<div dir="ltr">Dear Martin,<div><br></div><div>I am not sure whether or not you were expressing doubt as to the provenance of the wave equation, and what Schrodinger owed to de Broglie, but in either case you would probably enjoy reading this first person account by Felix Bloch </div><div><br></div><div><a href="http://www.physics.smu.edu/scalise/P5382fa15/FelixBlochPhysTodayDec1976b.pdf">http://www.physics.smu.edu/scalise/P5382fa15/FelixBlochPhysTodayDec1976b.pdf</a></div><div><br></div><div>As for EPR, it would probably make sense to start another thread, I'll leave that to you or anyone else who wishes to reply to decide if it's worth doing. I am biased by my own thinking against your claim of spooky action. To be honest, I could never bring myself to believe that the properties of a particle are indeterminate in the way standardly thought. The pilot wave model makes much more sense than, and the same predictions as, the mysterian Copenhagen, "particles are smears and reality does not exist until I look at it" <i>niaiserie</i>. </div><div><br></div><div>I could be wrong, and would welcome correction from those with more physics experience than me, but there seems to be an enormous conceptual leap from the notion that A) We cannot know, even in principle, whether 1 or 2 obtains, to B) Neither 1 nor 2 actually obtains (they are in superposition) until actually measured. It seems to me a grotesque error, and this is a long story of course. Many people have weighed in. It is a conceptual leap like that from A) The Universe exists, to B) The Creator of the Universe does not want me to have sex with people who are the same gender as myself. The chasm between these propositions can only be spanned by some enormous error. </div><div><br></div><div>A positron was trapped for so long by Dehmelt that he gave it a proper name: Priscilla. </div><div><br></div><div><i>Dehmelt says: “[t]here can be little doubt
about the identity of Priscilla during this period, since in
ultrahigh vacuum she never had a chance to trade places
with a passing antimatter twin. The well-defined identity of
this elementary particle is something fundamentally new,
which deserves to be recognized by being given a name, as
pets are give names of persons” <br></i></div><div><i> </i></div><div>I can accept that reality is nonlocal (in a certain sense), and I have been aware of the intense problem which is supposedly posed for relativity by Bell's inequalities and the notion of entanglement. Supposedly there is no actual information transmitted faster than light, but all the same the state of one entangled particle is altered by measuring the other one. Why is it so hard for people to accept that there is no alteration going on, and it is just as if I colored a marble white and a marble black, and sent them to two different people in the mail? The person who opens the envelope and sees a black marble knows that the other person has the white one, but there was no spooky action at a distance going on. So what if there is no way of knowing, <i>even in principle</i>, whether a particle is spin up or spin down? Are we humans really so arrogant that by instinct we must project ontological restrictions out of our epistemological ones?</div><div><br></div><div>The Schrodinger equation gives us probabilities. Quantum physics is a statistical theory. Thus all of its predictions hold in the long time limit (an electron in a box over sufficient cycles of the electron's frequency), or the multiple particle limit (diffraction experiments). This alone should be enough for thinking individuals to realize that quantum physics is not the end of the road.   </div><div><br></div><div>Adam</div><div><br></div><div>    </div><div><br></div><div> </div></div><div class="gmail_extra"><br><div class="gmail_quote">On Thu, Oct 22, 2015 at 10:18 AM, Dr. Albrecht Giese <span dir="ltr"><<a href="mailto:genmail@a-giese.de" target="_blank">genmail@a-giese.de</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
  
    
  
  <div text="#000000" bgcolor="#FFFFFF">
    Hello Richard,<br>
    <br>
    thank you and see my comments below.<span class=""><br>
    <br>
    <div>Am 22.10.2015 um 00:32 schrieb Richard
      Gauthier:<br>
    </div>
    <blockquote type="cite">
      
      <div>Hello Albert (and all),</div>
      <div><br>
      </div>
      <div> I think your fundamental objection that you
        mentioned earlier can be answered below.</div>
      <div><br>
      </div>
      <div> The left side of the big triangle in Figure 2 in my
        article is a purely mathematical unfolding of the path of the
        helical trajectory, to hopefully show more clearly the
        generation of de Broglie wavelengths from plane waves emitted by
        the actual charged photon moving along the helical trajectory.
