<html>
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <small>Dear John W and all,<br>
      <br>
      about the <u>de Broglie wave</u>:<br>
      <br>
      There are a lot of elegant derivations for the de Broglie wave
      length, that is true. Mathematical deductions. What is about the
      physics behind it?<br>
      <br>
      De Broglie derived this wave in his first paper in the intention
      to explain, why the internal frequency in a moving electron is
      dilated, but this frequency on the other hand has to be increased
      for an external observer to reflect the increase of energy. To get
      a result, he invented a "fictitious wave" which has the phase
      speed c/v, where v is the speed of the electron. And he takes care
      to synchronize this wave with the internal frequency of the
      electron. That works and can be used to describe the scattering of
      the electron at the double slit.  -  But is this physical
      understanding? De Broglie himself stated that this solution does
      not fulfil the expectation in a "complete theory". Are we any
      better today?<br>
      <br>
      Let us envision the following situation. An electron moves at
      moderate speed, say 0.1*c (=> gamma=1.02) . An observer moves
      parallel to the electron. What will the observer see or measure? <br>
      The internal frequency of the electron will be observed by him as
      frequency = m<sub>0</sub>*c<sup>2</sup>/h , because in the
      observer's system the electron is at rest. The wave length of the
      wave leaving the electron (e.g. in the model of a circling photon)
      is now not exactly  lambda<sub>1</sub> = c/frequency , but a
      little bit larger as the rulers of the observer are a little bit
      contracted (by gamma = 1.02), so this is a small effect. What is
      now about the phase speed of the de Broglie wave? For an observer
      at rest it must be quite large as it is extended by the factor
      c/v  which is 10. For the co-moving observer it is mathematically
      infinite (in fact he will see a constant phase). This is not
      explained by the time dilation (=2%), so not compatible. And what
      about the de Broglie wave length? For the co-moving observer, who
      is at rest in relation to the electron, it is lambda<sub>dB</sub>
      = h/(1*m*0), which is again infinite or at least extremely large. 
      For the observer at rest there is lambda<sub>dB</sub> =
      h/(1.02*m*0.1c) . Also not comparable to the co-moving observer.<br>
      <br>
      To summarize: these differences are not explained by the normal SR
      effects. So, how to explain these incompatible results?<br>
      <br>
      Now let's assume, that the electron closes in to the double slit.
      Seen from the co-moving observer, the double slit arrangement
      moves towards him and the electron. What are now the parameters
      which will determine the scattering? The (infinite) de Broglie
      wave length? The phase speed which is 10*c ? Remember: For the
      co-moving observer the electron does not move. Only the double
      slit moves and the screen behind the double slit will be ca. 2%
      closer than in the standard case. But will that be a real change?<br>
      <br>
      I do not feel that this is a situation which in physically
      understood.<br>
      <br>
      Regards<br>
      Albrecht<br>
    </small><br>
    <br>
    <div class="moz-cite-prefix">Am 21.10.2015 um 16:34 schrieb John
      Williamson:<br>
    </div>
    <blockquote
cite="mid:7DC02B7BFEAA614DA666120C8A0260C914714222@CMS08-01.campus.gla.ac.uk"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html;
        charset=windows-1252">
      <style id="owaParaStyle" type="text/css">P {margin-top:0;margin-bottom:0;}</style>
      <div style="direction: ltr;font-family: Tahoma;color:
        #000000;font-size: 10pt;">Dear all,<br>
        <br>
        The de Broglie wavelength is best understood, in my view, in one
        of two ways. Either read de Broglies thesis for his derivation
        (if you do not read french, Al has translated it and it is
        available online). Alternatively derive it yourself. All you
        need to do is consider the interference between a standing wave
        in one (proper frame) as it transforms to other relativistic
        frames. That is standing-wave light-in-a-box. This has been done
        by may folk, many times. Martin did it back in 1991. It is in
        our 1997 paper. One of the nicest illustrations I have seen is
        that of John M - circulated to all of you earlier in this
        series.<br>
        <br>
        It is real, and quite simple.<br>
        <br>
        Regards, John.<br>
        <div style="font-family: Times New Roman; color: #000000;
          font-size: 16px">
          <hr tabindex="-1">
          <div style="direction: ltr;" id="divRpF555421"><font size="2"
              color="#000000" face="Tahoma"><b>From:</b> General
              [<a class="moz-txt-link-abbreviated" href="mailto:general-bounces+john.williamson=glasgow.ac.uk@lists.natureoflightandparticles.org">general-bounces+john.williamson=glasgow.ac.uk@lists.natureoflightandparticles.org</a>]
              on behalf of Dr. Albrecht Giese [<a class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de">genmail@a-giese.de</a>]<br>
              <b>Sent:</b> Wednesday, October 21, 2015 3:14 PM<br>
              <b>To:</b> Richard Gauthier<br>
              <b>Cc:</b> Nature of Light and Particles - General
              Discussion; David Mathes<br>
              <b>Subject:</b> Re: [General] research papers<br>
            </font><br>
          </div>
          <div>Hello Richard,<br>
            <br>
            thanks for your detailed explanation. But I have a
            fundamental objection.<br>
            <br>
            Your figure 2 is unfortunately (but unavoidably)
            2-dimensional, and that makes a difference to the reality as
            I understand it.
