
1 
 

Spacetime Field Characteristics from Chapter 4 
 
Zs – The Impedance of Spacetime:		In	acoustics,	all	materials	offer	opposition	to	acoustic	flow	
when	an	oscillating	acoustic	pressure	is	applied.		For	example,	tungsten	has	the	highest	acoustic	
impedance	 which	 is	 about	 2.5x106	 times	 greater	 than	 the	 acoustic	 impedance	 of	 air.		
Electromagnetic	radiation	also	experiences	a	characteristic	impedance	as	it	propagates	through	
space.		The	electric	field 	and	magnetic	field	 	are	related	by	the	“impedance	of	free	space	Zo”.		
The	relationship	is:		
	

Zo	≡	 /  =  	 	376.7	Ω				impedance	of	free	space	

	
Gravitational	 waves	 also	 experience	 impedance	 as	 they	 propagate	 through	 spacetime.	 	 I	
identified	the	impedance	experienced	by	gravitational	waves	when	I	first	started	working	on	this	
project.	I	was	surprised	that	I	initially	could	not	find	any	other	reference	to	this.	After	about	5	
years,	I	discovered	that	the	impedance	of	spacetime	had	been	previously	identified	by	Blair1	from	
an	 analysis	of	 gravitational	wave	equations	and	 reported	 in	 the	1991	book	The	Detection	of	
Gravitational	Waves.		However,	even	in	that	book	the	impedance	of	spacetime	is	only	casually	
mentioned	and	is	not	used	in	any	calculations.	Since	then,	the	impedance	of	spacetime	appears	
to	be	ignored	by	the	scientific	community.		As	will	be	seen,	the	impedance	of	spacetime	is	the	key	
to	quantifying	the	properties	of	the	spacetime	field.		Most	of	the	calculations	in	the	remainder	of	
this	book	depend	on	this	impedance	which	is	identified	by	Blair	as:	
			

Zs	 	c3/G	 	4.038	 	1035	kg/s									Zs	 	impedance	of	spacetime	

	
The	 reasoning	 that	 led	me	 to	 independently	discover	 the	 impedance	of	 spacetime	started	by	
comparing	gravitational	waves	to	acoustic	waves.	All	propagating	waves	involve	the	movement	
of	energy.		In	other	words,	propagating	waves	of	any	kind	are	a	form	of	power.		There	is	a	general	
equation	 that	applies	 to	waves	of	any	kind.	 	The	most	common	 form	of	 this	equation	relates	
intensity	“ ”,	the	wave	amplitude	A,	the	wave	angular	frequency	ω,	the	impedance	of	the	medium	
Z	and	a	dimensionless	constant	k.		The	intensity	 	can	be	expressed	in	units	of	w/m2.	
		
	 	k	A2ω2Z											
	
We	 will	 first	 illustrate	 the	 use	 of	 this	 general	 equation	 using	 acoustic	 waves.	 	 The	 acoustic	
impedance	is:	Za	 	ρca	where	ρ	is	density	and	ca	is	the	speed	of	sound	in	the	medium	 acoustic	
speed .		Acoustic	impedance	has	units	of	kg/m2s	using	SI	 dimensional	analysis	units	of	M/L2T	 .		

                                                 
1 Blair,  D. G. (ed.): The Detection of Gravitational Waves. p 45. Cambridge University Press, Cambridge New York 
Port Chester (1991) 
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The	amplitude	of	an	acoustic	wave	is	defined	by	the	displacement	of	particles	oscillating	in	an	
acoustic	wave.		The	amplitude	term	in	acoustic	equations	has	units	of	length	such	as	meters.			
	
When	 the	 equation	 	 	 k	 A2ω2Z	 is	 used	 for	 gravitational	 waves,	 the	 amplitude	 term	 is	 a	
dimensionless	ratio	which	in	its	simplest	form	can	be	expressed	as	strain	amplitude	A	 	ΔL/L.		
This	ratio	is	expressing	a	strain	in	spacetime	which	can	also	be	thought	of	as	the	maximum	slope	
of	 a	 graph	 that	 plots	 displacement	 versus	 wavelength.	 	 	 When	 the	 amplitude	 term	 is	
dimensionless	strain	amplitude,	then	for	compatibility	the	impedance	of	spacetime	Zs	must	have	
dimensions	of	mass/time	 M/T .				
	
Even	though	 	 	k	A2ω2Z		is	a	universal	wave‐amplitude	equation,	it	can	only	be	used	if	amplitude	
A	and	impedance	Z	are	expressed	in	units	compatible	with	intensity	 watts/m2 	in	this	equation.		
For	example,	electromagnetic	radiation	is	usually	expressed	with	amplitude	in	units	of	electric	
field	strength	and	the	 impedance	of	 free	space	Zo	 in	units	of	ohms.	 	This	way	of	stating	wave	
amplitude	and	impedance	does	not	have	the	correct	units	required	for	compatibility	with	the	
above	intensity	equation.		As	discussed	in	chapter	9,	there	are	other	ways	of	expressing	these	
terms	that	make	electromagnetic	radiation	compatible	with	this	universal	equation.	
	
