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Abstract

We attempt to show the fundamental explanatory nature of the topological description of solitons, instantons
and the Aharonov-Bohm effect — and hence electromagnetism. In the case of electromagnetism we have shown
elsewhere that, given a Yang-Mills description, electromagnetism can, and should be extended, in accordance with
the topology with which the electromagnetic fields are associated. This approach has major implications.

1. Introduction

Topology addresses those properties, often
associated with invariant qualities, which are
not altered by continuous deformations. Objects
are topologically equivalent, or homeomorphic,
if one object can be changed into another by
bending, stretching, twisting, or any other continuous
deformation or mapping. Continuous deformations
are allowed, but prohibited are foldings which
bring formerly distant points into direct contact
or overlap, and cutting – unless followed by a
regluing, reestablishing the preexisting relationships
of continuity.

The continuous deformations of topology are
commonly described in differential equation form and
the quantities conserved under the transformations
commonly described by differential equations
exemplifying an algebra describing operations which
preserve that algebra. Evariste Galois (1811–1832)
first gave the criteria that an algebraic equation must
satisfy in order to be solvable by radicals. This branch
of mathematics came to be known as Galois or group

theory.

Beginning with G.W. Leibniz in the 17th, L.
Euler in the 18th, B. Reimann, J.B. Listing and
A.F. Möbius in the 19th and H. Poincaré in the 20th
centuries, “ analysis situs” (Riemann) or “ topology”
(Listing) has been used to provide answers to
questions concerning what is most fundamental in
physical explanation. That question itself implies the
question concerning what mathematical structures
one uses with confidence to adequately “ paint” or
describe physical models built from empirical facts.
For example, differential equations of motion cannot
be fundamental, because they are dependent on
boundary conditions which must be justified – usually
by group theoretical considerations. Perhaps, then,
group theory is fundamental.

Here we mean the kind of groups addressed in Yang-
Mills theory, which are continuous groups (as opposed
to discrete groups). Unlike discrete groups, continuous
groups contain an infinite number of elements and can
be differentiable or analytic [1].

Group theory certainly offers an austere shorthand
for fundamental transformation rules. But it appears
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to the present writer that the final judge of whether
a mathematical group structure can, or cannot, be
applied to a physical situation is the topology of that
physical situation. Topology dictates and justifies the
group transformations.

So for the present writer, the answer to the question
of what is the most fundamental physical description
is that it is a description of the topology of the
situation. With the topology known, the group theory
description is justified and equations of motion can
then also be justified and defined in specific differential
equation form. If there is a requirement for an
understanding more basic than the topology of the
situation, then all that is left is verbal description
of visual images. So we commence an examination
of electromagnetism under the assumption that
topology defines group transformations and the group
transformation rules justify the algebra underlying the
differential equations of motion.

Differential equations, or a set of differential
equations, describe a system and its evolution. Group
symmetry principles summarize both invariances
and the laws of nature independent of a system’s
specific dynamics. It is necessary that the symmetry
transformations be continuous or specified by a set
of parameters which can be varied continuously. The
symmetry of continuous transformations leads to
conservation laws.

There are a variety of special methods used to
solve ordinary differential equations. It was Sophus
Lie (1842–1899) in the 19th century who showed
that all the methods are special cases of integration
procedures which are based on the invariance of
a differential equation under a continuous group
of symmetries. These groups became known as Lie
groups.

If a topological group is a group and also a
topological space in which group operations are
continuous, then Lie groups are topological groups
which are also analytic manifolds on which the group
operations are analytic.

In the case of Lie algebras, the parameters of a
product are analytic functions of the parameters of
each factor in the product. For example, L(γ) =
L(α)L(β) where γ = f(α, β). This guarantees
that the group is differentiable. The Lie groups
used in Yang-Mills theory are compact groups,
i.e., the parameters range over a closed interval.
A symmetry group of a system of differential
equations is a group which transforms solutions of
the system to other solutions [2]. In other words,
there is an invariance of a differential equation
under a transformation of independent and dependent
variables. This invariance results in a diffeomorphism
on the space of independent and dependent variables,
permitting the mapping of solutions to solutions [3].

The relationship was made more explicit by
Emmy (Amalie) Noether (1882–1935) in theorems

now known as Noether’s theorems [4], which related
symmetry groups of a variational integral to properties
of its associated Euler-Lagrange equations.

The most important consequences of this
relationship are that
(i) conservation of energy arises from invariance

under a group of time translations;

(ii) conservation of linear momentum arises from
invariance under (spatial) translational groups;

(iii) conservation of angular momentum arises from
invariance under (spatial) rotational groups;

(iv) conservation of charge arises from invariance
under change of phase of the wave function of
charged particles.

Conservation and group symmetry laws have been
vastly extended to other systems of equations, e.g.,
the standard model of modern high energy physics,
and also, of importance to the present interest:
soliton equations. For example, the Korteweg de Vries
“ soliton” equation [5] yields a symmetry algebra
spanned by the four vector fields of

(i) space translation;

(ii) time translation;

(iii) Galilean translation;

(iv) scaling.