            <br>
            <br>
            In your model the charged electron moves on a helix around
            the axis of the electron (or equivalently the axis of the
            helix). That means that the electron has a constant distance
            to this axis. Correct? But in the view of your figure 2 the
            photon seems to start on the axis and moves away from it
            forever. In this latter case the wave front would behave as
            you write it.
            <br>
            <br>
            Now, in the case of a constant distance, the wave front as
            well intersects the axis, that is true. But this
            intersection point moves along the axis at the projected
            speed of the photon to this axis. - You can consider this
            also in another way. If the electron moves during a time,
            say T1, in the direction of the axis, then the photon will
            during this time T1 move a longer distance, as the length of
            the helical path (call it L)  is of course longer than the
            length of the path of the electron during this time (call it
            Z). Now you will during the time T1 have a number of waves
            (call this N) on the helical path L. On the other hand, the
            number of waves on the length Z has also to be N. Because
            otherwise after an arbitrary time the whole situation would
            diverge. As now Z is smaller than L, the waves on the axis
            have to be shorter. So, not the de Broglie wave length. That
            is my understanding.
            <br>
            <br>
            In my present view, the de Broglie wave length has no
            immediate correspondence in the physical reality. I guess
            that the success of de Broglie in using this wave length may
            be understandable if we understand in more detail, what
            happens in the process of scattering of an electron at the
            double (or multiple) slits.<br>
            <br>
            Best wishes<br>
            Albrecht<br>
            <br>
            <br>
            <div class="moz-cite-prefix">Am 21.10.2015 um 06:28 schrieb
              <br>
              Richard Gauthier:<br>
            </div>
            <blockquote type="cite">
              <div class="">Hello Albrecht,</div>
              <div class=""><br class="">
              </div>
              <div class="">   Thank you for your effort to understand
                the physical process described geometrically in my
                Figure 2. You have indeed misunderstood the Figure as
                you suspected. The LEFT upper side of the big 90-degree
                triangle is one wavelength h/(gamma mc) of the charged
                photon, mathematically unrolled from its two-turned
                helical shape (because of the double-loop model of the
                electron) so that its full length h/(gamma mc) along the
                helical trajectory can be easily visualized. The emitted
                wave fronts described in my article are perpendicular to
                this mathematically unrolled upper LEFT side of the
                triangle (because the plane waves emitted by the charged
                photon are directed along the direction of the helix
                when it is coiled (or mathematically uncoiled), and the
                plane wave fronts are perpendicular to this direction).
                The upper RIGHT side of the big 90-degree triangle
                corresponds to one of the plane wave fronts (of constant
                phase along the wave front) emitted at one wavelength
                lambda = h/(gamma mc) of the helically circulating
                charged photon. The length of the horizontal base of the
                big 90-degree triangle, defined by where this upper
                RIGHT side of the triangle (the generated plane wave
                front from the charged photon) intersects the horizontal
                axis of the helically-moving charged photon, is the de
                Broglie wavelength h/(gamma mv) of the electron model
                (labeled in the diagram). By geometry the length (the de
                Broglie wavelength) of this horizontal base of the big
                right triangle in the Figure is equal to the top left
                side of the triangle (the photon wavelength h/(gamma mc)
                divided (not multiplied) by cos(theta) = v/c because we
                are calculating the hypotenuse of the big right triangle
                starting from the upper LEFT side of this big right
                triangle, which is the adjacent side of the big right
                triangle making an angle theta with the hypotenuse. </div>
              <div class=""><br class="">
              </div>
              <div class="">   What you called the projection of the
                charged photon’s wavelength h/(gamma mc) onto the
                horizontal axis is actually just the distance D that the
                electron has moved with velocity v along the x-axis in
                one period T of the circulating charged photon. That
                period T equals 1/f = 1/(gamma mc^2/h) = h/(gamma mc^2).
