Appendix A
 Examination of the Similarities Between Confined Light and a Particle Chris Ray

Confined Light

This appendix will investigate a photon confined in perfectly reflecting resonator. It will be shown that such a confined photon exhibits many particle-like properties including rest mass, relativistic contraction and a moving wave pattern that is similar to de Broglie waves.

We will begin by examining a standing wave in a resonator as viewed from a frame of reference in which the resonator is moving.

§ First View: Counter Propagating Waves

A 1-D standing wave can be modeled as a superposition of right and left moving plane waves.

$$
\psi=e^{i\left(k_{0} x-\omega_{0} t\right)}+e^{i\left(-k_{0} x-\omega_{0} t\right)}
$$

where $k_{0}=\omega_{0} / c$.
In the frame of reference where the resonator is at rest there are standing waves in the resonator set up by the counter propagating waves.

$$
\begin{aligned}
\psi & =e^{i\left(k_{0} x-\omega_{0} t\right)}+e^{i\left(-k_{0} x-\omega_{0} t\right)} \\
& =\left(e^{i k_{0} x}+e^{-i k_{o} x}\right) e^{-i \omega_{o} t} \\
& =2 \cos \left(k_{0} x\right) e^{-i \omega_{o} t}
\end{aligned}
$$

In the frame of reference where the resonator is moving to the right with velocity v, we have counter propagating waves with different frequencies, because the waves have been doppler shifted: $\omega_{R}=\gamma(1+\beta) \omega_{0}$ and $\omega_{L}=\gamma(1-\beta) \omega_{0}$, where $\beta=v / c$ and $\gamma=1 / \sqrt{1-\beta^{2}}$. The wave then is given by

$$
\psi=e^{i\left(k_{R} x-\omega_{R} t\right)}+e^{i\left(k_{L} x-\omega_{L} t\right)}
$$

where $k_{L}=-\omega_{L} / c$ and $k_{R}=\omega_{R} / c$.
Define ω_{+}and ω_{-}as follows

$$
\begin{aligned}
\omega_{+} & \equiv \frac{1}{2}\left(\omega_{R}+\omega_{L}\right) \\
& =\frac{1}{2}\left(\gamma(1+\beta) \omega_{0}+\gamma(1-\beta) \omega_{0}\right) \\
& =\gamma \omega_{0} \\
\omega_{-} & \equiv \frac{1}{2}\left(\omega_{R}-\omega_{L}\right) \\
& =\frac{1}{2}\left(\gamma(1+\beta) \omega_{0}-\gamma(1-\beta) \omega_{0}\right) \\
& =\gamma \beta \omega_{0}
\end{aligned}
$$

Now define k_{+}and k_{-}in a similar way.

$$
\begin{aligned}
& k_{+} \equiv \frac{1}{2}\left(k_{R}+k_{L}\right)=\frac{1}{2 c}\left(\omega_{R}-\omega_{L}\right)=\frac{\omega_{-}}{c}=\gamma \beta \frac{\omega_{0}}{c} \\
& k_{-} \equiv \frac{1}{2}\left(k_{R}-k_{L}\right)=\frac{1}{2 c}\left(\omega_{R}+\omega_{L}\right)=\frac{\omega_{+}}{c}=\gamma \frac{\omega_{0}}{c}
\end{aligned}
$$

Note that

$$
\begin{aligned}
& k_{L}=k_{+}-k_{-} \\
& k_{R}=k_{+}+k_{-}
\end{aligned} \quad \text { AND } \quad \begin{aligned}
& \omega_{L}=\omega_{+}-\omega_{-} \\
& \omega_{R}=\omega_{+}+\omega_{-}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now we can write the wave as } \\
& \begin{aligned}
\psi & =e^{i\left(k_{L} x-\omega_{L} t\right)}+e^{i\left(k_{R} x-\omega_{R} t\right)} \\
& =e^{i\left(\left(k_{+}-k_{-}\right) x-\left(\omega_{+}-\omega_{-}\right) t\right)}+e^{i\left(\left(k_{+}+k_{-}\right) x-\left(\omega_{+}+\omega_{-}\right) t\right)} \\
& =\left[e^{-i\left(k_{-} x-\omega_{-} t\right)}+e^{i\left(k_{-} x-\omega_{-} t\right)}\right] e^{i\left(k_{+} x-\omega_{+} t\right)} \\
& =2 \cos \left(k_{-} x-\omega_{-} t\right) e^{i\left(k_{+} x-\omega_{+} t\right)}
\end{aligned}
\end{aligned}
$$

The imaginary part of this is graphed below (in red) for $\beta=0.085$ at $t=0$.