For some time, the present writer has been engaged
in showing that the space-time topology defines
electromagnetic field equations [6] — whether the
fields be of force or of phase. That is to say, the
premise of this enterprise is that a set of field
equations are only valid with respect to a set defined
topological description of the physical situation. In
particular, the writer has addressed demonstrating
that the Aµ potentials, µ = 0, 1, 2, 3, are not just
a mathematical convenience, but — in certain well-
defined situations — are measurable, i.e., physical.
Those situations in which the Aµ potentials are
measurable possess a topology, the transformation
rules of which are describable by the SU(2) group
[2] or higher-order groups; and those situations in
which the Aµ potentials are not measurable possess
a topology, the transformation rules of which are
describable by the U(1) group [2].

Historically, electromagnetic theory was developed
for situations described by the U(1) group. The
dynamic equations describing the transformations
and interrelationships of the force field are the well
known Maxwell equations, and the group algebra
underlying these equations is U(1). There was a
need to extend these equations to describe SU(2)
situations and to derive equations whose underlying
algebra is SU(2) These two formulations are shown
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Table 1.

U(1)
Symmetry Form

(Traditional Maxwell
Equations)

SU(2) Symmetry Form

Gauss’ Law ∇ • E = J0 ∇ • E = J0 − iq(A • E − E • A)

Ampere’s Law
∂E

∂t
−∇× B − J = 0

∂E

∂t
−∇× B − J + iq[A0,E] − iq(A × B − B × A) = 0

∇ • B = 0 ∇ • B + iq(A • B − B • A) = 0

Faraday’s Law ∇× E +
∂B

∂t
= 0 ∇× E +

∂B

∂t
+ iq[A0,B] = iq(A × E − E × A) = 0

in Table 1. Table 2 shows the electric charge density,
ρe, the magnetic charge density, ρm, the electric
current density, ge, the magnetic current density,
gm, the electric conductivity, σ, and the magnetic
conductivity, s.

In the following sections, four topics are addressed:
The mathematical entities, or waves, called solitons;
the mathematical entities called instantons; a beam
— an electromagnetic wave — which is polarization
modulated over a set sampling interval ; and the
Aharonov-Bohm effect. Our intention is to show
that these entities, waves or effects, can only be
adequately characterized and differentiated, and thus
understood, by using topological characterizations.
Once characterized, the way becomes open for control
or engineering of these entities, waves and effects.

2. Solitons

A soliton is a solitary wave which preserves its
shape and speed in a collision with another solitary
wave [7,8]

Soliton solutions to differential equations require
complete integrability and integrable systems conserve
geometric features related to symmetry. Unlike
the equations of motion for conventional Maxwell
theory, which are solutions of U(1) symmetry
systems, solitons are solutions of SU(2) symmetry
systems. These notions of group symmetry are more
fundamental than differential equation descriptions.
Therefore, although a complete exposition is beyond
the scope of the present review, we develop some
basic concepts in order to place differential equation
descriptions within the context of group theory.

Within this context, ordinary differential equations
are viewed as vector fields on manifolds or
configuration spaces [2]. For example, Newton’s
equations are second order differential equations
describing smooth curves on Riemannian manifolds.
Noether’s theorem [4] states that a diffeomorphism,
φ, of a Riemannian manifold, C, indices a
diffeomorphism, Dφ, of its tangent bundle, TC.

If φ is a symmetry of Newton’s equations, then Dφ
preserves the Lagrangian, i.e.,

L ◦ Dφ = L .

As opposed to equations of motion in conventional
Maxwell theory, soliton flows are Hamiltonian
flows. Such Hamiltonian functions define symplectic
structures for which there is an absence of local
invariants but an infinite dimensional group of
diffeomorphisms which preserve global properties.
Symplectic topology is the study of the global
phenomena of symplectic symmetry. Symplectic
symmetry structures have no local invariants. This
is a subfield of topology, for example [9]. In the
case of solitons, the global properties are those
permitting the matching of the nonlinear and
dispersive characteristics of the medium through
which the wave moves.

In order to achieve this match, two linear operators,
L and A, are postulated associated with a partial
differential equation (PDE). The two linear operators
are known as the Lax pair. The operator L is defined
by:

L =
∂2

∂x2
+ u(x, t),

with a related eigenproblem:

Lψ + λψ = 0. (1)
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Table 2.

U(1)
Symmetry Form

(Traditional Maxwell
Equations)

SU(2) Symmetry Form

ρe = J0 ρe = J0 − iq(A • E − E • A) = J0 + qJz

ρm = 0 ρm = −iq(A • B − B • A) = −iqJy

ge = J ge = iq[A0,E] − iq(A × B − B × A) + J = iq[A0,E] − iqJx + J

gm = 0 gm = iq[A0,B] − iq(A × E − E × A) = iq[A0,B] − iqJz

σ = J/E σ =
{iq[A0,E] − iq(A × B − B × A) + J}

E
= J

{iq[A0,E] − iqJx + J}
E

s = 0 s =
{iq[A0,B] − iq(A × E − E × A)}

H
=

{iq[A0,B] − iqJz}
H

The temporal evolution of ψ is defined as:

ψt = −Aψ, (2)

with the operator of the form:

A = a0

∂n

∂xn
+ a1

∂n−1

∂xn−1
+ .... + an,

where a0 is a constant and the n coefficients ai are
functions of x and t. Differentiating (1) gives:

Ltψ + Lψt = −λtψ − λψt .

Inserting (2):
Lψt = −LAψ ,

or
λψt = ALψ .