                By the geometry in the Figure, that distance D is the
                adjacent side of the smaller 90-degree triangle in the
                left side of the Figure, making an angle theta with cT,
                 the hypotenuse of that smaller triangle, and so D = cT
                cos (theta) = cT x v/c = vT , the distance the electron
                has moved to the right with velocity v in the time T. In
                that same time T one de Broglie wavelength has been
                generated along the horizontal axis of the circulating
                charged photon. </div>
              <div class=""><br class="">
              </div>
              <div class="">   I will answer your question about the
                double slit in a separate e-mail.</div>
              <div class=""><br class="">
              </div>
              <div class="">        all the best,</div>
              <div class="">            Richard</div>
              <br class="">
              <div>
                <blockquote type="cite" class="">
                  <div class="">On Oct 20, 2015, at 10:06 AM, Dr.
                    Albrecht Giese <<a moz-do-not-send="true"
                      href="mailto:genmail@a-giese.de" class=""
                      target="_blank">genmail@a-giese.de</a>> wrote:</div>
                  <br class="Apple-interchange-newline">
                  <div class="">
                    <div bgcolor="#FFFFFF" class="">Hello Richard,<br
                        class="">
                      <br class="">
                      thank you for your explanations. I would like to
                      ask further questions and will place them into the
                      text below.<br class="">
                      <br class="">
                      <div class="moz-cite-prefix">Am 19.10.2015 um
                        20:08 schrieb Richard Gauthier:<br class="">
                      </div>
                      <blockquote type="cite" class="">
                        <div class="">Hello Albrecht,</div>
                        <div class=""><br class="">
                        </div>
                        <div class="">    Thank your for your detailed
                          questions about my electron model, which I
                          will answer as best as I can. </div>
                        <div class=""><br class="">
                        </div>
                        <div class="">     My approach of using the
                          formula e^i(k*r-wt)    =  e^i (k dot r minus
                          omega t)  for a plane wave emitted by charged
                          photons is also used for example in the
                          analysis of x-ray diffraction from crystals
                          when you have many incoming parallel photons
                          in free space moving in phase in a plane wave.
                          Please see for example <a
                            moz-do-not-send="true"
                            href="http://www.pa.uky.edu/%7Ekwng/phy525/lec/lecture_2.pdf"
                            class="" target="_blank"><font class=""
                              size="2"><a class="moz-txt-link-freetext" href="http://www.pa.uky.edu/~kwng/phy525/lec/lecture_2.pdf">http://www.pa.uky.edu/~kwng/phy525/lec/lecture_2.pdf</a></font></a> .