        Nothing is actually moving off into space along this line.</div>
      <div><br>
      </div>
      <div> Consider an electron moving with velocity v
        horizontally along the helical axis. Since in Figure 2 in my
        article, cos (theta) = v/c , the corresponding velocity of the
        charged photon along the helical path is v/ cos(theta) = c , the
        speed of the charged photon, which we knew already because the
        helical trajectory was defined so that this is the case. In a
        short time T, the electron has moved a distance Delectron = vT
        horizontally and the photon has moved a distance Dphoton =
        Delectron/cos(theta) =vT/cos(theta) = cT along its helical
        trajectory.</div>
    </blockquote></span>
    I agree.
    <span class=""><blockquote type="cite">
      <div> A plane wave front emitted from the photon at the
        distance Dphoton = cT along the photon’s helical path will
        intersect the base of the big triangle (the helical axis) at the
        distance along the base given by Dwavefront = Dphoton /
        cos(theta) = cT/ (v/c) = T *  (c^2)/v  which means the
        intersection point of the plane wave with the helical axis is
        moving with a speed c^2/v which is the de Broglie wave’s phase
        velocity. </div>
    </blockquote></span>
    Here I disagree. If we assume the wave front as an extended layer
    through the photon and with an orientation perpendicular to the
    actual direction of the photon, then the intersect point of this
    layer with the axis has the same z coordinate as the z-component of
    the photon's position. This is essential. (I have built myself a
    little 3-d model to see this.)<br>
    <br>
    When now, say at time T<sub>0</sub>, a phase maximum of the wave
    front leaves the photon, then the same phase maximum passes the
    intersect point on the axis with the same z coordinate. After a
    while (i.e. after the time T<sub>p</sub>=1/frequency) the next phase
    maximum will exit from the photon and simultaneously the next phase
    maximum will cross the axis. The new z-value (of the photon and of
    the intersect point) is now displaced from the old one by the amount
    delta_z = v * T<sub>p</sub>. During this time the photon will have
    moved by c * T<sub>p</sub> on its helical path.<br>
    <br>
    Now the spacial distance between these two phase maxima, which is
    the wavelength, is: lambda<sub>photon</sub> = c * T<sub>p</sub>, and
    lambda<sub>electron</sub> = v * T<sub>p</sub>. <br>
    <br>
    This is my result. Or what (which detail) is wrong?<br>
    <br>
    best wishes<br>
    Albrecht<br>
    <br>
    <br>
    <blockquote type="cite"><span class="">
      <div>The length of the de Broglie wave itself as shown
        previously from Figure 2 is Ldb =  Lambda-photon / cos(theta) =
        h/(gamma mc) / (v/c) = h/(gamma mv). So as the electron moves
        with velocity v along the z-axis, de Broglie waves of length
        h/(gamma mv) produced along the z-axis are moving with velocity
        c^2/v along the z-axis. The de Broglie waves created by the
        circulating charged photon will speed away from the electron
        (but more will be produced) to take their place, one de Broglie
        wave during each period of the circulating charged photon
        (corresponding to the moving electron). As mentioned previously,
        the period of the circulating charged photon is 1/f = 1/(gamma
        mc^2/h) = h/(gamma mc^2/). As the electron speeds up (v and
        gamma increase) the de Broglie wavelengths h/(gamma mv) are
        shorter and move more slowly, following the speed formula c^2/v
        .</div>
      <div><br>
      </div>
      <br>
      <fieldset></fieldset>
      <br>
      
      </span><div>Unpublished graphic showing the generation of de
        Broglie waves from a moving charged photon along its helical
        trajectory. The corresponding moving electron is the red dot
        moving to the right on the red line. The charged photon is the
        blue dot moving at light speed along the helix.The blue dot has
        moves a distance of one charged photon wavelength h/(gamma mc)
        along the helix from the left corner of the diagram On the left
        diagonal line (representing the mathematically unrolled helix),
        the blue dots correspond to separations of 1 charged photon
        h/(gamma mc) wavelength along the helical axis. In this graphic,
        v/c = 0.5 so cos(theta)= 0.5 and theta= 60 degrees. The group
        velocity is c^2/v = c^2/0.5c = 2 c, the speed of the de Broglie
        waves along the horizontal axis . The distances between the
        intersection points on the horizontal line each correspond to 1
        de Broglie wavelength, which in this example where v=0.5 c  is
        h(gamma mv) = 2 x charged photon wavelength h/(gamma mc).</div>
      <div><br>
      </div>
      <div>  It is true that when the electron is at rest, the
        wave fronts emitted by the circulating charged photon all pass
        through the center of the circular path of the charged photon
        and do not intersect any helical axis, because no helical axis
        is defined for a resting electron, i.e. the pitch of the helix
        of the circulating charged photon is zero. For a very slowly
        moving electron, the pitch of the helix of the circulating
        charged photon is very small but non-zero, but the de Broglie
        wavelength is very large, much larger than the helical pitch.