The	 intensity	 of	 gravitational	waves	 can	 be	 complex	 because	 of	 nonlinearities	 and	 radiation	
patterns.	 	However,	this	intensity	can	be	expressed	simply	if	we	assume	plane	waves	and	the	
weak	 gravity	 limit.2	 	 Using	 these	 assumptions,	 the	 gravitational	 wave	 intensity	 	 is	 often	
expressed	as:	
	

	 	 	υ2A2											where:		 	 	intensity	of	a	gravitational	plane	wave	and	υ	 	frequency					

	
However,	this	can	be	rearranged	to	yield	the	following	equation:	
	
	 	kA2ω2 c3/G 										
	
k	 	a	dimensionless	constant;					ω	 	angular	frequency	
As	 	ΔL/L	 	strain	amplitude	where	L	is	measurement	length	and	ΔL	is	the	change	in	length		
	
It	is	obvious	comparing	this	equation	to	the	general	equation	 	 	k	A2ω2Z			that	the	two	equations	
have	the	same	form	and	that	the	impedance	term	must	be:	Z 	Zs	 	c3/G	
	
5 Wave-Amplitude Equations:			Now	that	we	are	armed	with	the	impedance	of	spacetime,	the	
equation	 for	 intensity	 	 can	 be	 converted	 into	 equations	 that	 express	 energy	 density	 U ,	
energy	 E 	and	power	 P .		If	we	are	restricted	to	waves	propagating	at	the	speed	of	light,	then	
we	can	also	convert	 the	 intensity	equation	 into	an	expression	of	 the	 force	 F 	exerted	by	the	

                                                 
2 D. G. Blair, The Detection of Gravitational Waves, Cambridge University Press, 1991, p. 34 
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propagating	 wave.	 	 This	 conversion	 incorporates	 the	 equation	 F	 	 P/c	 	 where	 P	 is	 power	
propagating	at	the	speed	of	light.		These	will	be	called	the	“5	wave‐amplitude	equations”.		These	
equations	also	use	the	symbols	of:		
	 	area	 m2 ,			V	 	volume	 m3 				and				k	 	dimensionless	constant	near	1		

	
	 	k	A2	ω2	Z																			 	 	intensity	 w/m2 	
U	 	k	A2	ω2	Z/c													U	 	energy	density	 J/m3 					 U	 	 /c 				and			U	 	ℙ	 	pressure	
E	 	k	A2	ω2	Z	V/c										E	 	energy	 J 																											 E	 	 V/c 	
P	 	k	A2	ω2	Z	 													P	 	power	 J/s 																								 P	 	 	
F	 	k	A2	ω2	Z	 /c									F	 	force	 N 																													 F	 	 /c 	
																																											
These	5	equations	will	be	used	numerous	times	in	the	remainder	of	the	book.		It	is	proposed	that	
all	energy,	force	and	matter	is	derived	from	waves	in	the	spacetime	field	and	these	5	equations	
will	be	used	to	support	this	contention.		The	amplitude	term	A	needs	further	explanation.		We	
are	 presuming	 waves	 propagating	 at	 the	 speed	 of	 light	 and	 we	 are	 temporarily	 excluding	
electromagnetic	waves	until	chapter	9.		This	leaves	gravitational	waves	and	dipole	waves	in	the	
spacetime	field.		We	need	to	standardize	how	we	designate	the	amplitude	of	these	waves.		
	
For	gravitational	wave	experiments	where	the	wavelength	is	much	longer	than	the	measurement	
path	length	 λ L ,	it	is	acceptable	to	designate	the	strain	amplitude	as	As	 	ΔL/L.		However,	
when	we	are	dealing	with	an	arbitrary	wavelength	which	might	be	small,	it	is	necessary	to	specify	
strain	 as	 the	 maximum	 slope	 of	 a	 graph	 that	 plots	 displacement	 versus	 wavelength.	 	 This	
maximum	slope	occurs	when	the	displacement	is	zero	and	the	strain	is	maximum	 see	figures	
5‐3	and	5‐4	in	chapter	5 .		If	we	designate	the	maximum	displacement	as	ΔL,	and	the	wavelength	
as	λ,	then	the	maximum	strain	 maximum	slope 	is		As	 	ΔL/λ.	where	λ	 	λ/2π.		This	example	
presumes	that	we	are	working	with	a	displacement	of	 length.	 	Gravitational	waves	produce	a	
length	 modulation	 with	 offsetting	 effects	 in	 orthogonal	 dimensions	 such	 that	 there	 is	 no	
modulation	of	volume	and	no	modulation	of	the	rate	of	time.		Therefore,	gravitational	waves	are	
not	 subject	 to	 the	Planck	 length/time	 limitation	 that	 applies	 to	dipole	waves.	 	 As	 previously	
explained,	 dipole	 waves	 have	 a	maximum	 spatial	 displacement	 amplitude	 of	 ΔL	 	 Lp	 and	 a	
maximum	temporal	amplitude	of	ΔT	 	Tp.		Therefore,	the	maximum	strain	amplitude	 Amax 	of	a	
dipole	wave	is:		
	