Using (2) again:

[L,A] = LA − AL = Lt + λt , (3)

and for a time-independent λ :

[L,A] = Lt .

This equation provides a method for finding A.
Translating the above into a group theory

formulation: in order to relate the three major soliton
equations to group theory it is necessary to examine
the Lax equation [10] (3) above as a the zero-curvature
condition (ZCC). The ZCC expresses the flatness of

a connection by the commutation relations of the
covariant derivative operators [11] and in terms of the
Lax equation is:

Lt − Ax − [L,A] = 0,

or [11]:
[

∂

∂x
− L

∂

∂t
− A

]

= 0,

or:
(

∂

∂x
− L

)

t

=

[

A
∂

∂x
− L

]

.

More recently, Palais [11] showed that the generic
cases of soliton — the Korteweg de Vries Equation
(KDV), the Nonlinear Schrodinger Equation (NLS),
the Sine-Gordon Equation (SGE) — can be given
an SU(2) formulation. In each of the three cases
considered below, V is a one-dimensional space that
is embedded in the space of off-diagonal complex

matrices,

(

0 b
c 0

)

and in each case L(u) = aλ + u,

where u is a potential, λ is a complex parameter, and
a is the constant, diagonal, trace zero matrix

a =

(

−i 0
0 i

)

.

The matrix definition of a links these equations to
an SU(2) formulation. (Other matrix definitions of a

could, of course, link a to higher group symmetries.)
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To carry out this objective, an inverse scattering
theory function is defined [12]:

B(ξ) =

N
∑

n=1

c2
n exp [−knξ] +

1

2π

+∞
∫

−∞

b(k) exp [ikξ]dk,

where −k2
1, ... ,−k2

n are discrete eigenvalues of u,
c1, ... , cN are normalizing constants, and
b(k) are reflection coefficients.

Therefore, in a first case (the KdV ), if

u(x) =

(

0 q(x)
−1 0

)

and

B(u) = aλ3 + uλ2 +







i

2
q

i

2
qx

0 − i

2
q






λ +







qx

4

−q2

2
q

2

−qx

4






,

and the ZCC (Lax equation) is satisfied if and only if

q satisfies the KdV in the form qt = −1

4
(6qqx + qxxx).

In a second case (the NLS), if

u(x) =

(

0 q(x)
−q(x) 0

)

and

B(u) = aλ3 + uλ2 +







i

2
|q|2 i

2
qx

− i

2
q(x) − i

2
|q|2






,

then ZCC (Lax equation) is satisfied if and
only if q(x,t) satisfies the NLS in the form

qt =
i

2

(

qxx + 2|q|2q
)

.

In a third case (the SGE), if

u(x) =







0 −qx(x)

2
qx(x)

2
0







and

B(u) =
i

4π

(

cos[q(x)] sin[q(x)]

sin[q(x)] − cos[q(x)]

)

,

then ZCC (Lax equation) is satisfied if and only if q
satisfies the SGE in the form qt = sin[q].

With the connection of PDEs, and especially soliton
forms, to group symmetries established, then one can
conclude that if the Maxwell equation of motion
which includes electric and magnetic conductivity is
in soliton (SGE) form, the group symmetry of the
Maxwell field is SU(2). Furthermore, because solitons
define Hamiltonian flows, their energy conservation is
due to their symplectic structure.

In order to clarify the difference between
conventional Maxwell theory which is of U(1)
symmetry, and Maxwell theory extended to SU(2)

symmetry, we can describe both in terms of mappings
of a field ψ(x). In the case of U(1) Maxwell theory, a
mapping ψ → ψ′ is:

ψ(x) → ψ′(x) = exp[ia(x)]ψ(x) ,

where a(x) is the conventional vector potential.
However, in the case of SU(2) extended Maxwell
theory, a mapping ψ → ψ′ is:

ψ(x) → ψ′(x) = exp[iS(x)]ψ(x),

where S(x) is the action and an element of an SU(2)
field defined:

S(x) =

∫

Adx,

and A is the matrix form of the vector potential.
Therefore we see the necessity to adopt a matrix
formulation of the vector potential when addressing
SU(2) forms of Maxwell theory.

3. Instantons

Instantons [12] correspond to the minima of
the Euclidean action and are pseudo-particle
solutions [13] of SU(2) Yang-Mills equations in
Euclidean 4 space [14]. A complete construction for
any Yang-Mills group is also available [15]. In other
words:

“ It is reasonable . . . to ask for the
determination of the classical field
configurations in Euclidean space which
minimize the action, subject to appropriate
asymptotic conditions in 4-space. These
classical solutions are the instantons of the
Yang-Mills theory” [16].

In the light of the intention of the present writer
to introduce topology into electromagnetic theory, I
quote further:

“ If one were to search ab initio for a non-
linear generalization of Maxwell’s equation
to explain elementary particles, there are
various symmetry group properties one
would require. These are
(i) external symmetries under the Lorentz
and Poincaré groups and under the
conformal group if one is taking the
rest-mass to be zero,
(ii) internal symmetries under groups
like SU(2) or SU(3) to account for the
known features of elementary particles,
(iii)covariance or the ability to be coupled
to gravitation by working on curved space-
time” [17].
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The present writer applied the instanton concept in
electromagnetism for the following two reasons: (1)
in some sense, the instanton, or pseudoparticle, is
a compactification of degrees of freedom due to the
particle’s boundary conditions; and (2) the instanton,
or pseudoparticle, then exhibits the behavior (the
transformation or symmetry rules) of a high energy
particle, but without the presence of high energy,
i.e., the pseudoparticle shares certain behavioral
characteristics in common (shares transformation
rules, hence symmetry rules in common) with a
particle of much higher energy.

