molecule gets polarized by the stronger E-vector 1a and the 

stimulated amplitude and direction is (1) (1)
1 1ˆ aχ χ along the original vectorial direction of 1a . The polarized and undulating 
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molecule then takes a projection of the E-vector 2a  along its existing undulating direction (1)
1χ̂ with 

strength (1) (1)
1 2ˆ cosa ϕχ χ  (see Fig.2, right diagram). So the intensity detected by the molecules will vary with the 

delayτ as: 
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Now the visibility is: 
                                            2 2 2

1 2 1 2 ]2 cos [ cosV a a a aϕ ϕ= +                                                           (15) 
Eq.15 is plotted in the left diagram of Fig.3. Notice that the visibility relations given by Eq.9 and Eq.15 are very similar in 
the numerator, but their denominators are different. In this case, the qualitative observation that the fringe visibility reduces 
with the angleϕ  between the superposed E-vectors, is correct. However, the rate of reduction in the visibility is not 
monotonic except when the ratio of the two amplitudes corresponds to unity. This model of light matter interaction is also 
rejected as will be shown by careful experiments presented in Section 5. 

 
Figure 3. Theoretical visibility curves for different light-matter interaction models with the ratio of the intensities of the two superposed 
beams varying as 1.0, 0.5 and 0.2. Left diagram: The three curves correspond to the case where the detecting molecules are first 
polarized by the stronger of the two superposed E-vectors; the effective strength of the second E-vector is taken as a cosine projection. 
Right diagram: The set of curves with dashed-line correspond to the model that isotropic detecting molecules respond to all the 
superposed E-vectors simultaneously. The set of solid-line curves correspond to the model where the detecting molecules are embedded 
in a linearly polarized matrix. 
 
4.3.3. Light beams remain independent. Isotropic detecting molecules respond to both the electric vectors 
simultaneously without preference. The relevant equations for this model have already been derived in the introduction of  
the Section 4, Eq.8, 9. If some detecting dipoles are in an isotropic medium and happen to be within the volume of physical 
superposition of the two beams, they will experience simultaneous stimulation by the two beams and the transformation it 
undergoes is effectively due to the summation of the two simultaneous joint stimulations. The angle between the two E-
vectors is 2 1( )ϕ θ θ≡ − ; where 2θ  and 1θ are the polarization angles for the two E-vectors with reference to the horizontal 
direction. As before, we are assuming that the dipoles have first order linear susceptibility coefficient to polarizability due 
to any E-vectors field as (1)χ .The visibility Eq.9 is reproduced here for reader’s convenience: 

2 2 (1) (1)
1 2 1 2 1 22 cos  [ ];    cos  ˆ ˆV a a a aϕ ϕχ χ= + ⋅ =

2
2

                                            (9) 

The theoretical plots for values of  corresponding to 1.0, 0.5 and 0.2 are shown in Fig.3 (right diagram) as three 
“dashed-line” curves. We believe this is the correct model for light matter interaction. Experimental results are presented in 
Section 5. When the electric vectors are exactly orthogonal, the dipoles separately respond to one or the other vector. No 
superposition effects can be registered by isotropic molecules even though light beams are coherent. We do not need an ad-
hoc definition that orthogonally polarized light does not interfere. 

2
1 /a a
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4.4. Detecting molecules are embedded in an anisotropic medium with the polarized axis in a preferred direction.  
       Now, let us assume that we have an anisotropic detector where the detecting molecu onstrained to undulate only 
in the preferred direction 

les are c
p that makes angles α  and β with the two E-vectors 1a  and , respectively. Then the 

stimulating amplitudes that will be experienced by the anisotropic molecule, by Malus’ law for amplitude, are 
2a

1 cosa α  

and 2 cosa β . Consideration of this model is relevant because of the advent of crystalline nano photonic and photo-EMF 
detectors. 

 
 
Then the intensity registered by this anisotropic detector will be: 
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       (16)  

The visibility is now given by: 
                 2 2 2 2

1 2 1 2 ] 2 cos cos cos cos[V a a a aβ βα α≡ +

2
2

                                            (17) 
Notice that the fringe visibility is now reduced by two cosine factors, cosines of the angles made by the preferred polarized 
direction of the detecting material with the two E-vectors. The theoretical plots for values of  corresponding to 1.0, 
0.5 and 0.2 are shown in Fig.3 (right diagram) as three “solid-line” curves. We have considered the case where the two 
incident E-vectors are orthogonal to each other implying . If either 

2
1 /a a

090α β+ = α  or β equals zero (the detector polarized 
axis lined up with one of the E-vectors), then the other angle must be 90o and the visibility becomes zero, as is obvious 
from the solid- line curves. The maxima for the visibility now depends both on the ratio and the specific values of 2

1 /a a2
2

α  and β . Experimental validation is presented in Section 5. 
 