Amax	 	Lp/λ	 	ω/ωp	 		 ħ ⁄ 	
	
Impedance of Spacetime from the Quantum Mechanical Model:			Now	that	we	are	equipped	
with	the	5	wave‐amplitude	equations,	the	dipole	wave	hypothesis	and	Amax	 	Lp/λ,	it	is	possible	
to	analyze	zero	point	energy	from	a	new	perspective.		If	zero	point	energy	is	really	dipole	wave	
fluctuations	 in	the	medium	of	spacetime,	 then	 it	should	be	possible	to	do	a	calculation	which	
supports	 this	 idea.	 	 For	 review,	 the	 quantum	 mechanical	 model	 of	 the	 spacetime	 field	 has	
spacetime	filled	with	zero	point	energy	 quantum	oscillators 	with	energy	of	E	 	½	ħω.	If	we	are	
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ignoring	 numerical	 factors	 near	 1,	 therefore	 we	 can	 consider	 each	 quantum	 oscillator	 as	
occupying	a	volume	V	 	λ3.		This	means	that	the	energy	density	of	the	quantum	mechanical	model	
of	zero	point	energy 	is	U	 	ħω/λ3	 	ħω4/c3.		Now	we	are	ready	to	calculate	the	impedance	of	
spacetime	obtained	from	a	combination	of	1 	zero	point	energy	with	energy	density	U	 	ħω4/c3;	
2 	dipole	waves	in	spacetime	with	maximum	amplitude	of	Amax	 	Lp/λ,	and	3 	the	previously	
obtained	equation	for	energy	density	U	 	A2ω2Z/c.		Rearranging	terms	we	have:		
	
Z	 	Uc/A2ω2		

Set:	U	 	ħω4/c3			and			A	 	Amax	 		 ħ ⁄ 	

Z	
ħ

ħ
	 	Zs										Success!	

	
Link between QM and GR Models of Spacetime:			This	is	a	fantastic	outcome!			We	took	the	
energy	density	of	zero	point	energy	and	combined	that	with	the	strain	amplitude	of	a	dipole	wave	
in	 the	 spacetime	 field	 and	 an	 equation	 from	 acoustics.	 	When	we	 solved	 for	 impedance	we	
obtained	c3/G.		This	is	the	same	impedance	of	spacetime	that	gravitational	waves	experience	as	
they	propagate	 through	 spacetime.	 	 To	me,	 this	 implies	 that	 the	 characteristics	 of	 spacetime	
obtained	from	general	relativity	agree	with	the	quantum	mechanical	model	of	the	spacetime	field	
filled	with	zero	point	energy	and	exhibiting	energy	density	of	10113	J/m3.		How	can	this	be?	The	
general	relativity	model	incorporates	cosmological	observation	and	sets	the	energy	density	of	
the	universe	at	about	10‐9	J/m3.				
	
Actually	this	is	an	erroneous	comparison.		The	quantum	mechanical	model	of	the	spacetime	field	
is	giving	the	homogeneous	internal	energy	density	of	spacetime	itself.		When	gravitational	waves	
propagate	through	the	spacetime	field,	they	are	interacting	with	this	internal	structure	of	the	
spacetime	 field	 and	 the	gravitational	waves	experience	 impedance	of	Zs	 	c3/G.	 	The	energy	
density	of	10‐9	J/m3	obtained	by	cosmological	observation	is	not	seeing	the	internal	structure	of	
spacetime	 with	 its	 tremendous	 energy	 density	 of	 dipole	 waves.	 	 Instead,	 the	 cosmological	
observations	are	just	looking	at	the	energy	density	of	the	fermions,	bosons	and	“dark	energy”	
discussed	 later .	 	This	 is	not	 the	same	 thing	as	 the	 internal	 structure	of	 the	spacetime	 field.		
Gravitational	waves	 can	 propagate	 through	 the	 spacetime	 field	 that	 contains	 no	 fermions	 or	
bosons	and	still	experience	Zs	 	c3/G.	Assuming	that	the	total	energy	density	of	the	universe	is	
10‐9	J/m3	is	like	looking	only	at	the	foam	on	the	surface	of	the	ocean	and	ignoring	all	the	water	
that	makes	up	the	ocean.												
	