Therefore, the present writer suggested [18]
that the Mikhailov effect [19], and the Ehrenhaft
effect (1879–1952), which address demonstrations
exhibiting magnetic charge-like behavior, are
examples of instanton or pseudoparticle behavior.
Stated differently: (1) the instanton shows that there
are ways, other than possession of high energy, to
achieve high symmetry states; and (2) symmetry
dictates behavior.

4. Polarization Modulation Over
a Set Sampling Interval [20]

It is well-known that all static polarizations of a
beam of radiation, as well as all static rotations of the
axis of that beam can be represented on a Poincaré
sphere [21] (Fig. 1A). A vector can be centered in the
middle of the sphere and pointed to the underside of
the surface of the sphere at a location on the surface
which represents the instantaneous polarization and
rotation angle of a beam. Causing that vector to trace
a trajectory over time on the surface of the sphere
represents a polarization modulated (and rotation
modulated) beam (Fig. 1B). If, then, the beam is
sampled by a device at a rate which is less than the
rate of modulation, then the sampled output from
the device will be a condensation of two components
of the wave, which are continuously changing with
respect to each other, into one snapshot of the wave,
at one location on the surface of the sphere and one
instantaneous polarization and axis rotation. Thus,
from the viewpoint of a device sampling at a rate less
than the modulation rate, a two-to-one mapping (over
time) has occurred, which is the signature of an SU(2)
field.

The modulations which result in trajectories on
the sphere are infinite in number. Moreover, those
modulations, at a rate of multiples of 2π greater than
1, which result in the return to a single location on
the sphere at a frequency of exactly 2π, will all be
detected by the device sampling at a rate of 2π as
the same. In other words, the device cannot detect
what kind of simple or complicated trajectory was
performed between departure from, and arrival at, the
same location on the sphere. To the relatively slowly

K

H2y

2c

V

(a) A Poincaré sphere representation of
wave polarization and rotation.

K

0

(b) A Poincaré sphere representation of
signal polarization (longitudinal axis)
and polarization rotation (latitudinal
axis). A representational trajectory of
polarization/rotation modulation is shown by
changes in the vector centered at the center
of the sphere and pointing at the surface.
Waves of various polarization modulations
∂φn/∂tn, can be represented as trajectories
on the sphere. The case shown is an arbitrary
trajectory repeating 2π. After Ref [23].

Fig. 1.

sampling device, the fast modulated beam can have
“ internal energies” quite unsuspected.

We can say that such a static device is a U(1)
unipolar, set rotational axis, sampling device and
the fast polarization (and rotation) modulated beam
is a multipolar, multirotation axis, SU(2) beam.
The reader may ask: how many situations are
there in which a sampling device, at set unvarying
polarization, samples at a slower rate than the
modulation rate of a radiated beam? The answer
is that there is an infinite number, because from
the point of the view of the writer, nature is set
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up to be that way [22]. For example, the period
of modulation can be faster than the electronic or
vibrational or dipole relaxation times of any atom
or molecule. In other words, pulses or wave packets
(which, in temporal length, constitute the sampling
of a continuous wave, continuously polarization and
rotation modulated, but sampled only over a temporal
length between arrival and departure time at the
instantaneous polarization of the sampler of set
polarization and rotation — in this case an electronic
or vibrational state or dipole) have an internal
modulation at a rate greater than that of the
relaxation or absorption time of the electronic or
vibrational state.

If a spin matrix, A, is defined:

A =

(

α β
γ δ

)

,det A = 1 ,

then the two transformations, (Fig. 1A), are:

A =

(

ξ′ ξ
η′ η

)

, (4)

which means that the spin matrix of a composition is
given by the product of the spin matrix of the factors.
Any transformation of the (4) form is linear and real
and leaves the form W 2 − X2 − Y 2 − Z2 invariant.

Furthermore, there is a unimodular condition:

αδ − βγ = 1 ,

and the matrix A has the inverse:

A−1 =

(

δ −β
−γ α

)

,

which means that the spin matrix A and its inverse
A−1 gives rise to the same transformation of ζ even
although they define different spin transformations.
Due to the unimodular condition, the A spin-matrix
is unitary or:

A−1 = A∗

where A∗ is the conjugate transpose of A.
The consequence of these relations is that every

proper 2π rotation on S+ — in the present
instance the Poincaré sphere — corresponds to
precisely two unitary spin rotations. As every
rotation on the Poincaré sphere corresponds to a
polarization/rotation modulation, then every proper
2π polarization-rotation modulation corresponds to
precisely two unitary spin rotations.