4.5. Model to understand elliptically polarized light beam. 
       The key theme of the paper has been that well formed light beams do not interact with each other [1]. We also know 
that orthogonally polarized coherent light beams in two beam interferometry produce only zero-visibility fringes [3]. Then 
the physical reality of the mathematically congruent equation for elliptically polarized light needs to be re-visited. Can we 
really create light beams with elliptically spinning electric vector by superposing two coherent but orthogonally polarized 
light beams with unequal amplitudes having / 2π±  relative phase difference in free space? It is a standard custom to 
represent an elliptically polarized light beam by the Jones vector comprising of two “coherent” orthogonal components with 

/ 2π±  phase shift [7]: 

( ) 1 2
. /2

1

( ) ;   Intensityx i t
elip x yi

y

a
2 2
1 1E t e a

a e
πν

π

⋅

−
⋅

⎛ ⎞
a= = +⎜ ⎟⎜ ⎟

⎝ ⎠
                                             (18) 

The equation for the ellipse is derived by eliminating the common phase factor exp( 2 )i tπν : 
22

2
2 2

ˆ2cos sin ;  ( , )y x yx ˆx y
x y x y

E E EE E z t E x E y
a a a a

ε ε+ − = = +                                         (19) 
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Note that “coherent” orthogonal amplitude components of the Jones’ “vector” are never summed first to find the resultant 
intensity of the superposed fields. The intensity always remains the same by summing the squares of the two orthogonal 
component amplitudes. If, according to Eq.19, the “tip” of the E-vector were really helically tracing out an ellipse, then the 
instantaneous intensity should have been changing during every cycle of light propagation. Mathematical prescriptions of 
Jones’ vectors and Jones’ transfer matrices refer to light-matter interaction in the optical components and systematically 
propagate and independent of each other and the intensity is calculated from the final modified components by first 
squaring the x- and y-components and then summing them. Thus, this Jones’ matrix approach preserves the observational 
science, while preserving the illusion that the E-vector of light beams by themselves can execute helical rotations! Since 
Muller matrix method stays focused always on the intensities, this methodology is also correct for scientific observations.  

1 xa ⋅ 1 ya ⋅

 
4.6. Light-matter interactions for different optical frequencies 
 
       We know that Michelson’s Fourier transform spectrometry works under the assumption that light beams corresponding 
to different optical frequencies do not interfere with each other [8]. This assumption remains observationally correct as long 
as we use time integrating (slow) detectors [4,9]. However, after the invention of fast optical detectors [10], heterodyne beat 
signal detection by mixing different optical frequencies has become a very important applied tool for us. Again, the point is 
that light beams do not interact (interfere) with each other; the non-interference of light should not be reserved for specific 
parametric values of light beams. Let us superpose two optically steady beams with two different frequencies with two 
states of polarizations. For simplicity in mathematical representation, we are using dipole undulation vectors 
as (1) (1) ˆx xd axχ χ≡ . 
 
4.6.1. Isotropic fast detector with broad transition bands for response to both frequencies. The electric fields for the 
two superposed beams make an angleϕ between them. The case somewhat is similar to that of Section 4.2.3 and Eq.9, 
however, since the phase factor is proportional to the product ντ  and we have two different frequencies, we need to keep 
track of delays experienced by each beam separately for accounting convenience and mathematical symmetry: 

1 1 2 22 ( ) 2 ( ) 2 2
1 2 1 2 1 1( ) ( )[1 cos 2 { ( )]i t i tD t d e d e d d V vtπν τ πν τ

2 2π δ ν τ ν τ+ += + = + + + −                      (22) 

2 2
1 2 1 2 1 22 cos / [ ];      (V d d d d )ϕ δν ν ν≡ + ≡ −                                                    (23) 

This represents time varying cosine beat frequency fringes moving at a rate of δν with visibility reduction 
factorV containing cosϕ  due to the angle between the two linearly polarized E-vectors. This expression is very similar to 
the case for same frequency beams (Eq.9), except that the fringes are now time varying and hence the visibility can be 
measured only electronically. The factor 1 1 2 2( )ν τ ν τ− is a fixed relative time delay between the two beams if the delays 

1τ and 2τ are kept steady. Detecting time varying heterodyne fringes require special attention to keep the beam Poynting 

vectors as collinear as possible. A finite angleφ between the two beams will create laterally moving spatial fringes. 

Assuming ν or λ  as the mean frequency or wavelength of the two beams, spatial fringe spacing is given 
by ( / 2sin )λ φ or (( / ) / 2sin )c ν φ . Then the active size of the detector should be at least an order of magnitude smaller 
than this fringe spacing [9].  