        Perhaps you are confusing these two lengths — the helical pitch
        of the circulating charged photon and the de Broglie wavelength
        generated by the wave fronts emitted by the circulating charged
        photon. The pitch of the helix starts at zero (for v=0 of the
        electron) and reaches a maximum when the speed of the electron
        is c/sqrt(2) and theta = 45 degrees (see my charged photon
        paper) and then the helical pitch decreases towards zero as the
        speed of the electron further increases towards the speed of
        light. But the de Broglie wavelength Ldb starts very large (when
        the electron is moving very slowly) and decreases uniformly
        towards zero as the speed of the electron increases, as given by
        Ldb = h/gamma mv. It is the de Broglie wavelength generated by
        the charged photon that has predictive physical significance in
        diffraction and double-slit experiments while the helical pitch
        of the charged photon’s helical trajectory has no current
        predictive physical significance (though if experimental
        predictions based on the helical pitch could be made, this could
        be a test of the charged photon model).</div>
      <div><br>
      </div>
      <div>   I don’t have any comments yet on your concerns
        about the de Broglie wavelength that you just expressed to John
        W (below).</div>
      <div><br>
      </div>
      <div>        all the best,</div>
      <div>            Richard</div>
      <br>
      <div>
        <blockquote type="cite">
          <div>On Oct 21, 2015, at 12:42 PM, Dr. Albrecht Giese
            <<a href="mailto:genmail@a-giese.de" target="_blank">genmail@a-giese.de</a>>
            wrote:</div>
          <br>
          <div><small style="font-family:Helvetica;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255)">Dear John
              W and all,<br>
              <br>
              about the<span> </span><u>de Broglie wave</u>:<br>
              <br>
              There are a lot of elegant derivations for the de Broglie
              wave length, that is true. Mathematical deductions. What
              is about the physics behind it?<br>
              <br>
              De Broglie derived this wave in his first paper in the
              intention to explain, why the internal frequency in a
              moving electron is dilated, but this frequency on the
              other hand has to be increased for an external observer to
              reflect the increase of energy. To get a result, he
              invented a "fictitious wave" which has the phase speed
              c/v, where v is the speed of the electron. And he takes
              care to synchronize this wave with the internal frequency
              of the electron. That works and can be used to describe
              the scattering of the electron at the double slit.  -  But
              is this physical understanding? De Broglie himself stated
              that this solution does not fulfil the expectation in a
              "complete theory". Are we any better today?<br>
              <br>
              Let us envision the following situation. An electron moves
              at moderate speed, say 0.1*c (=> gamma=1.02) . An
              observer moves parallel to the electron. What will the
              observer see or measure?<span> </span><br>
              The internal frequency of the electron will be observed by
              him as frequency = m<sub>0</sub>*c<sup>2</sup>/h
              , because in the observer's system the electron is at
              rest. The wave length of the wave leaving the electron
              (e.g. in the model of a circling photon) is now not
              exactly  lambda<sub>1</sub><span> </span>= c/frequency ,
              but a little bit larger as the rulers of the observer are
              a little bit contracted (by gamma = 1.02), so this is a
              small effect. What is now about the phase speed of the de
              Broglie wave? For an observer at rest it must be quite
              large as it is extended by the factor c/v  which is 10.