The	 first	 part	 of	 reconciling	 the	 difference	 between	 the	 general	 relativity	 and	 quantum	
mechanical	models	of	 spacetime	 is	 to	view	 the	quantum	mechanical	model	as	describing	 the	
internal	structure	 the	microscopic	structure 	of	 the	spacetime	field.	 	Meanwhile,	 the	general	
relativity	model	is	describing	the	macroscopic	characteristics	of	spacetime	and	the	interactions	
with	matter.			
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If	 the	 spacetime	 field	 can	propagate	waves	 such	 as	 gravitational	waves	 or	dipole	waves ,	 it	
implies	that	the	spacetime	field	must	have	elasticity.		This	elasticity	requires	the	ability	to	store	
and	return	energy	as	the	wave	propagates.		The	medium	itself	must	have	energy	density.		The	
quantum	mechanical	model	of	space	is	filled	with	a	sea	of	energetic	fluctuations	 dipole	waves .		
If	 these	 are	 visualized	 as	 energetic	 waves	 in	 the	 spacetime	 field,	 then	 a	 new	 wave	 can	 be	
visualized	as	compressing	and	expanding	these	preexisting	waves.		If	this	new	wave	causes	the	
preexisting	waves	to	slightly	change	their	frequency	and	dimensions	 wavelength 	as	they	are	
being	compressed	and	expanded,	then	this	picture	provides	the	necessary	elasticity	and	energy	
storage	to	the	spacetime	field.			
	
This	might	sound	like	a	circular	argument	since	each	wave	contributes	to	the	elasticity	required	
by	all	other	waves.		What	about	the	“first”	wave?		This	subject	will	be	discussed	further	in	the	
two	cosmology	chapters	13	and	14.		However,	it	will	be	proposed	that	there	was	no	first	wave.		
The	spacetime	field	came	into	existence	already	filled	with	these	vacuum	fluctuations.		Energetic	
waves	are	simply	a	fundamental	property	of	the	spacetime	field	that	give	the	vacuum	properties	
such	as	εo,	µo,	c,	G,	Zs,	etc..		In	fact,	the	spacetime	field	does	not	have	waves;	the	spacetime	field	IS	
the	sea	of	vacuum	fluctuations	 waves 	described	by	the	quantum	mechanical	model.		Spacetime	
never	was	the	quiet	and	smooth	medium	assumed	by	general	relativity.		Therefore	there	never	
was	a	time	when	a	first	wave	was	introduced	into	a	quiet	spacetime.		This	wave	structure	with	
its	Planck	length/time	limitation	can	be	ignored	on	the	macroscopic	scale	but	spacetime	has	a	
quantum	mechanical	basis.		
	
The	task	is	not	to	find	a	mechanism	that	causes	cancelation	of	this	tremendous	energy	density.		
This	energy	density	is	really	present	in	the	spacetime	field	and	is	necessary	to	give	the	spacetime	
field	the	properties	described	by	general	relativity.	Instead	the	focus	needs	to	turn	to	finding	the	
reason	 that	 this	high	energy	density	 is	not	more	obvious	and	why	 it	does	not	 itself	generate	
gravity.		Is	there	something	about	the	energy	in	vacuum	fluctuations	that	makes	it	different	than	
the	energy	in	matter	and	photons?		This	question	will	be	answered	later.	
	
Energy Density of Spacetime Calculated from General Relativity:  Previously	we	showed	that	
it	 was	 possible	 to	 deduce	 the	 impedance	 of	 spacetime	 Zs	 	 c3/G	 from	 quantum	mechanical	
considerations,	zero	point	energy	and	an	equation	from	acoustics.		However,	now	we	will	show	
that	it	is	possible	to	calculate	the	energy	density	of	the	spacetime	field	using	just	equations	from	
general	 relativity	 and	 acoustics.	 Since	 general	 relativity	 and	 quantum	 mechanics	 are	 often	
considered	to	be	incompatible,	it	might	seem	unlikely	that	we	would	turn	to	general	relativity	to	
analyze	the	quantum	mechanical	energy	density	of	spacetime.			The	reason	for	suspecting	that	
this	might	be	a	fruitful	approach	is	that	gravitational	waves	are	like	sound	waves	propagating	in	
the	medium	of	spacetime.		It	is	well	known	that	analyzing	the	acoustic	properties	of	a	material	
can	reveal	 some	of	 its	physical	properties	of	 the	medium	 including	 its	density.	 	Gravitational	
waves	 are	 like	 sheer	 acoustic	 waves	 propagating	 in	 the	 medium	 of	 the	 spacetime	 field.		
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Therefore,	we	will	make	analogies	to	acoustics	and	attempt	to	calculate	the	energy	density	of	the	
spacetime	field.	The	following	equation	from	acoustics	relates	the	density	of	the	medium	ρ		to	
intensity	 ,	particle	displacement	Δx,	acoustic	speed	of	sound	ca,	and	angular	frequency	ω.		 
	 	k	ρω2ca	Δx.    
The	spacetime	field	does	not	have	rest	mass	like	fermions,	but	gravitational	waves	do	possess	
momentum.	As	previously	explained,	if	we	could	confine	gravitational	waves	in	a	hypothetical	
100%	reflecting	box,	then	the	gravitational	waves	would	exhibit	rest	mess.	The	box	is	merely	
turning	traveling	waves	into	standing	waves.	The	waves	themselves	possess	characteristics	that	
can	 be	 associated	 with	 not	 only	 energy	 density	 but	 also	 mass	 density	 under	 specialized	
conditions.	If	we	can	calculate	the	energy	density	of	the	spacetime	field	using	equations	from	
acoustics	 and	 gravitational	 waves,	 then	 this	 will	 be	 important	 not	 only	 for	 establishing	 the	
quantum	mechanical	properties	of	spacetime,	but	also	for	making	a	connection	between	general	
relativity	and	quantum	mechanics.				
	
