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Appendix A
Examination of the Similarities

Between Confined Light and a Particle
Chris Ray

§ Confined Light

This appendix will investigate a photon confined in per-
fectly reflecting resonator. It will be shown that such a con-
fined photon exhibits many particle-like properties including
rest mass, relativistic contraction and a moving wave pattern
that is similar to de Broglie waves.

We will begin by examining a standing wave in a res-
onator as viewed from a frame of reference in which the res-
onator is moving.

§ First View: Counter Propagating Waves

A 1-D standing wave can be modeled as a superposition
of right and left moving plane waves.

ψ = ei(k0x−ω0t) + ei(−k0x−ω0t)

where k0 = ω0/c.
In the frame of reference where the resonator is at rest

there are standing waves in the resonator set up by the
counter propagating waves.

ψ = ei(k0x−ω0t) + ei(−k0x−ω0t)

= (eik0x + e−ikox)e−iωot

= 2 cos(k0x)e−iωot

In the frame of reference where the resonator is moving
to the right with velocity v, we have counter propagating
waves with different frequencies, because the waves have been
doppler shifted: ωR = γ(1+β)ω0 and ωL = γ(1−β)ω0, where
β = v/c and γ = 1/

√
1− β2. The wave then is given by

ψ = ei(kRx−ωRt) + ei(kLx−ωLt)

where kL = −ωL/c and kR = ωR/c.
Define ω+ and ω− as follows

ω+ ≡ 1
2 (ωR + ωL)

= 1
2 (γ(1 + β)ω0 + γ(1− β)ω0)

= γω0

ω− ≡ 1
2 (ωR − ωL)

= 1
2 (γ(1 + β)ω0 − γ(1− β)ω0)

= γβω0

Now define k+ and k− in a similar way.

k+ ≡ 1
2 (kR + kL) =

1
2c

(ωR − ωL) =
ω−
c

= γβ
ω0

c

k− ≡ 1
2 (kR − kL) =

1
2c

(ωR + ωL) =
ω+

c
= γ

ω0

c

Note that
kL = k+ − k−
kR = k+ + k−

AND
ωL = ω+ − ω−
ωR = ω+ + ω−

Now we can write the wave as
ψ = ei(kLx−ωLt) + ei(kRx−ωRt)

= ei((k+−k−)x−(ω+−ω−)t) + ei((k++k−)x−(ω++ω−)t)

=
[
e−i(k− x−ω− t) + ei(k− x−ω− t)

]
ei(k+x−ω+t)

= 2 cos(k− x− ω− t)ei(k+x−ω+t)

The imaginary part of this is graphed below (in red) for
β = 0.085 at t = 0.

This is a product of two traveling waves. We can com-
pute wavelengths and velocities of these two parts.

v+ =
ω+

k+
=

ω+

ω−/c
=
c

β
=
c2

v

v− =
ω−
k−

=
ω−
ω+/c

= βc = v

λ+ =
2π
k+

=
2πc
γβω0

=
λ0

γβ

λ− =
2π
k−

=
2πc
γω0

=
λ0

γ

where λ0 = 2πc
ω0

is the wavelength in the rest frame of the
resonator.

First let us consider the “-” part of the wave. First we
note that this part of the wave moves with the velocity of
the resonator. Second we see that the wavelength has shrunk
by a factor of γ relative to the wavelength in the rest frame.
Thus the same number of wavelengths will fit in the similarly
length-contracted resonator. Thus the cos() standing wave
pattern has shrunk to fit the moving resonator and moves
with the resonator.

Now consider the “+” part of the wave. This part of
the wave moves with a velocity c2/v. Which is the same as
the phase velocity of a de Broglie plane wave for a massive
particle: ψd = eipx/h̄e−iEt/h̄.