              For the co-moving observer it is mathematically infinite
              (in fact he will see a constant phase). This is not
              explained by the time dilation (=2%), so not compatible.
              And what about the de Broglie wave length? For the
              co-moving observer, who is at rest in relation to the
              electron, it is lambda<sub>dB</sub><span> </span>= h/(1*m*0), which
              is again infinite or at least extremely large.  For the
              observer at rest there is lambda<sub>dB</sub><span> </span>= h/(1.02*m*0.1c)
              . Also not comparable to the co-moving observer.<br>
              <br>
              To summarize: these differences are not explained by the
              normal SR effects. So, how to explain these incompatible
              results?<br>
              <br>
              Now let's assume, that the electron closes in to the
              double slit. Seen from the co-moving observer, the double
              slit arrangement moves towards him and the electron. What
              are now the parameters which will determine the
              scattering? The (infinite) de Broglie wave length? The
              phase speed which is 10*c ? Remember: For the co-moving
              observer the electron does not move. Only the double slit
              moves and the screen behind the double slit will be ca. 2%
              closer than in the standard case. But will that be a real
              change?<br>
              <br>
              I do not feel that this is a situation which in physically
              understood.<br>
              <br>
              Regards<br>
              Albrecht<br>
            </small><div><div class="h5"><br style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255)">
            <br style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255)">
            <div style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255)">Am 21.10.2015 um
              16:34 schrieb John Williamson:<br>
            </div>
            <blockquote type="cite" style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255)">
              <div style="direction:ltr;font-family:Tahoma;font-size:10pt">Dear all,<br>
                <br>
                The de Broglie wavelength is best understood, in my
                view, in one of two ways. Either read de Broglies thesis
                for his derivation (if you do not read french, Al has
                translated it and it is available online). Alternatively
                derive it yourself. All you need to do is consider the
                interference between a standing wave in one (proper
                frame) as it transforms to other relativistic frames.
                That is standing-wave light-in-a-box. This has been done
                by may folk, many times. Martin did it back in 1991. It
                is in our 1997 paper. One of the nicest illustrations I
                have seen is that of John M - circulated to all of you
                earlier in this series.<br>
                <br>
                It is real, and quite simple.<br>
                <br>
                Regards, John.<br>
                <div style="font-family:'Times New Roman';font-size:16px">
                  <hr>
                  <div style="direction:ltr"><font size="2" face="Tahoma"><b>From:</b><span> </span>General [<a href="mailto:general-bounces+john.williamson=glasgow.ac.uk@lists.natureoflightandparticles.org" target="_blank"></a><a href="mailto:general-bounces+john.williamson=glasgow.ac.uk@lists.natureoflightandparticles.org" target="_blank">general-bounces+john.williamson=glasgow.ac.uk@lists.natureoflightandparticles.org</a>]
                      on behalf of Dr. Albrecht Giese [<a href="mailto:genmail@a-giese.de" target="_blank"></a><a href="mailto:genmail@a-giese.de" target="_blank">genmail@a-giese.de</a>]<br>
                      <b>Sent:</b><span> </span>Wednesday,
                      October 21, 2015 3:14 PM<br>
                      <b>To:</b><span> </span>Richard
                      Gauthier<br>
                      <b>Cc:</b><span> </span>Nature of
                      Light and Particles - General Discussion; David
                      Mathes<br>
                      <b>Subject:</b><span> </span>Re:
                      [General] research papers<br>
                    </font><br>
                  </div>
                  <div>Hello Richard,<br>
                    <br>
                    thanks for your detailed explanation. But I have a
                    fundamental objection.<br>
                    <br>
                    Your figure 2 is unfortunately (but unavoidably)
                    2-dimensional, and that makes a difference to the
                    reality as I understand it.<span> </span><br>
                    <br>
                    In your model the charged electron moves on a helix
                    around the axis of the electron (or equivalently the
                    axis of the helix). That means that the electron has
                    a constant distance to this axis. Correct? But in
                    the view of your figure 2 the photon seems to start
                    on the axis and moves away from it forever. In this
                    latter case the wave front would behave as you write
                    it.<span> </span><br>
                    <br>
                    Now, in the case of a constant distance, the wave
                    front as well intersects the axis, that is true. But
                    this intersection point moves along the axis at the
                    projected speed of the photon to this axis. - You
                    can consider this also in another way. If the
                    electron moves during a time, say T1, in the
                    direction of the axis, then the photon will during
                    this time T1 move a longer distance, as the length
                    of the helical path (call it L)  is of course longer
                    than the length of the path of the electron during
                    this time (call it Z). Now you will during the time
                    T1 have a number of waves (call this N) on the
                    helical path L. On the other hand, the number of
                    waves on the length Z has also to be N. Because
                    otherwise after an arbitrary time the whole
                    situation would diverge. As now Z is smaller than L,
                    the waves on the axis have to be shorter. So, not
                    the de Broglie wave length. That is my
                    understanding.<span> </span><br>
                    <br>
                    In my present view, the de Broglie wave length has
                    no immediate correspondence in the physical reality.