Earlier	in	this	chapter,	an	equation	was	referenced	which	connects	the	intensity	 	of	gravitational	
waves	with	the	frequency	υ	and	the	strain	amplitude	A	of	the	gravitational	waves.	This	equation	
assumes	the	weak	field	limit	where	nonlinearities	are	eliminated	and	also	assumes	plane	waves.		
That	 equation	 is	 repeated	below.	 	 The	 amplitude	A	 of	 the	 gravitational	wave	 is	 given	 as	 the	
dimensionless	 strain	 amplitude	 maximum	 slope 	 of	 A	 	 ΔL/λ	 where	 ΔL	 is	 the	 maximum	
displacement	of	spacetime	and	the	reduced	wavelength	is:	λ	 	λ/2π	 	c/ω	.						
	

	 	 	υ2A2	 	kA2ω2 	 k 																

	
We	will	set	the	intensity	of	the	above	equation	equal	to	the	intensity	of	the	acoustic	equation	
	 	k	ρω2ca	Δx		and	solve	for	density	ρ.		To	achieve	this	we	will	set	the	acoustic	displacement	Δx	
equal	to	the	gravitational	wave	spatial	displacement	ΔL	and	set	acoustic	speed	equal	to	the	speed	
of	light	ca	 	c	.	
	

															set	 	 ,					 ,				λ	 	c/ω,					solve	for	ρ	and	U	

	 																													

	 	 					

				set:		λ	 	r	 radial	distance 	which	is	a	required	for	physical	interpretation	

Where:		 	is	the	interactive	density	of	spacetime		
Ui		is	the	interactive	energy	density	of	spacetime		
Up	 	c7/ħG2	 	10113	J/m3	 	Planck	energy	density		

ωp	 	 ħ⁄ 	 	1.85 1043	s‐1	 	Planck	angular	frequency	
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The	 terms	 “interactive	 density”	 and	 “interactive	 energy	 density”	 are	 necessary	 because	 the	
spacetime	field	does	not	have	density	and	energy	density	in	the	conventional	use	of	the	terms.		
When	we	think	of	the	density	of	an	acoustic	medium	such	as	water,	this	has	the	same	density	
even	if	the	acoustic	frequency	is	equal	to	zero.		The	spacetime	field	only	exhibits	an	“interactive	
density”	when	there	is	a	wave	in	spacetime	with	a	finite	frequency.		If	the	frequency	is	0,	then	
ρi	 	0	and	Ui	 	0.			
	
I	want	to	briefly	point	out	that	the	above	equations	derive	the	energy	density	of	spacetime	that	
must	be	there	in	order	for	gravitational	waves	to	propagate.		The	presence	of	this	energy	density	
and	the	frequency	dependence	was	obtained	from	a	gravitational	wave	equation	and	an	acoustic	
equation	with	no	assumptions	from	quantum	mechanics.		Proceeding	with	the	spacetime	field	
interpretation	of	these	equations,	a	gravitational	wave	is	oscillating	a	part	of	the	sea	of	dipole	
waves	that	forms	the	spacetime	field.		These	dipole	waves	are	slightly	compressed	and	expanded	
by	the	gravitational	wave,	so	they	reveal	the	energy	density	that	is	actually	interacting	with	the	
gravitational	wave.		The	dipole	waves	in	the	spacetime	field	are	primarily	at	Planck	frequency	
ωp	 	2 1043	s‐1.		
	
If	there	was	such	a	thing	as	a	Planck	frequency	gravitational	wave	filling	a	specific	volume,	then	
this	Planck	frequency	gravitational	wave	could	efficiently	interact	with	all	the	energy	density	in	
that	specific	volume	of	the	spacetime.	No	known	particles	could	generate	this	frequency,	but	this	
represents	 the	 theoretical	 limits	 of	 the	 properties	 of	 spacetime.	 	 For	 example,	 suppose	 we	
imagine	two	hypothetical	Planck	mass	particles	forming	a	rotating	binary	system.		They	would	
both	be	black	holes	with	radius	equal	to	Planck	length	Lp.	As	they	rotated	around	their	common	
center	of	mass,	they	would	generate	gravitational	waves.	If	they	were	close	to	merging,	then	the	
frequency	would	be	close	to	Planck	frequency.		To	explore	this	limiting	condition,	we	will	assume	

a	 gravitational	wave	with	 Planck	 angular	 frequency	 and	 substitute	ω	 	 ωp	 	 ħ⁄ 	 	 into	
Ui	 	c2ω2/G	.		This	gives	Planck	energy	density	Up	 	c7/ħG2	 	4.63 10113	J/m3.				
	