                          When Max Born studied electron scattering
                          using quantum mechanics (where he used PHI*PHI
                          of the quantum wave functions to predict the
                          electron scattering amplitudes), he also
                          described the incoming electrons as a plane
                          wave moving forward with the de Broglie
                          wavelength towards the target. I think this is
                          the general analytical procedure used in
                          scattering experiments.  In my charged photon
                          model the helically circulating charged
                          photon, corresponding to a moving electron, is
                          emitting a plane wave of wavelength lambda =
                          h/(gamma mc) and frequency f=(gamma mc^2)/h
                           along the direction of its helical
                          trajectory, which makes a forward angle theta
                          with the helical axis given by cos
                          (theta)=v/c. Planes of constant phase emitted
                          from the charged photon in this way intersect
                          the helical axis of the charged photon. When a
                          charged photon has traveled one relativistic
                          wavelength lambda = h/(gamma mc) along the
                          helical axis, the intersection point of this
                          wave front with the helical axis has traveled
                          (as seen from the geometry of Figure 2 in my
                          charged photon article) a distance
                          lambda/cos(theta) =  lambda / (v/c) = h/(gamma
                          mv)  i.e the relativistic de Broglie
                          wavelength along the helical axis.</div>
                      </blockquote>
                      Here I have a question with respect to your Figure
                      2. The circling charged photon is accompanied by a
                      wave which moves at any moment in the direction of
                      the photon on its helical path. This wave has its
                      normal wavelength in the direction along this
                      helical path. But if now this wave is projected
                      onto the axis of the helix, which is the axis of
                      the moving electron, then the projected wave will
                      be shorter than the original one. So the equation
                      will not be  lambda<sub class="">deBroglie</sub> =
                      lambda<sub class="">photon</sub> / cos theta ,
                      but: lambda<sub class="">deBroglie</sub> = lambda<sub
                        class="">photon</sub> * cos theta . The result
                      will not be the (extended) de Broglie wave but a
                      shortened wave. Or do I completely misunderstand
                      the situation here?<br class="">
                      <br class="">
                      Or let's use another view to the process. Lets
                      imagine a scattering process of the electron at a
                      double slit. This was the experiment where the de
                      Broglie wavelength turned out to be helpful.
                      <br class="">
                      So, when now the electron, and that means the
                      cycling photon, approaches the slits, it will
                      approach at a slant angle theta at the layer which
                      has the slits. Now assume the momentary phase such
                      that the wave front reaches two slits at the same
                      time (which means that the photon at this moment
                      moves downwards or upwards, but else straight with
                      respect to the azimuth). This situation is similar
                      to the front wave of a
                      <i class="">single</i> normal photon which moves
                      upwards or downwards by an angle theta. There is
                      now no phase difference between the right and the
                      left slit. Now the question is whether this
                      coming-down (or -up) will change the temporal
                      sequence of the phases (say: of the maxima of the
                      wave). This distance (by time or by length)
                      determines at which angle the next interference
                      maxima to the right or to the left will occur
                      behind the slits.
                      <br class="">
                      <br class="">
                      To my understanding the temporal distance will be
                      the same distance as of wave maxima on the helical
                      path of the photon, where the latter is  lambda<sub
                        class="">1</sub> = c / frequency; frequency =
                      (gamma*mc<sup class="">2</sup>) / h. So, the
                      geometric distance of the wave maxima passing the
                      slits is   lambda<sub class="">1</sub> = c*h /
                      (gamma*mc<sup class="">2</sup>). Also here the
                      result is a shortened wavelength rather than an
                      extended one, so not the de Broglie wavelength.<br
                        class="">
                      <br class="">
                      Again my question: What do I misunderstand?<br
                        class="">
                      <br class="">
                      For the other topics of your answer I essentially
                      agree, so I shall stop here.<br class="">
                      <br class="">
                      Best regards<br class="">
                      Albrecht<br class="">
                      <br class="">
                      <blockquote type="cite" class="">
                        <div class=""><br class="">
                        </div>
                        <div class="">     Now as seen from this
                          geometry, the slower the electron’s velocity
                          v, the longer is the electron’s de Broglie
                          wavelength — also as seen from the
                          relativistic de Broglie wavelength formula Ldb
                          =  h/(gamma mv). For a resting electron (v=0)
                          the de Broglie wavelength is undefined in this
                          formula as also in my model for v = 0. Here,
                          for stationary electron, the charged photon’s
                          emitted wave fronts (for waves of wavelength
                          equal to the Compton wavelength h/mc)
                           intersect the axis of the circulating photon
                          along its whole length rather than at a single
                          point along the helical axis. This condition
                          corresponds to the condition where de Broglie
                          said (something like) that the electron
                          oscillates with the frequency given by f =
                          mc^2/h for the stationary electron, and that
                          the phase of the wave of this oscillating
                          electron is the same at all points in space.