Using this algebraic formalism, the Poincaré vector
— and its direction of change (up to sign ambiguity)
— can be represented. A real tangent vector L of S+

at P is defined:

L =
λ∂

∂ζ
+

λ∗∂

∂ζ∗
,

where λ is some expression in ξ, η. With the choice

λ = −
(

1√
2

)

η−2:

L =

(

1√
2

)[

η−2

(

∂

∂ζ

)

+ η∗−2

(

∂

∂ζ∗

)]

,

and thus knowing L at P (as an operator) means that
the pair ξ, η is known completely up to sign, or, for
any f(ζ, ζ∗):

1

εlim ε→0

(fp ′ − fp) = Lf

Succinctly: the tangent vector L in the abstract
space S+ (Poincaré sphere) corresponds to a tangent
vector L in the coordinate-dependent representation
S+ of S+. L is a unit vector if and only if, K, the null
vector corresponding to ξ, η, defines a point actually
on S+. Therefore a plane of K and L can be defined
by:

aK + bL,

and if b > 0, then a half-plane, Π, is defined bounded
by K. K and L are both spacelike and orthogonal to
each other. In the twistor formalism [24], Π and K
are referred to as a null flag or a flag. The vector K is
called the flagpole, its direction is the flagpole direction
and the half-plane, Π , is the flag plane.

The major point here is that a polarization-rotation
modulated wave can be represented as a periodic
trajectory of polarization/rotation modulation on a
Poincaré sphere, or a spinorial object. A defining
characteristic of a spinorial object is that it is
not returned to its original state when rotated
through an angle 2π about some axis, but only
when rotated through 4π. We thus see that for the
resultant to be rotated through 2π and returned to
its original polarization state, the operator must
be rotated through 4π. Thus a spinorial object
(polarization/rotation modulated beams) exists in a
different topological space from static polarized/rotated
beams due to the additional degree of freedom provided
by the polarization bandwidth, which does not exist
prior to modulation.
The relation to the electromagnetic field is as follows.
The (antisymmetrical) inner product of two spin
vectors can represented as:

{k1, k2} = εABkAkB = −{k1, k2} ,

where the ε (or the fundamental numerical metric
spinors of second rank) are antisymmetrical:

εABεCB = −εABεBC = εABεBC

= −εBAεCB = εC
A = −εC

A,

with a canonical mapping (or isomorphism) between,
e.g., kB and kB :

kB 7→ kB = kAεAB .
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(a) Lissajous patterns representing the polarized electric field over time, viewed in
the plane of incidence, resulting from the two orthogonal s and p fields, which
are out of phase by the following degrees: 0, 21, 42, 64, 85, 106, 127, 148, 169 (top
row); 191, 212, 233, 254, 275, 296, 319, 339, 360 (bottom row). In these Lissajous patterns,
the plane polarizations are represented at 45 degrees to the axes.

(b) Representation of a polarization modulated beam over 2π in the z-direction.These are
SO(3) Qi(ω, δ) in C representations over 2π, not an SU(2) in Qi(ψ, χ) in C∗ over π.

Fig. 2.

A potential can be defined:

ΦA = i(εα)−1∇Aα ,

where α is a gauge:

αα∗ = 1 ,

and ∇A is a covariant derivative, ∂/∂xA, but
without the commutation property. The covariant
electromagnetic field is then:

FAB = ∇AΦB −∇BΦA + ig[ΦB ,ΦA] ,

where g is generalized charge.

A physical representation of the polarization
modulated (SU(2)) beam can be obtained using a
Lissajous pattern representation Fig. 2.

Lissajous patterns are the locus of the resultant
displacement of a point which is a function of two
(or more) simple periodic motions. In the usual
situation, the two periodic motions are orthogonal
(i.e., at right angles) and are of the same frequency.
The Lissajous figures then represent the polarization
of the resultant wave as a diagonal line, top left
to bottom right in the case of linear perpendicular
polarization; bottom left to top right, in the case
of linear horizontal polarization; a series of ellipses,
or a circle, in the case of circular corotating or

Electromagnetic Phenomena, V.7, №1 (18), 2007 125



Terence W.Barrett

contrarotating polarization, all of these corresponding
to the possible differences in constant phase between
the two simple periodic motions. If the phase is not
constant, but is changing or modulated, as in the
case of polarization modulation, then the pattern
representing the phase is constantly changing over the
time the Lissajous figure is generated. Named after
Jules Lissajous (1822-1880).

We can note that the Stokes’ parameters
(s0, s1, s2, s3) defined over the SU(2) dimensional
variables, ψ, χ, of Qi(ψ, χ) are sufficient to describe
polarization/rotation modulation, and relate those
variables to the SO(3) dimensional variables,
ω(τ, z), δ, of Qi(ω, δ), which are sufficient to describe
the static polarization/rotation conditions of linear,
circular, left and right handed polarization/rotation.

We can also note the fundamental role that
concepts of topology played in dsitinguishing static
polarization-rotation from polarization-rotation
modulation.

5. Aharonov-Bohm Effect

We consider now the Aharonov-Bohm effect as
an example of a phenomenon understandable only
from topological considerations. Beginning in 1959
Aharonov and Bohm [25] challenged the view that
the classical vector potential produces no observable
physical effects by proposing two experiments. The
one which is most discussed is shown in Fig. 3. A
beam of monoenergetic electrons exists from a source
at X and is diffracted into two beams by the slits
in a wall at Y 1 and Y 2. The two beams produce
an interference pattern at III which is measured.
Behind the wall is a solenoid, the B field of which
points out of the paper. The absence of a free local
magnetic monopole postulate in conventional U(1)
electromagnetism (∇ • B = 0) predicts that the
magnetic field outside the solenoid is zero. Before the
current is turned on in the solenoid, there should
be the usual interference patterns observed at III, of
course, due to the differences in the two path lengths.