Before	proceeding,	we	should	pause	a	moment	and	realize	that	this	simple	calculation	has	just	
proven	 that	 general	 relativity	 requires	 that	 spacetime	must	 have	 Planck	 energy	 density	 for	
spacetime	to	be	able	to	propagate	gravitational	waves	at	Planck	frequency.	 	General	relativity	
also	 specifies	 how	waves	 less	 than	Planck	 frequency	 interact	with	 the	 energy	 density	 of	 the	
spacetime	 field.	We	normally	 think	of	general	 relativity	as	being	 incompatible	with	quantum	
mechanics.	 	However,	general	relativity	actually	supports	and	helps	to	quantify	the	proposed	
quantum	mechanical	model	of	the	spacetime	field.			
	
Interactive	Energy	Density	 from	Wave‐Amplitude	Equation:	 	 	 It	 is	 possible	 to	 gain	 a	 different	
perspective	on	the	interactive	energy	density	of	spacetime	by	finding	the	substitution	into	the	
equation	U	 	k	A2	ω2	Z/c		required	to	yield	Ui	 	c2ω2/G	.	
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A	 	1	
	
Therefore,	the	interactive	energy	density	is	generated	when	we	set	the	amplitude	term	A	equal	
to	 the	 largest	 possible	 value	 which	 is	 A	 	 1.	 	 Planck	 energy	 density	 is	 obtained	 when	 we	
substitute	both	the	largest	amplitude	A	 	1	and	the	highest	possible	frequency	ω	 	ωp.		At	any	
frequency	ω	less	than	Planck	frequency,	the	interactive	energy	density	Ui		represents	the	largest	
possible	 energy	 density	 at	 frequency	 ω	 assuming	 the	 medium	 has	 impedance	 equal	 to	 the	
impedance	of	spacetime:	Zs	 	c3/G.		To	generalize	the	interactive	energy	density	so	that	it	applies	
to	more	 than	 just	 gravitational	waves,	we	 have	 view	 the	 entire	 universe	 even	 particles 	 as	
entirely	wave‐based.		This	will	be	proven	in	the	rest	of	this	book.		The	significance	here	is	that	
we	can	extrapolate	from	the	interactive	energy	density	encountered	by	a	gravitational	wave	over	
distance	λ	to	the	interactive	energy	density	that	exists	over	a	spherical	volume	of	spacetime	with	
radius	r.		To	calculate	this,	we	can	substitute	λ	 	r		so	that	Ui	 	Fp/λ	becomes	Ui	 	Fp/r.		
	
Analysis	of	Waves	Less	than	Planck	Frequency:			At	frequencies	lower	than	Planck	frequency,	a	
gravitational	wave	experiences	a	mismatch	with	the	spacetime	field	that	primarily	has	waves	at	
Planck	frequency.		There	is	only	a	partial	coupling	to	the	energy	density	of	the	spacetime	field.		

The	scaling	of	the	lower	frequencies	is	given	by	the	equation			 .			A	numerical	
example	will	be	given	which	assumes	a	gravitational	wave	with	an	angular	frequency	of	1	s‐1	and	
reduced	 wavelength	 of	 3 108	 m.	 	 For	 this	 wave,	 the	 frequency	 mismatch	 factor	 is	

	 	 2.9 10‐87.	 	 Therefore,	 according	 to	 Ui	 	 Up	 	 the	 interactive	 energy	
density	encountered	by	this	frequency	is:	Ui	 	1.35 1027	J/m3	or	ρi	 	1.5 1010	kg/m3.		If	a	
gravitational	wave	with	angular	frequency	of	1	s‐1	is	assumed	to	have	intensity	 	 	1	w/m2,	then	
using	 the	 previously	 stated	 gravitational	wave	 equation,	 the	 oscillating	 spatial	 displacement	
produced	over	a	distance	equal	to	the	reduced	wavelength	is:	ΔL	 	4.7 10‐10	m.	I	will	not	go	
through	the	entire	numerical	example,	but	a	λ3	volume	has	an	 interactive	mass	of	4 1035	kg.	
Ignoring	numerical	constants,	the	energy	deposited	by	the	gravitational	wave	in	this	volume	is	E	
	 λ2/ω	 	9x1018	J.		If	you	calculate	the	distance	that	this	energy	will	move	a	4x1035	kg	mass	in	

time	1/ω,	it	turns	out	to	also	be	4.7x10‐10	m	 ignoring	numerical	constants	near	1 .		Therefore,	
the	displacement	of	spacetime	Δx		obtained	from	general	relativity	corresponds	to	the	distance	
4.7x10‐10	m 	that	the	interactive	mass	 or	interactive	energy 	can	be	moved	in	a	time	of	1/ω.				
	