This is a product of two traveling waves. We can compute wavelengths and velocities of these two parts.

$$
\begin{gathered}
v_{+}=\frac{\omega_{+}}{k_{+}}=\frac{\omega_{+}}{\omega_{-} / c}=\frac{c}{\beta}=\frac{c^{2}}{v} \\
v_{-}=\frac{\omega_{-}}{k_{-}}=\frac{\omega_{-}}{\omega_{+} / c}=\beta c=v \\
\lambda_{+}=\frac{2 \pi}{k_{+}}=\frac{2 \pi c}{\gamma \beta \omega_{0}}=\frac{\lambda_{0}}{\gamma \beta} \\
\lambda_{-}=\frac{2 \pi}{k_{-}}=\frac{2 \pi c}{\gamma \omega_{0}}=\frac{\lambda_{0}}{\gamma}
\end{gathered}
$$

where $\lambda_{0}=\frac{2 \pi c}{\omega_{0}}$ is the wavelength in the rest frame of the resonator.

First let us consider the "-" part of the wave. First we note that this part of the wave moves with the velocity of the resonator. Second we see that the wavelength has shrunk by a factor of γ relative to the wavelength in the rest frame. Thus the same number of wavelengths will fit in the similarly length-contracted resonator. Thus the $\cos ()$ standing wave pattern has shrunk to fit the moving resonator and moves with the resonator.

Now consider the "+" part of the wave. This part of the wave moves with a velocity c^{2} / v. Which is the same as the phase velocity of a de Broglie plane wave for a massive particle: $\psi_{d}=e^{i p x / \hbar} e^{-i E t / \hbar}$.

$$
\longrightarrow v_{\text {phase }}=\frac{E / \hbar}{p / \hbar}=\frac{E}{p}=\frac{\gamma m c^{2}}{\gamma m v}=\frac{c^{2}}{v}
$$

We can also see that the wavelength for the de Broglie plane wave: $\lambda_{d}=\frac{2 \pi \hbar}{p}=\frac{2 \pi \hbar}{E v / c^{2}}=\frac{2 \pi \hbar c}{E \beta}=\frac{2 \pi \hbar c}{\gamma E_{0} \beta}$ is also the same, if we assume that there is a single photon in the resonator and thus that the energy in the rest frame is $E_{0}=\hbar \omega_{0}$. Since

$$
\lambda_{+}=\frac{2 \pi}{k_{+}}=\frac{2 \pi c}{\gamma \beta \omega_{0}}=\frac{2 \pi \hbar c}{\gamma \beta E_{0}}
$$

Thus we see that the "+" part of the resonator wave has the wavelength and phase velocity of a de Broglie plane wave of
a massive particle with a rest energy equal to the energy of the photon in the resonator.

§ General From

In the rest frame of a general standing wave the amplitude of the wave is given by

$$
\psi^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)=f\left(x^{\prime}, y^{\prime}, z^{\prime}\right) e^{-i \omega_{0} t^{\prime}}
$$

Where it is understood that the physical wave is the real part of the complex wave ψ. Note that the amplitude function $f()$ is a real valued function.

We will assume that the energy of this wave is

$$
E_{0}=\hbar \omega_{0}
$$

We will also consider this energy in the rest frame of the wave, divided by c^{2}, to be the mass of the system:

$$
m \equiv \frac{E_{0}}{c^{2}}=\frac{\hbar \omega_{0}}{c^{2}}
$$

Since the wave is a standing wave the total momentum is zero: $p_{0}=0$.