Aharonov and Bohm made the interesting
prediction that if the current is turned on, then
due to the differently directed A fields along paths 1
and 2 indicated by the arrows in Fig. 3, additional
phase shifts should be discernible at III. This
prediction was confirmed experimentally [26] and
the evidence for the effect has been extensively
reviewed [27].

It is the present writer’s opinion that the topology
of this situation is fundamental and dictates its
explanation. Therefore we must clearly note the
topology of the physical layout of the design of
the situation which exhibits the effect. The physical

solenoid-magnet

path 1

path 2

field lines

X

Y1

Y2
II

I

II I

Fig. 3. Two-slit diffraction experiment of the
Aharonov-Bohm effect. Electrons are produced by a
source at X, pass through the slits of a mask at Y1 and
Y2, interact with the A field at locations I and II over
lengths l1 and l2, respectively, and their diffraction
pattern is detected at III. The solenoid-magnet is
between the slits and is directed out of the page. The
different orientations of the external A field at the
places of interaction I and II of the two paths 1 and 2
are indicated by arrows following the right-hand rule.

situation is that of an interferometer. That is, there
are two paths around a central location — occupied
by the solenoid — and a measurement is taken at
a location, III, in the Fig 3, where there is overlap
of the wave functions of the test waves which have
traversed, separately, the two different paths. (The
test waves or test particles are complex wave functions
with phase.) It is important to note that the overlap
area, at III, is the only place where a measurement
can take place of the effects of the A field (which
occurred earlier and at other locations (I and II). The
effects of the A field occur along the two different
paths and at locations I and II, but they are inferred,
and not measurable there. Of crucial importance in
this special interferometer, is the fact that the solenoid
presents a topological obstruction. That is, if one were
to consider the two joined paths of the interferometer
as a raceway or a loop and one squeezed the loop
tighter and tighter, then nevertheless one cannot in
this situation — unlike as in most situations — reduce
the interferometer’s raceway of paths to a single point.
(Another way of saying this is: not all closed curves in
a region need have a vanishing line integral, because
one exception is a loop with an obstruction.) The
reason one cannot reduce the interferometer to a single
point is because of the existence in its middle of the
solenoid, which is a positive quantity, and acts as an
obstruction.

It is the present writer’s opinion that the existence
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of the obstruction changes the situation entirely.
Without the existence of the solenoid in the
interferometer, the loop of the two paths can be
reduced to a single point and the region occupied by
the interferometer is then simply-connected. But with
the existence of the solenoid, the loop of the two paths
cannot be reduced to a single point and the region
occupied by this special interferometer is multiply-
connected. The Aharonov-Bohm effect only exists in
the multiply-connected scenario. But we should note
that the Aharonov-Bohm effect is a physical effect and
simple and multiple connectedness are mathematical
descriptions of physical situations.

The topology of the physical interferometric
situation addressed by Aharonov and Bohm
defines the physics of that situation and also
the mathematical description of that physics. If
that situation were not multiply-connected, but
simply-connected, then there would be no interesting
physical effects to describe. The situation would be
described by U(1) electromagnetics and the mapping
from one region to another is conventionally one-to-
one. However, as the Aharonov-Bohm situation is
multiply-connected, there is a two-to-one mapping
(SU(2)/Z2) of the two different regions of the two
paths to the single region at III where a measurement
is made. Essentially, at III a measurement is made of
the differential histories of the two test waves which
traversed the two different paths and experienced two
different forces resulting in two different phase effects.

In conventional, i.e., normal U(1) or simply-
connected situations, the fact that a vector field,
viewed axially, is pointing in one direction, if
penetrated from one direction on one side, and is
pointing in the opposite direction, if penetrated from
the same direction, but on the other side, is of no
consequence at all — because that field is of U(1)
symmetry and can be reduced to a single point.
Therefore in most cases which are of U(1) symmetry,
we do not need to distinguish between the direction
of the vectors of a field from one region to another
of that field. However, the Aharonov-Bohm situation
is not conventional or simply-connected, but special.
(In other words, the physical situation associated
with the Aharonov-Bohm effect has a non-trivial
topology). It is a multiply-connected situation and of
(SU(2)/Z2) symmetry. Therefore the direction of the
A field on the separate paths is of crucial importance,
because a test wave traveling along one path will
experience an A vectorial component directed against
its trajectory and thus be retarded, and another test
wave traveling along another path will experience an
A vectorial component directed with its trajectory
and thus its speed is boosted. These “ retardations”
and “ boostings” can be measured as phase changes,
but not at the time nor at the locations of, I and
II, where their occurrence is separated along the two
different paths, but later, and at the overlap location

of III. It is important to note that if measurements
are attempted at locations I and II in the Fig. 3, these
effects will not be seen because there is no two-to-one
mapping at either I and II and therefore no referents.
The locations I and II are both simply-connected
with the source and therefore only the conventional
U(1) electromagnetics applies at these locations (with
respect to the source). It is only region III which is
multiply-connected with the source and at which the
histories of what happened to the test particles at
I and II can be measured. In order to distinguish
the “ boosted” A field (because the test wave is
traveling “ with” its direction) from the “ retarded” A

field (because the test wave is traveling “ against” its
direction), we introduce the notation: A+ and A−.