The	dipole	waves	in	spacetime	contained	in	the	gravitational	wave	volume	cannot	be	physically	
moved	because	they	are	already	propagating	at	the	speed	of	light.		Instead,	the	gravitational	wave	
is	causing	a	slight	change	in	frequency	which	produces	a	shift	in	energy	equivalent	to	imparting	
kinetic	 energy	 to	 a	mass	 equal	 to	 the	 interactive	mass	 discussed.	 	Now	we	 can	 conceptually	
understand	 why	 gravitational	 waves	 are	 so	 hard	 to	 detect.	 	 They	 are	 interacting	 with	 the	
tremendously	large	energy	density	of	the	spacetime	field.		Even	with	a	large	frequency	mismatch,	
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the	gravitational	waves	are	still	changing	the	frequency	of	a	very	large	energy	of	dipole	waves	in	
spacetime.	
	
Connection to Black Holes:	 	 	So	far,	 the	discussion	has	centered	of	gravitational	waves	with	
angular	 frequency	 ω	 and	 reduced	 wavelength	 λ	 interacting	 with	 the	 energy	 density	 of	 the	
spacetime	field.	 	However,	for	general	use	the	energy	density	characteristics	of	the	spacetime	
field	should	really	be	expressed	using	the	substitution	λ	 	r,	where	r	is	the	radius	of	a	spherical	
volume	of	the	spacetime	field	rather	than	λ	or	ω	pertaining	to	gravitational	waves.		For	example,	
later	it	will	be	proposed	that	gravity	and	electric	fields	both	are	the	result	of	a	distortion	of	the	
spacetime	field.		Even	though	the	spacetime	field	has	Planck	energy	density,	this	implies	a	Planck	
length	 interaction	 volume.	 A	 larger	 radius	 volume	 interacts	 in	 such	 a	 way	 that	 there	 is	 a	
reduction	in	the	coupling	efficiency	similar	to	the	effect	described	for	gravitational	waves	when	
λ	 	Lp.		Therefore	the	equations	for	Ui	and	ρi	can	be	rewritten	using	radius	r	.		Therefore,	we	have:	
	

				 				and								
	
		

	
These	equations	should	be	compared	to	the	equations	for	a	black	hole	with	Schwarzschild	radius	
Rs	≡	Gm/c2	 previously	explained	as	definition	used	here	for	Schwarzschild	radius .		The	black	

hole	energy	density	is	designated	Ubh	and	the	density	of	a	black	hole	is	ρbh.																									
		

			and					
	
	

				
Therefore,	 it	 can	 be	 seen	 that	we	 have	 the	 same	 equations.	 	 This	 is	 another	 case	 of	 general	
relativity	confirming	the	energy	density	characteristics	of	the	spacetime	field.		The	picture	that	
will	emerge	is	that	black	holes	occur	when	the	energy	within	a	spherical	volume	of	radius	r	from	
fermions	and	bosons	equals	the	interactive	energy	of	dipole	waves	 when	Ubh	 	Ui 	
	
Another	insight	into	black	holes	can	be	gained	by	imaging	two	reflecting	hemispherical	shells	
confining	 photons	 at	 energy	 density	 of	 about	 3	 J/m3.	 	 This	 photon	 energy	 density	 striking	 a	
reflecting	 surface	 generates	 pressure	 of	 ℙ	 	 2	 newton/m2.	 	 To	 hold	 together	 the	 two	
hemispherical	shells	would	take	two	opposing	forces	of	2	newton	times	the	cross	sectional	area	
of	the	hemispheres.			Next	we	will	imagine	increasing	the	photon	energy	density	to	the	point	that	
it	meets	the	energy	density	of	a	black	hole	with	a	radius	equal	to	the	radius	of	the	hemispherical	
shells.		Ignoring	gravity,	the	force	required	to	hold	the	black	hole	size	spherical	shells	together	
can	 be	 easily	 calculated.	 	 For	 energy	 propagating	 at	 the	 speed	 of	 light,	 as	 previously	
demonstrated,	energy	density	equals	pressure	 U	 	kℙ	 .	 	The	equation	Ui	 	 	Fp/r2	 	becomes	
ℙ		 	Fp/Rs2.	Ignoring	constants	near	1,	Planck	force	must	be	supplied	by	the	spacetime	field	over	
area	Rs2	to	contain	the	internal	pressure	of	any	size	black	hole.		The	smallest	possible	black	hole	
consisting	of	photons	would	be	a	single	photon	with	Planck	energy	in	a	volume	Planck	length	in	
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radius.	A	confined	photon	of	 this	energy	density	would	generate	Planck	pressure	 	Fp/Lp2	 	
10113	N/m2	but	since	the	area	is	only	Lp2,	the	total	force	required	to	hold	the	two	hemispheres	
together	 is	Planck	 force	 	1044	N.	A	 super	massive	black	hole	such	as	 found	at	 the	 center	of	
galaxies	has	much	larger	radius	and	therefore	much	lower	energy	density.		However	even	a	super	
massive	back	hole	requires	the	same	amount	of	force	 Planck	force 	to	hold	the	shells	together.			
	