                          But when the electron is moving slowly, long
                          de Broglie waves are formed along the axis of
                          the moving electron.</div>
                        <div class=""><br class="">
                        </div>
                        <div class="">     In this basic plane wave
                          model there is no limitation on how far to the
                          sides of the charged photon the plane wave
                          fronts extend. In a more detailed model a
                          finite side-spreading of the plane wave would
                          correspond to a pulse of many forward moving
                          electrons that is limited in both longitudinal
                          and lateral extent (here a Fourier description
                          of the wave front for a pulse of electrons of
                          a particular spatial extent would probably
                          come into play), which is beyond the present
                          description.</div>
                        <div class=""><br class="">
                        </div>
                        <div class="">     You asked what an observer
                          standing beside the resting electron, but not
                          in the plane of the charged photon's internal
                          circular motion) would observe as the
                          circulating charged photon emits a plane wave
                          long its trajectory. The plane wave’s
                          wavelength emitted by the circling charged
                          photon would be the Compton wavelength h/mc.
                          So when the charged photon is moving more
                          towards (but an an angle to) the stationary
                          observer, he would observe a wave of
                          wavelength h/mc (which you call c/ny where ny
                          is the frequency of charged photon’s orbital
                          motion) coming towards and past him. This is
                          not the de Broglie wavelength (which is
                          undefined here and is only defined on the
                          helical axis of the circulating photon for a
                          moving electron) but is the Compton wavelength
                          h/mc of the circulating photon of a resting
                          electron. As the charged photon moves more
                          away from the observer, he would observe a
                          plane wave of wavelength h/mc moving away from
                          him in the direction of the receding charged
                          photon. But it is more complicated than this,
                          because the observer at the side of the
                          stationary electron (circulating charged
                          photon) will also be receiving all the other
                          plane waves with different phases emitted at
                          other angles from the circulating charged
                          photon during its whole circular trajectory.
                          In fact all of these waves from the charged
                          photon away from the circular axis or helical
                          axis will interfere and may actually cancel
                          out or partially cancel out (I don’t know),
                          leaving a net result only along the axis of
                          the electron, which if the electron is moving,
                          corresponds to the de Broglie wavelength along
                          this axis. This is hard to visualize in 3-D
                          and this is why I think a 3-D computer graphic
                          model of this plane-wave emitting process for
                          a moving or stationary electron would be very
                          helpful and informative.</div>
                        <div class=""><br class="">
                        </div>
                        <div class="">    You asked about the electric
                          charge of the charged photon and how it
                          affects this process. Clearly the plane waves
                          emitted by the circulating charged photon have
                          to be different from the plane waves emitted
                          by an uncharged photon, because these plane
                          waves generate the quantum wave functions PHI
                          that predict the probabilities of finding
                          electrons or photons respectively in the
                          future from their PHI*PHI functions. Plus the
                          charged photon has to be emitting an
                          additional electric field (not emitted by a
                          regular uncharged photon), for example caused
                          by virtual uncharged photons as described in
                          QED, that produces the electrostatic field of
                          a stationary electron or the electro-magnetic
                          field around a moving electron. </div>
                        <div class=""><br class="">
                        </div>
                        <div class="">    I hope this helps. Thanks
                          again for your excellent questions.</div>
                        <div class=""><br class="">
                        </div>
                        <div class="">      with best regards,</div>
                        <div class="">           Richard</div>
                        <div class=""><br class="">
                        </div>
                        <br class="">
                        <div class="">
                          <blockquote type="cite" class="">
                            <div class="">On Oct 19, 2015, at 8:13 AM,
                              Dr. Albrecht Giese <<a
                                moz-do-not-send="true"
                                href="mailto:genmail@a-giese.de"
                                class="" target="_blank"><a class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de">genmail@a-giese.de</a></a>>
                              wrote:</div>
                            <br class="Apple-interchange-newline">
                            <div class="">
                              <div bgcolor="#FFFFFF" class="">Richard:<br
                                  class="">
                                <br class="">
                                I am still busy to understand the de
                                Broglie wavelength from your model. I
                                think that I understand your general
                                idea, but I would like to also
                                understand the details.
                                <br class="">
                                <br class="">
                                If a photon moves straight in the free
                                space, how does the wave look like? You
                                say that the photon emits a plane wave.
                                If the photon is alone and moves
                                straight, then the wave goes with the
                                photon. No problem. And the wave front
                                is in the forward direction. Correct?