Because of the distinction between the A oriented
potential fields at positions I and II — which are
not measurable and are vectors or numbers of
U(1) symmetry — and the A potential fields at
III — which are measurable and are tensors or
matrix-valued functions of (in the present instance)
(SU(2)/Z2) = SO(3) symmetry (or higher symmetry)
— for reasons of clarity we might introduce a
distinguishing notation. In the case of the potentials
of U(1) symmetry at I and II we might use the
lower case,aµ, µ = 0, 1, 2, 3 and for the potentials
of (SU(2)/Z2) = SO(3) at III we might use the
upper case Aµ, µ = 0, 1, 2, 3. Similarly, for the
electromagnetic field tensor at I and II, we might use
the lower case, fµν , and for the electromagnetic field
tensor at III, we might use the upper case, F µν . Then
the following definitions for the electromagnetic field
tensor are:
At locations I and II the Abelian relationship is:

fµν(x) = ∂νaµ(x) − ∂µaν(x), (5)

where, as is well known,fµν is Abelian and gauge
invariant ; But at location III the non-Abelian
relationship is:

F µν = ∂νAµ(x)− ∂µAν(x)− igm[Aµ(x), Aν(x)], (6)

where F µν is gauge covariant, gm is the magnetic
charge density and the brackets are commutation
brackets. We remark that in the case of non-Abelian
groups, such as SU(2), the potential field can carry
charge. It is important to note that if the physical
situation changes from SU(2) symmetry back to U(1),
then F µν → fµν

Despite the clarification offered by this notation,
the notation can also cause confusion, because
in the present literature, the electromagnetic field
tensor is always referred to as F , whether F is
defined with respect to U(1) or SU(2) or other
symmetry situations. Therefore, although we prefer
this notation, we shall not proceed with it. However,
it is important to note that the A field in the U(1)
situation is a vector or a number, but in the SU(2) or
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nonAbelian situation, it is a tensor or a matrix-valued
function.

We referred to the physical situation of the
Aharonov-Bohm effect as an interferometer around an
obstruction and it is 2-dimensional. It is important to
note that the situation is not provided by a toroid,
although a toroid is also a physical situation with an
obstruction and the fields existing on a toroid are also
of SU(2) symmetry. However, the toroid provides a
two-to-one mapping of fields in not only the x and y
dimensions but also in the z dimension, and without
the need of an electromagnetic field pointing in two
directions + and −. The physical situation of the
Aharonov-Bohm effect is defined only in the x and y
dimensions (there is no z dimension) and in order to be
of SU(2)/Z2 symmetry requires a field to be oriented
differentially on the separate paths. If the differential
field is removed from the Aharonov-Bohm situation,
then that situation reverts to a simple interferometric
raceway which can be reduced to a single point and
with no interesting physics.

How does the topology of the situation affect
the explanation of an effect? A typical previous
explanation [28] of the Aharonov-Bohm effect
commences with the Lorentz force law:

F = eE + ev × B (7)

The electric field, E, and the magnetic flux density,
B, are essentially confined to the inside of the solenoid
and therefore cannot interact with the test electrons.
An argument is developed by defining the E and B

fields in terms of the A and φ potentials:

E = −∂A

∂t
−∇φ, B = ∇× A. (8)

Now we can note that these conventional U(1)
definitions of E and B can be expanded to SU(2)
forms:

E = −∇× A − ∂A

∂t
−∇φ,

B = ∇× A − ∂A

∂t
−∇φ.

(9)

Furthermore, the U(1) Lorentz force law, Eq 7, can
hardly apply in this situation because the solenoid is
electrically neutral to the test electrons and therefore
E = 0 along the two paths. Using the definition of B

in Eq 9, the force law in this SU(2) situation is:

F = eE + ev × B

= e

(

−(∇× A) − ∂A

∂t
−∇φ

)

+ ev ×
(

−(∇× A) − ∂A

∂t
−∇φ

)

, (10)

but we should note that Eqs 7 and 8 are still valid for
the conventional theory of electromagnetism based on
the U(1) symmetry Maxwell’s equations provided in

Table 1 and associated with the group U(1) algebra.
They are invalid for the theory based on the modified
SU(2) symmetry equations also provided in Table 1
and associated with the group SU(2) algebra.

The typical explanation of the Aharonov-Bohm
effect continues with the observation that a phase
difference, δ, between the two test electrons is caused
by the presence of the solenoid:

4δ = 4α1 −4α2 =
e

~





∫

l2

A • dl2 −
∫

l1

A • dl1





=
e

~

∫

l2−l1

∇× A • dS =
e

~

∫

B • dS =
e

~
ϕM , (11)

where 4α1 and 4α2 are the changes in the wave
function for the electrons over paths 1 and 2, S is
the surface area and ϕM is the magnetic flux defined:

ϕM =

∫ ∫

Aµ(x)dxµ =

∫ ∫

Fµνdσµν (12)

Now, we can extend this explanation further, by
observing that the local phase change at III of the
wavefunction of a test wave or particle is given by:

Φ = expbigm

∫ ∫

Aµ(x)dxµc = exp[igmϕm] . (13)

Φ, which is proportional to the magnetic flux, ϕM ,
is known as the phase factor and is gauge covariant.
Furthermore, Φ, the phase factor measured at position
III is the holonomy of the connection, Aµ; and gm is
the SU(2) magnetic charge density.