   
4.6.2. Anisotropic fast detector with broad transition bands for response to both frequencies. This case is similar to 
the case considered in Section 4.3 with the addition that the frequencies are also different. In absence of polarized detecting 
molecules, the experiment can be simulated by inserting a linear polarizer in front of an isotropic detector. Accordingly, the 
strengths of the dipole stimulations experienced by the detecting molecules 1d and 2d should be multiplied by the Malus’ 

amplitude projection factors cosα and cosβ . This projection makes 1d and 2d collinear along the polarizer direction and 

the vectorial direction is denoted by the common unit vector . d̂
1 1 2 2

22 ( ) 2 ( )
1 2

2 2 2 2
1 2 1 1 2

ˆ( ) ( cos cos )

       ( cos cos )[1 cos 2 { ( )}]

i t i tD t d d e d e

d d V vt

πν τ πν τα β

α β π δ ν τ ν τ

+ += +

= + + + − 2

                              (24) 

Time varying visibility is: 
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                   2 2 2 2
1 2 1 22 cos cos / [ cos cos ]V d d d dα β α≡ β+                                               (25) 

Eq.25 is identical to Eq.17 for the case of same frequency. As before, the heterodyne fringe visibility can be measured only 
through record of time varying fringes.  

 
5. EXPERIMENTAL RESULTS 

 
5.1 Poynting vectors collinear (scanning fringe mode). Cases for isotropic and polarized detecting molecules.  
 
       When coherent light beams of same frequency but of different states (angles) of polarizations are superposed 
collinearly, both the beam-combining beam splitter BS2 [see MZ of Fig.1] and polarized detecting molecules can modify 
energy re-direction and transmittance, respectively, due to superposition of complex amplitudes due to the two beams. The 
representative visibility equations are given by Eq.9 and 17, respectively. But since the Poynting vectors are collinear, the 
fringes have to be recorded by scanning one of the MZ mirrors to introduce variations in the relative delayτ . The 
oscilloscope traces of such fringes are shown in Fig.5a and b. (3.1 and 4.1). In the absence of a crystalline polarized 
detector, we have simulated the case by inserting an analyzer in front of a usual isotropic detector. These qualitative results 
are presented simply to underscore the point that passive beam splitters and polarizers are capable of producing undulatory 
intensity changes due to the “complex amplitude stimulations” induced by the two light amplitudes of varying relative 
phase delay.  

 
 

 
5.2. Poynting vectors non-collinear (spatial fringe mode). Cases for isotropic and polarized detecting molecules. 
       We have used a CCD camera with software to quantitatively measure the intensity distributions of the registered 
fringes.  In Fig.6 the experimental data points connected by the dashed line corresponds to an isotropic detector with the 
angle between the polarization vectors and1a 2a  changing from 0o to 90o with  slightly less than 1. This curve 
should be compared with the theoretically predicted one, the top dashed-line curve of Fig.3 drawn by using Eq.9. The 
match is within experimental errors.  

2
1 /a a2

2

       The data points connected by the solid line corresponds to an anisotropic detector with the angle between the 
polarization vectors and  kept fixed to 901a 2a o, β was varied from 0o to 90o where α β+ = 90o and with  was 2

1 /a a2
2
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slightly less than 1. This curve should be compared with the theoretically predicted one, the top solid-line curve of Fig.3 
(right side) drawn by using Eq.17. The match is within experimental errors. In the absence of good anisotropic detector, we 
have simulated the condition by using an analyzer in front of the CCD camera (containing isotropic detector array).  
       These two experimental curves validate our core model of two beam superposition (interference) experiments with 
polarized light. While the mathematical expressions would not at all surprise the readers, the key point of this paper has 
been to underscore that the real intensity re-distribution becomes manifest when sensing material dipoles are able to interact 
simultaneously with the superposed light beams. 
 
 

6. CONCLUSIONS 
 

       We have underscored the need to re-visit the phenomenon of superposition (interference) fringes in view of “non-
interference of light” in general, and especially for arbitrary polarizations and carrier frequencies. Since superposition 
effects are displayed by the summing capability of sensing material dipoles induced in them by the multiple superposed 
light beams, we have developed the generic expressions for two-beam superposition effects in terms of fringe visibility 
(autocorrelation) functions. This approach of understanding “coherence” and “interference” phenomena in terms of material 
properties brings in conceptual simplicity and eliminates the need for non-causal explanations for various superposition 
effects. For example, re-direction of single indivisible photons, especially one at a time, in a collimated beam interferometer 
experiment, is conceptually difficult to appreciate because the asymmetric behavior of the isotropic beam splitter can be 
induced only in the presence of simultaneous presence of light beams on the beam splitter from both sides. Even though the 
mathematics “works” in most of the cases, the formulation of coherence theory in terms of Fourier frequencies has many 
embedded problems since the Fourier frequencies are not available for physical interactions [11,12,Ch.6 of 2]. We have 
shown that since coherence is measured in terms of fringe visibilityV , it is better to derive it in terms of correlations of the 
dipole stimulations of the responding medium rather than field-field correlations. This will bring more “coherence” in 
understanding and distinguishing between spectral coherence and temporal coherence that give rise to the more complex 
spatial coherence. We are, of course, treating light beams as classical waves and sensing molecules as quantum devices, 
which has been popularized as semi-classical approach by Jaynes [13].  
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