                                How far to the sides is the wave
                                extended? That may be important in case
                                of the photon in the electron.<br
                                  class="">
                                <br class="">
                                With the following I refer to the
                                figures 1 and 2 in your paper referred
                                in your preceding mail.<br class="">
                                <br class="">
                                In the electron, the photon moves
                                according to your model on a circuit. It
                                moves on a helix when the electron is in
                                motion. But let take us first the case
                                of the electron at rest, so that the
                                photon moves on this circuit. In any
                                moment the plane wave accompanied with
                                the photon will momentarily move in the
                                tangential direction of the circuit. But
                                the direction will permanently change to
                                follow the path of the photon on the
                                circuit. What is then about the motion
                                of the wave? The front of the wave
                                should follow this circuit. Would an
                                observer next to the electron at rest
                                (but not in the plane of the internal
                                motion) notice the wave? This can only
                                happen, I think, if the wave does not
                                only propagate on a straight path
                                forward but has an extension to the
                                sides. Only if this is the case, there
                                will be a wave along the axis of the
                                electron. Now an observer next to the
                                electron will see a modulated wave
                                coming from the photon, which will be
                                modulated with the frequency of the
                                rotation, because the photon will in one
                                moment be closer to the observer and in
                                the next moment be farer from him. Which
                                wavelength will be noticed by the
                                observer? It should be lambda = c / ny,
                                where c is the speed of the propagation
                                and ny the frequency of the orbital
                                motion. But this lambda is by my
                                understanding not be the de Broglie wave
                                length.<br class="">
                                <br class="">
                                For an electron at rest your model
                                expects a wave with a momentarily
                                similar phase for all points in space.
                                How can this orbiting photon cause this?
                                And else, if the electron is not at rest
                                but moves at a very small speed, then
                                the situation will not be very different
                                from that of the electron at rest.<br
                                  class="">
                                <br class="">
                                Further: What is the influence of the
                                charge in the photon? There should be a
                                modulated electric field around the
                                electron with a frequency ny which
                                follows also from E = h*ny, with E the
                                dynamical energy of the photon. Does
                                this modulated field have any influence
                                to how the electron interacts with
                                others? <br class="">
                                <br class="">
                                Some questions, perhaps you can help me
                                for a better understanding.<br class="">
                                <br class="">
                                With best regards and thanks in advance<br
                                  class="">
                                Albrecht<br class="">
                                <br class="">
                                PS: I shall answer you mail from last
                                night tomorrow.<br class="">
                                <br class="">
                                <br class="">
                                <div class="moz-cite-prefix">Am
                                  14.10.2015 um 22:32 schrieb Richard
                                  Gauthier:<br class="">
                                </div>
                                <blockquote type="cite" class="">
                                  <div class="">Hello Albrecht,</div>
                                  <div class=""><br class="">
                                  </div>
                                  <div class="">    I second David’s
                                    question. The last I heard
                                    authoritatively, from cosmologist
                                    Sean Carroll - "The Particle at the
                                    End of the Universe” (2012), is that
                                    fermions are not affected by the
                                    strong nuclear force. If they were,
                                    I think it would be common
                                    scientific knowledge by now. </div>
                                  <div class=""><br class="">
                                  </div>
                                  <div class="">You wrote: "<span
                                      class=""
                                      style="font-family:HelveticaNeue,'Helvetica
                                      Neue',Helvetica,Arial,'Lucida
                                      Grande',sans-serif;
                                      font-size:16px;
                                      background-color:rgb(255,255,255)">I
                                      see it as a valuable goal for the
                                      further development to find an
                                      answer (a</span><span class=""
                                      style="font-family:HelveticaNeue,'Helvetica
                                      Neue',Helvetica,Arial,'Lucida
                                      Grande',sans-serif;
                                      font-size:16px;
                                      background-color:rgb(255,255,255)"> </span><i
                                      class=""
                                      style="font-family:HelveticaNeue,'Helvetica
                                      Neue',Helvetica,Arial,'Lucida
                                      Grande',sans-serif;
                                      font-size:16px">physical </i><span
                                      class=""
                                      style="font-family:HelveticaNeue,'Helvetica
                                      Neue',Helvetica,Arial,'Lucida
                                      Grande',sans-serif;
                                      font-size:16px;
                                      background-color:rgb(255,255,255)">answer!)