                    I guess that the success of de Broglie in using this
                    wave length may be understandable if we understand
                    in more detail, what happens in the process of
                    scattering of an electron at the double (or
                    multiple) slits.<br>
                    <br>
                    Best wishes<br>
                    Albrecht<br>
                    <br>
                    <br>
                    <div>Am 21.10.2015 um 06:28
                      schrieb<span> </span><br>
                      Richard Gauthier:<br>
                    </div>
                    <blockquote type="cite">
                      <div>Hello Albrecht,</div>
                      <div><br>
                      </div>
                      <div>   Thank you for your effort to
                        understand the physical process described
                        geometrically in my Figure 2. You have indeed
                        misunderstood the Figure as you suspected. The
                        LEFT upper side of the big 90-degree triangle is
                        one wavelength h/(gamma mc) of the charged
                        photon, mathematically unrolled from its
                        two-turned helical shape (because of the
                        double-loop model of the electron) so that its
                        full length h/(gamma mc) along the helical
                        trajectory can be easily visualized. The emitted
                        wave fronts described in my article are
                        perpendicular to this mathematically unrolled
                        upper LEFT side of the triangle (because the
                        plane waves emitted by the charged photon are
                        directed along the direction of the helix when
                        it is coiled (or mathematically uncoiled), and
                        the plane wave fronts are perpendicular to this
                        direction). The upper RIGHT side of the big
                        90-degree triangle corresponds to one of the
                        plane wave fronts (of constant phase along the
                        wave front) emitted at one wavelength lambda =
                        h/(gamma mc) of the helically circulating
                        charged photon. The length of the horizontal
                        base of the big 90-degree triangle, defined by
                        where this upper RIGHT side of the triangle (the
                        generated plane wave front from the charged
                        photon) intersects the horizontal axis of the
                        helically-moving charged photon, is the de
                        Broglie wavelength h/(gamma mv) of the electron
                        model (labeled in the diagram). By geometry the
                        length (the de Broglie wavelength) of this
                        horizontal base of the big right triangle in the
                        Figure is equal to the top left side of the
                        triangle (the photon wavelength h/(gamma mc)
                        divided (not multiplied) by cos(theta) = v/c
                        because we are calculating the hypotenuse of the
                        big right triangle starting from the upper LEFT
                        side of this big right triangle, which is the
                        adjacent side of the big right triangle making
                        an angle theta with the hypotenuse. </div>
                      <div><br>
                      </div>
                      <div>   What you called the projection of
                        the charged photon’s wavelength h/(gamma mc)
                        onto the horizontal axis is actually just the
                        distance D that the electron has moved with
                        velocity v along the x-axis in one period T of
                        the circulating charged photon. That period T
                        equals 1/f = 1/(gamma mc^2/h) = h/(gamma mc^2).