We next observe thatϕM is in units of volt-seconds
(V.s) or kg.m2/(A.s2) = J/A. From Eq 11 it can
be seen that 4δ and the phase factor, Φ, are
dimensionless. Therefore we can make the prediction
that if the magnetic flux, ϕM , is known and the phase
factor, Φ, is measured (as in the Aharonov-Bohm
situation), the magnetic charge density, gm, can be
found by the relation:

gm = ln(Φ)/(iϕM ) . (14)

Continuing the explanation: as was noted above,
∇ × A = 0 outside the solenoid and the situation
must be redefined in the following way. An electron
on path 1 will interact with the A field oriented in the
positive direction. Conversely, an electron on path 2
will interact with the A field oriented in the negative
direction. Furthermore, the B field can be defined
with respect to a local stationary component B1 which
is confined to the solenoid and a component B2 which
is either a standing wave or propagates:

B = B1 + B2,

B1 = ∇× A,

B2 = −∂A

∂t
−∇φ.

(15)
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The magnetic flux density, B1, is the confined
component associated with U(1) × SU(2) symmetry
and B2 is the propagating or standing wave
component associated only with SU(2) symmetry. In
a U(1) symmetry situation, B1 = components of the
field associated with U(1) symmetry, and B2 = 0.

The electrons traveling on paths 1 and 2 require
different times to reach III from X, due to the different
distances and the opposing directions of the potential
A along the paths l1 and l2. Here we only address the
effect of the opposing directions of the potential A,
i.e., the distances traveled are identical over the two
paths. The change in the phase difference due to the
presence of the A potential is then:

4δ = 4α1 −4α2 =
e

~





∫

l2

(

−∂A+

∂t
−∇φ+

)

dl2

−
∫

l2

(

−∂A−

∂t
−∇φ−

)

dl1



 • dS

=
e

~

∫

B2 • dS =
e

~
ϕM . (16)

There is no flux density B1 in this equation since this
equation describes events outside the solenoid, but
only the flux density B2 associated with group SU(2)
symmetry; and the “ +” and “ – ” indicate the direction
of the A field encountered by the test electrons – as
discussed above.

We note that the phase effect is dependent on B2

and B1, but not on B1 alone. Previous treatments
found no convincing argument around the fact that
whereas the Aharonov-Bohm effect depends on an
interaction with the A field outside the solenoid, B,
defined in U(1) electromagnetism as B = ∇ × A, is
zero at that point of interaction. However, when A is
defined in terms associated with an SU(2) situation,
that is not the case as we have seen.

We depart from former treatments in other ways.
Commencing with a correct observation that the
Aharonov-Bohm effect depends on the topology of
the experimental situation and that the situation
is not simply-connected, a former treatment then
erroneously seeks an explanation of the effect in
the connectedness of the U(1) gauge symmetry of
conventional electromagnetism, but for which (1) the
potentials are ambiguously defined, (the U(1) A

field is gauge invariant) and (2) in U(1) symmetry
∇× A = 0 outside the solenoid.

Furthermore, whereas a former treatment again
makes a correct observation that the non-Abelian
group, SU(2), is simply-connected and that the
situation is governed by a multiply-connected
topology, the author fails to observe that the non-
Abelian group SU(2) defined over the integers modulo
2, SU(2)/Z2, is, in fact, multiply-connected. Because
of the two paths around the solenoid it is this

group which describes the topology underlying the
Aharonov-Bohm effect [6]. SU(2)/Z2

∼= SO(3) is
obtained from the group SU(2) by identifying pairs
of elements with opposite signs. The measured at
location III in Fig. 3 is derived from a single path
in SO(3)[2] because the two paths through locations I
and II in SU(2) are regarded as a single path in SO(3).
This path in SU(2)/Z2

∼= SO(3) cannot be shrunk
to a single point by any continuous deformation
and therefore adequately describes the multiple-
connectedness of the Aharonov-Bohm situation.
Because the former treatment failed to note the
multiple connectedness of the SU(2)/Z2 description of
the Aharonov-Bohm situation, it incorrectly fell back
on a U(1) symmetry description.

Now back to the main point of this excursion to the
Aharonov-Bohm effect: the reader will note that the
author appealed to topological arguments to support
the main points of his argument. Underpinning
the U(1) Maxwell theory is an Abelian algebra;
underpinning the SU(2) theory is a non-Abelian
algebra. The algebras specify the form of the equations
of motion. However, whether one or the other algebra
can be (validly) used can only be determined by
topological considerations.

6. Summary

We have attempted to show the fundamental
explanatory nature of the topological description of
solitons, instantons and the Aharonov-Bohm effect
— and hence electromagnetism. In the case of
electromagnetism we have shown elsewhere that,
given a Yang-Mills description, electromagnetism can,
and should be extended, in accordance with the
topology with which the electromagnetic fields are
associated. This approach has major implications.
If the conventional theory of electromagnetism, i.e.,
“ Maxwell’s theory”, which is of U(1) symmetry form,
is but the simplest local theory of electromagnetism,
then those pursuing a unified field theory may wish
to consider as a candidate for that unification, not
only the simple local theory, but other electromagnetic
fields of group symmetry higher than U(1). Other such
forms include symplectic gauge fields of higher group
symmetry, e.g., SU(2) and above.

Manuscript received November 15, 2006
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