                                      to the question of the de Broglie
                                      wavelength."</span></div>
                                  <div class="">  My spin 1/2 charged
                                    photon model DOES give a simple
                                    physical explanation for the origin
                                    of the de Broglie wavelength. The
                                    helically-circulating charged photon
                                    is proposed to emit a plane wave
                                    directed along its helical path
                                    based on its relativistic wavelength
                                    lambda = h/(gamma mc) and
                                    relativistic frequency f=(gamma
                                    mc^2)/h. The wave fronts of this
                                    plane wave intersect the axis of the
                                    charged photon’s helical trajectory,
                                    which is the path of the electron
                                    being modeled by the charged photon,
                                    creating a de Broglie wave pattern
                                    of wavelength h/(gamma mv) which
                                    travels along the charged photon’s
                                    helical axis at speed c^2/v. For a
                                    moving electron, the wave fronts
                                    emitted by the charged photon do not
                                    intersect the helical axis
                                    perpendicularly but at an angle (see
                                    Figure 2 of my SPIE paper at <a
                                      moz-do-not-send="true"
                                      class="moz-txt-link-freetext"
href="https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength"
                                      target="_blank"><a class="moz-txt-link-freetext" href="https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength">https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength</a></a> )

                                    that is simply related to the speed
                                    of the electron being modeled.  This
                                    physical origin of the electron’s de
                                    Broglie wave is similar to when a
                                    series of parallel and evenly-spaced
                                    ocean waves hits a straight beach at
                                    an angle greater than zero degrees
                                    to the beach — a wave pattern is
                                    produced at the beach that travels
                                    in one direction along the beach at
                                    a speed faster than the speed of the
                                    waves coming in from the ocean. But
                                    that beach wave pattern can't
                                    transmit “information” along the
                                    beach faster than the speed of the
                                    ocean waves, just as the de Broglie
                                    matter-wave can’t (according to
                                    special relativity) transmit
                                    information faster than light, as de
                                    Broglie recognized.  As far as I
                                    know this geometric interpretation
                                    for the generation of the
                                    relativistic electron's de Broglie
                                    wavelength, phase velocity, and
                                    matter-wave equation is unique.</div>
                                  <div class=""><br class="">
                                  </div>
                                  <div class="">  For a resting (v=0)
                                    electron, the de Broglie wavelength
                                    lambda = h/(gamma mv) is not defined
                                    since one can’t divide by zero. It
                                    corresponds to the ocean wave fronts
                                    in the above example hitting the
                                    beach at a zero degree angle, where
                                    no velocity of the wave pattern
                                    along the beach can be defined.</div>
                                  <div class=""><br class="">
                                  </div>
                                  <div class="">  <span class=""
                                      style="color:rgb(37,37,37);
                                      line-height:22px;
                                      background-color:rgb(255,255,255)">Schrödinger</span> took
                                    de Broglie’s matter-wave and used
                                     it non-relativistically with a
                                    potential V  to generate the <span
                                      class=""
                                      style="color:rgb(37,37,37);
                                      line-height:22px;
                                      background-color:rgb(255,255,255)">Schrödinger</span> equation

                                    and wave mechanics, which is
                                    mathematically identical in its
                                    predictions to Heisenberg’s matrix
                                    mechanics. Born interpreted Psi*Psi
                                    of the <span class=""
                                      style="color:rgb(37,37,37);
                                      line-height:22px;
                                      background-color:rgb(255,255,255)">Schrödinger</span> equation

                                    as the probability density for the
                                    result of an experimental
                                    measurement and this worked well for
                                    statistical predictions. Quantum
                                    mechanics was built on this de
                                    Broglie wave foundation and Born's
                                    probabilistic interpretation (using
                                    Hilbert space math.)</div>
                                  <div class=""><br class="">
                                  </div>
                                  <div class="">  The charged photon
                                    model of the electron might be used
                                    to derive the <span class=""
                                      style="color:rgb(37,37,37);
                                      line-height:22px;
                                      background-color:rgb(255,255,255)">Schrödinger</span> equation,
                                    considering the electron to be a
                                    circulating charged photon that
                                    generates the electron’s
                                    matter-wave, which depends on the
                                    electron’s variable kinetic energy
                                    in a potential field. This needs to
                                    be explored further, which I began
                                    in <a moz-do-not-send="true"
href="https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schr%C3%B6dinger_Equation"
                                      class="" target="_blank">https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schrödinger_Equation</a> .