                        By the geometry in the Figure, that distance D
                        is the adjacent side of the smaller 90-degree
                        triangle in the left side of the Figure, making
                        an angle theta with cT,  the hypotenuse of that
                        smaller triangle, and so D = cT cos (theta) = cT
                        x v/c = vT , the distance the electron has moved
                        to the right with velocity v in the time T. In
                        that same time T one de Broglie wavelength has
                        been generated along the horizontal axis of the
                        circulating charged photon. </div>
                      <div><br>
                      </div>
                      <div>   I will answer your question about
                        the double slit in a separate e-mail.</div>
                      <div><br>
                      </div>
                      <div>       <span> </span>all the
                        best,</div>
                      <div>           <span> </span>Richard</div>
                      <br>
                      <div>
                        <blockquote type="cite">
                          <div>On Oct 20, 2015, at 10:06 AM,
                            Dr. Albrecht Giese <<a href="mailto:genmail@a-giese.de" target="_blank"></a><a href="mailto:genmail@a-giese.de" target="_blank">genmail@a-giese.de</a>>
                            wrote:</div>
                          <br>
                          <div>
                            <div bgcolor="#FFFFFF">Hello
                              Richard,<br>
                              <br>
                              thank you for your explanations. I would
                              like to ask further questions and will
                              place them into the text below.<br>
                              <br>
                              <div>Am 19.10.2015
                                um 20:08 schrieb Richard Gauthier:<br>
                              </div>
                              <blockquote type="cite">
                                <div>Hello Albrecht,</div>
                                <div><br>
                                </div>
                                <div>   <span> </span>Thank
                                  your for your detailed questions about
                                  my electron model, which I will answer
                                  as best as I can. </div>
                                <div><br>
                                </div>
                                <div>     My approach of using
                                  the formula e^i(k*r-wt)    =  e^i (k
                                  dot r minus omega t)  for a plane wave
                                  emitted by charged photons is also
                                  used for example in the analysis of
                                  x-ray diffraction from crystals when
                                  you have many incoming parallel
                                  photons in free space moving in phase
                                  in a plane wave. Please see for
                                  example <font size="2"><a href="http://www.pa.uky.edu/%7Ekwng/phy525/lec/lecture_2.pdf" target="_blank"></a><a href="http://www.pa.uky.edu/~kwng/phy525/lec/lecture_2.pdf" target="_blank">http://www.pa.uky.edu/~kwng/phy525/lec/lecture_2.pdf</a></font> .
                                  When Max Born studied electron
                                  scattering using quantum mechanics
                                  (where he used PHI*PHI of the quantum
                                  wave functions to predict the electron
                                  scattering amplitudes), he also
                                  described the incoming electrons as a
                                  plane wave moving forward with the de
                                  Broglie wavelength towards the target.
                                  I think this is the general analytical
                                  procedure used in scattering
                                  experiments.  In my charged photon
                                  model the helically circulating
                                  charged photon, corresponding to a
                                  moving electron, is emitting a plane
                                  wave of wavelength lambda = h/(gamma
                                  mc) and frequency f=(gamma mc^2)/h
                                   along the direction of its helical
                                  trajectory, which makes a forward
                                  angle theta with the helical axis
                                  given by cos (theta)=v/c. Planes of
                                  constant phase emitted from the
                                  charged photon in this way intersect
                                  the helical axis of the charged
                                  photon. When a charged photon has
                                  traveled one relativistic wavelength
                                  lambda = h/(gamma mc) along the
                                  helical axis, the intersection point
                                  of this wave front with the helical
                                  axis has traveled (as seen from the
                                  geometry of Figure 2 in my charged
                                  photon article) a distance
                                  lambda/cos(theta) =  lambda / (v/c) =
                                  h/(gamma mv)  i.e the relativistic de
                                  Broglie wavelength along the helical
                                  axis.</div>
                              </blockquote>
                              Here I have a question with respect to
                              your Figure 2. The circling charged photon
                              is accompanied by a wave which moves at
                              any moment in the direction of the photon
                              on its helical path. This wave has its
                              normal wavelength in the direction along
                              this helical path. But if now this wave is
                              projected onto the axis of the helix,
                              which is the axis of the moving electron,
                              then the projected wave will be shorter
                              than the original one. So the equation
                              will not be  lambda<sub>deBroglie</sub><span> </span>=
                              lambda<sub>photon</sub><span> </span>/
                              cos theta , but: lambda<sub>deBroglie</sub><span> </span>=
                              lambda<sub>photon</sub><span> </span>*
                              cos theta . The result will not be the
                              (extended) de Broglie wave but a shortened
                              wave. Or do I completely misunderstand the
                              situation here?<br>
                              <br>
                              Or let's use another view to the process.