Normally	physicists	merely	accept	that	gravity	can	generate	 this	 force	and	they	do	not	 try	 to	
rationalize	 the	 physics	 that	 causes	 the	 various	 “laws”	 of	 physics.	 	 In	 the	 case	 of	 gravity,	 the	
spacetime	field	will	be	shown	to	apply	a	repulsive	force	 pressure 	which	we	interpret	as	the	
force	of	gravity.	 	The	maximum	force	which	 the	spacetime	 field	can	generate	 is	Planck	 force,	
therefore	all	black	holes,	regardless	of	size,	require	this	force	to	confine	the	internal	energy.			
	
Why Does the Energy Density of the Spacetime Field Not Collapse into a Black Hole?			The	
energy	 in	 the	spacetime	 field	does	not	collapse	and	become	black	holes	because	 this	 form	of	
energy	is	the	essence	of	spacetime	 vacuum 	itself.		These	waves	form	the	background	energetic	
“noise”	of	the	universe.		Some	quantum	mechanical	calculations	require	“renormalization”	which	
assumes	that	only	differences	in	energy	can	be	measured.	Therefore	the	background	energetic	
fluctuations	which	only	modulate	distance	by	 Lp	and	the	rate	of	time	by	 Tp	can	usually	be	
ignored.	However,	when	we	are	working	on	the	scale	which	characterizes	vacuum	energy,	then	
these	 small	 amplitude	waves	must	 be	 acknowledged	 and	quantified.	 	 These	 small	 amplitude	
waves	are	the	building	blocks	of	everything	in	the	universe.		They	are	ultimately	responsible	for	
the	uncertainty	principle	and	they	give	spacetime	its	properties	of	c,	G,	ħ,	and	εo.				
	
The	standard	model	has	17	named	particles	with	a	total	of	61	particle	variations	 color	charge,	
antimatter,	 etc. .	 	 Each	 of	 the	 fundamental	 particles	 is	 described	 as	 an	 “excitation”	 of	 its	
associated	field.		Therefore,	according	to	the	standard	model	there	are	at	least	17	overlapping	
fields,	each	with	its	associated	energy	density.		For	example,	the	Higgs	field	has	been	estimated	
to	have	energy	density	of	1046	J/m3.		Therefore,	even	the	standard	model	has	energetic	“fields”	
which	do	not	 collapse	 into	 black	holes.	 The	 spacetime‐based	model	merely	 replaces	 the	17 	
separate	fields	with	unknown	structure	with	one	“spacetime	field”	with	quantifiable	structural	
properties.	Gravitational	wave	equations	have	been	shown	to	imply	the	existence	of	this	vacuum	
energy	 density.	 	 Zero	 point	 energy	 has	 long	 characterized	 the	 vacuum	 as	 being	 filled	 with	
“harmonic	 oscillators”	 with	 energy	 of	 E	 	 ½	 ħω	 and	 energy	 density	 of	 U	 	 kħω/λ3.	 	 The	
spacetime‐based	model	 of	 the	 universe	 characterizes	 the	 vacuum	energy	 as	 dipole	waves	 in	
spacetime	which	lack	angular	momentum.		This	homogeneous	energy	density	is	responsible	for	
the	properties	of	the	quantum	mechanical	vacuum.			
	
Curvature	of	the	spacetime	field	occurs	when	energy	possessing	quantized	angular	momentum	
fermions	and	bosons 	is	added	to	this	homogeneous	energy	density.		Black	holes	with	radius	r	
are	formed	when	the	energy	density	of	fermions	and	bosons	 quantized	angular	momentum 	
equals	the	interactive	energy	density	of	a	spherical	volume	with	radius	r	 when	Ui	 	Ubh .			In	
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this	 case	 r	 	 Rs	 and	 we	 need	 to	 measure	 the	 radius	 by	 the	 circumferential	 radius	 method	
previously	explained.	 Stated	another	way,	 the	energy	density	of	 the	 spacetime	 field	does	not	
cause	black	holes,	it	forms	the	homogeneous	vacuum	with	no	curvature.		Introducing	fermions	
and	bosons	into	this	homogeneous	field	distorts	this	uniform	background	energy	density.		When	
this	distorting	energy	equals	the	interactive	energy	density	of	the	spacetime	field,	then	this	is	the	
limiting	condition.		This	“contamination”	distorts	the	spacetime	field	to	the	extent	that	it	forms	a	
black	hole.		
 