                                    Of course, to treat the electron
                                    relativistically requires the Dirac
                                    equation. But the spin 1/2 charged
                                    photon model of the relativistic
                                    electron has a number of features of
                                    the Dirac electron, by design.</div>
                                  <div class=""><br class="">
                                  </div>
                                  <div class="">  As to why the charged
                                    photon circulates helically rather
                                    than moving in a straight line (in
                                    the absence of diffraction, etc)
                                    like an uncharged photon, this could
                                    be the effect of the charged photon
                                    moving in the Higgs field, which
                                    turns a speed-of-light particle with
                                    electric charge into a
                                    less-than-speed-of-light particle
                                    with a rest mass, which in this case
                                    is the electron’s rest mass 0.511
                                    MeV/c^2 (this value is not predicted
                                    by the Higgs field theory however.)
                                    So the electron’s inertia may also
                                    be caused by the Higgs field. I
                                    would not say that an unconfined
                                    photon has inertia, although it has
                                    energy and momentum but no rest
                                    mass, but opinions differ on this
                                    point. “Inertia” is a vague term and
                                    perhaps should be dropped— it
                                    literally means "inactive,
                                    unskilled”.</div>
                                  <div class=""><br class="">
                                  </div>
                                  <div class="">  You said that a
                                    faster-than-light phase wave can
                                    only be caused by a superposition of
                                    waves. I’m not sure this is correct,
                                    since in my charged photon model a
                                    single plane wave pattern emitted by
                                    the circulating charged photon
                                    generates the electron’s
                                    faster-than-light phase wave of
                                    speed c^2/v . A group velocity of an
                                    electron model may be generated by a
                                    superposition of waves to produce a
                                    wave packet whose group velocity
                                    equals the slower-than-light speed
                                    of an electron modeled by such an
                                    wave-packet approach.</div>
                                  <div class=""><br class="">
                                  </div>
                                  <div class="">with best regards,</div>
                                  <div class="">       Richard</div>
                                  <br>
                                </blockquote>
                              </div>
                            </div>
                          </blockquote>
                        </div>
                      </blockquote>
                    </div>
                  </div>
                </blockquote>
              </div>
            </blockquote>
            <br>
            <br>
            <br>
            <hr style="border:none; color:#909090;
              background-color:#B0B0B0; height:1px; width:99%">
            <table style="border-collapse:collapse; border:none">
              <tbody>
                <tr>
                  <td style="border:none; padding:0px 15px 0px 8px"><a
                      moz-do-not-send="true"
                      href="https://www.avast.com/antivirus"
                      target="_blank"><img moz-do-not-send="true"
                        src="http://static.avast.com/emails/avast-mail-stamp.png"
                        alt="Avast logo" border="0">
                    </a></td>
                  <td>
                    <p style="color:#3d4d5a;
                      font-family:"Calibri","Verdana","Arial","Helvetica";
                      font-size:12pt">
                      Diese E-Mail wurde von Avast Antivirus-Software
                      auf Viren geprüft. <br>
                      <a moz-do-not-send="true"
                        href="https://www.avast.com/antivirus"
                        target="_blank">www.avast.com</a> </p>
                  </td>
                </tr>
              </tbody>
            </table>
            <br>
          </div>
        </div>
      </div>
    </blockquote>
    <br>
  
<br /><br />
<hr style='border:none; color:#909090; background-color:#B0B0B0; height: 1px; width: 99%;' />
<table style='border-collapse:collapse;border:none;'>
        <tr>
                <td style='border:none;padding:0px 15px 0px 8px'>
                        <a href="https://www.avast.com/antivirus">
                                <img border=0 src="http://static.avast.com/emails/avast-mail-stamp.png" alt="Avast logo" />
                        </a>
                </td>
                <td>
                        <p style='color:#3d4d5a; font-family:"Calibri","Verdana","Arial","Helvetica"; font-size:12pt;'>
                                Diese E-Mail wurde von Avast Antivirus-Software auf Viren geprüft.
                                <br><a href="https://www.avast.com/antivirus">www.avast.com</a>
                        </p>
                </td>
        </tr>
</table>
<br />
</body>
</html>