−→ vphase =
E/h̄

p/h̄
=
E

p
=
γmc2

γmv
=
c2

v

We can also see that the wavelength for the de Broglie plane
wave: λd = 2πh̄

p = 2πh̄
Ev/c2 = 2πh̄c

Eβ = 2πh̄c
γE0β

is also the same, if
we assume that there is a single photon in the resonator and
thus that the energy in the rest frame is E0 = h̄ω0. Since

λ+ =
2π
k+

=
2πc
γβω0

=
2πh̄c
γβE0

Thus we see that the “+” part of the resonator wave has the
wavelength and phase velocity of a de Broglie plane wave of
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a massive particle with a rest energy equal to the energy of
the photon in the resonator.

§ General From

In the rest frame of a general standing wave the ampli-
tude of the wave is given by

ψ′(x′, y′, z′, t′) = f(x′, y′, z′)e−iω0t
′

Where it is understood that the physical wave is the real part
of the complex wave ψ. Note that the amplitude function f()
is a real valued function.

We will assume that the energy of this wave is
E0 = h̄ω0.

We will also consider this energy in the rest frame of the
wave, divided by c2, to be the mass of the system:

m ≡ E0

c2
=
h̄ω0

c2
.

Since the wave is a standing wave the total momentum is
zero: p0 = 0.

In a General Frame

We want to know what the standing wave will look like
in a frame in which the rest frame of the standing wave is
moving in the positive x direction, with a velocity v. We can
find this, if we assuming that the amplitude of the wave at
a given space time point is the same in each frame, so that

ψ(x, y, z, t) = ψ′(x′, y′, z′, t′)
with x′ and t′ related to x and t via the following Lorentz
transformation, while y′ = y and z′ = z.[

ct′

x′

]
=
[

γ −γβ
−γβ γ

] [
ct
x

]
=
[
γ(ct− βx)
γ(x− βct)

]
So that

ψ(x, y, z, t) = ψ′(x′, y′, z′, t′)
= ψ′ ( γ(x−βct), y, z, γ(ct−βx)/c )

= f(γ(x− βct), y, z)e−iω0γ(ct−βx)/c

= f(γ(x− vt), y, z)eiω0γβx/ce−iω0γt

= f(γ(x− vt), y, z)ei(kx−ωt)

In the last line we used the following definition.
ω ≡ γω0

k ≡ γβω0/c

As was the case with the counter propagating plane waves,
the wave function in the general frame is manifestly in the
form of a plane wave (ei(kx−ωt)), with wavelength and veloc-
ity of a de Broglie wave, modulated with an standing wave
pattern (f) that moves in the positive x direction with ve-
locity v. In addition the characteristic length of the standing
wave pattern has been length contracted in the x direction by
the factor γ compared with the length in the rest frame. For
examples suppose that there are two features in the standing
wave, one at the position x′ = a and the other at the position
x′ = b. The distance between these features is L = b−a. The
features could for example be two null points in the standing
wave. These two features will also exist in the general frame,

though they are moving. Let xa and xb the location of these
features, then we know that

γ(xa − vt) = a

γ(xb − vt) = b

Solving these two equations for xb − xa we find that

L′ = xb − xa =
b− a
γ

=
L

γ

So the distance between the features has been contracted by
a factor γ.

We also see, as in the case of counter propagating waves,
that one part of the wave moves with the velocity v and the
other moves with the velocity

ω

k
=

γω0

γβω0/c
=
c

β
=
c2

v

Energy and Momentum

We can also find the energy and momentum in the new
frame, using the relativistic transformation of energy and
momentum. [

E
pc

]
=
[
γ γβ
γβ γ

] [
E′

p′c

]
=
[
γ γβ
γβ γ

] [
E0

p0c

]
=
[
γ γβ
γβ γ

] [
h̄ω0

0

]
=
[
γh̄ω0

γβh̄ω0

]
=
[
h̄ω
h̄kc

]
We see that the frequency and wavenumber of the plane wave
part of the wave are proportional to the energy and momen-
tum of the wave.

E = h̄ω

and
p = h̄k

in accordance with de Broglie waves.
Using the definition m = h̄ω0/c

2, we consider the mass
of the light in our resonator to be equal to the energy in the
rest frame divided by c2. Thus we can rewrite the above as.

E = γmc2

and
p = γmv
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