In a General Frame

We want to know what the standing wave will look like in a frame in which the rest frame of the standing wave is moving in the positive x direction, with a velocity v. We can find this, if we assuming that the amplitude of the wave at a given space time point is the same in each frame, so that

$$
\psi(x, y, z, t)=\psi^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)
$$

with x^{\prime} and t^{\prime} related to x and t via the following Lorentz transformation, while $y^{\prime}=y$ and $z^{\prime}=z$.

$$
\left[\begin{array}{c}
c t^{\prime} \\
x^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\gamma & -\gamma \beta \\
-\gamma \beta & \gamma
\end{array}\right]\left[\begin{array}{c}
c t \\
x
\end{array}\right]=\left[\begin{array}{l}
\gamma(c t-\beta x) \\
\gamma(x-\beta c t)
\end{array}\right]
$$

So that

$$
\begin{aligned}
\psi(x, y, z, t) & =\psi^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right) \\
& =\psi^{\prime}(\gamma(x-\beta c t), y, z, \gamma(c t-\beta x) / c) \\
& =f(\gamma(x-\beta c t), y, z) e^{-i \omega_{0} \gamma(c t-\beta x) / c} \\
& =f(\gamma(x-v t), y, z) e^{i \omega_{0} \gamma \beta x / c} e^{-i \omega_{0} \gamma t} \\
& =f(\gamma(x-v t), y, z) e^{i(k x-\omega t)}
\end{aligned}
$$

In the last line we used the following definition.

$$
\begin{aligned}
\omega & \equiv \gamma \omega_{0} \\
k & \equiv \gamma \beta \omega_{0} / c
\end{aligned}
$$

As was the case with the counter propagating plane waves, the wave function in the general frame is manifestly in the form of a plane wave $\left(e^{i(k x-\omega t)}\right)$, with wavelength and velocity of a de Broglie wave, modulated with an standing wave pattern (f) that moves in the positive x direction with velocity v. In addition the characteristic length of the standing wave pattern has been length contracted in the x direction by the factor γ compared with the length in the rest frame. For examples suppose that there are two features in the standing wave, one at the position $x^{\prime}=a$ and the other at the position $x^{\prime}=b$. The distance between these features is $L=b-a$. The features could for example be two null points in the standing wave. These two features will also exist in the general frame,
though they are moving. Let x_{a} and x_{b} the location of these features, then we know that

$$
\begin{aligned}
& \gamma\left(x_{a}-v t\right)=a \\
& \gamma\left(x_{b}-v t\right)=b
\end{aligned}
$$

Solving these two equations for $x_{b}-x_{a}$ we find that

$$
L^{\prime}=x_{b}-x_{a}=\frac{b-a}{\gamma}=\frac{L}{\gamma}
$$

So the distance between the features has been contracted by a factor γ.

We also see, as in the case of counter propagating waves, that one part of the wave moves with the velocity v and the other moves with the velocity

$$
\frac{\omega}{k}=\frac{\gamma \omega_{0}}{\gamma \beta \omega_{0} / c}=\frac{c}{\beta}=\frac{c^{2}}{v}
$$

Energy and Momentum

We can also find the energy and momentum in the new frame, using the relativistic transformation of energy and momentum.

$$
\begin{aligned}
{\left[\begin{array}{c}
E \\
p c
\end{array}\right] } & =\left[\begin{array}{cc}
\gamma & \gamma \beta \\
\gamma \beta & \gamma
\end{array}\right]\left[\begin{array}{c}
E^{\prime} \\
p^{\prime} c
\end{array}\right] \\
& =\left[\begin{array}{cc}
\gamma & \gamma \beta \\
\gamma \beta & \gamma
\end{array}\right]\left[\begin{array}{c}
E_{0} \\
p_{0} c
\end{array}\right] \\
& =\left[\begin{array}{cc}
\gamma & \gamma \beta \\
\gamma \beta & \gamma
\end{array}\right]\left[\begin{array}{c}
\hbar \omega_{0} \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\gamma \hbar \omega_{0} \\
\gamma \beta \hbar \omega_{0}
\end{array}\right] \\
& =\left[\begin{array}{c}
\hbar \omega \\
\hbar k c
\end{array}\right]
\end{aligned}
$$

We see that the frequency and wavenumber of the plane wave part of the wave are proportional to the energy and momentum of the wave.

$$
E=\hbar \omega
$$

and

$$
p=\hbar k
$$

in accordance with de Broglie waves.
Using the definition $m=\hbar \omega_{0} / c^{2}$, we consider the mass of the light in our resonator to be equal to the energy in the rest frame divided by c^{2}. Thus we can rewrite the above as.

$$
E=\gamma m c^{2}
$$

and

$$
p=\gamma m v
$$