                              Lets imagine a scattering process of the
                              electron at a double slit. This was the
                              experiment where the de Broglie wavelength
                              turned out to be helpful.<span> </span><br>
                              So, when now the electron, and that means
                              the cycling photon, approaches the slits,
                              it will approach at a slant angle theta at
                              the layer which has the slits. Now assume
                              the momentary phase such that the wave
                              front reaches two slits at the same time
                              (which means that the photon at this
                              moment moves downwards or upwards, but
                              else straight with respect to the
                              azimuth). This situation is similar to the
                              front wave of a<span> </span><i>single</i><span> </span>normal
                              photon which moves upwards or downwards by
                              an angle theta. There is now no phase
                              difference between the right and the left
                              slit. Now the question is whether this
                              coming-down (or -up) will change the
                              temporal sequence of the phases (say: of
                              the maxima of the wave). This distance (by
                              time or by length) determines at which
                              angle the next interference maxima to the
                              right or to the left will occur behind the
                              slits.<span> </span><br>
                              <br>
                              To my understanding the temporal distance
                              will be the same distance as of wave
                              maxima on the helical path of the photon,
                              where the latter is  lambda<sub>1</sub><span> </span>=
                              c / frequency; frequency = (gamma*mc<sup>2</sup>) / h. So, the geometric
                              distance of the wave maxima passing the
                              slits is   lambda<sub>1</sub><span> </span>=
                              c*h / (gamma*mc<sup>2</sup>).
                              Also here the result is a shortened
                              wavelength rather than an extended one, so
                              not the de Broglie wavelength.<br>
                              <br>
                              Again my question: What do I
                              misunderstand?<br>
                              <br>
                              For the other topics of your answer I
                              essentially agree, so I shall stop here.<br>
                              <br>
                              Best regards<br>
                              Albrecht<br>
                              <br>
                              <blockquote type="cite">
                                <div><br>
                                </div>
                                <div>     Now as seen from this
                                  geometry, the slower the electron’s
                                  velocity v, the longer is the
                                  electron’s de Broglie wavelength —
                                  also as seen from the relativistic de
                                  Broglie wavelength formula Ldb =
                                   h/(gamma mv). For a resting electron
                                  (v=0) the de Broglie wavelength is
                                  undefined in this formula as also in
                                  my model for v = 0. Here, for
                                  stationary electron, the charged
                                  photon’s emitted wave fronts (for
                                  waves of wavelength equal to the
                                  Compton wavelength h/mc)  intersect
                                  the axis of the circulating photon
                                  along its whole length rather than at
                                  a single point along the helical axis.
                                  This condition corresponds to the
                                  condition where de Broglie said
                                  (something like) that the electron
                                  oscillates with the frequency given by
                                  f = mc^2/h for the stationary
                                  electron, and that the phase of the
                                  wave of this oscillating electron is
                                  the same at all points in space. But
                                  when the electron is moving slowly,
                                  long de Broglie waves are formed along
                                  the axis of the moving electron.</div>
                                <div><br>
                                </div>
                                <div>     In this basic plane
                                  wave model there is no limitation on
                                  how far to the sides of the charged
                                  photon the plane wave fronts extend.
                                  In a more detailed model a finite
                                  side-spreading of the plane wave would
                                  correspond to a pulse of many forward
                                  moving electrons that is limited in
                                  both longitudinal and lateral extent
                                  (here a Fourier description of the
                                  wave front for a pulse of electrons of
                                  a particular spatial extent would
                                  probably come into play), which is
                                  beyond the present description.</div>
                                <div><br>
                                </div>
                                <div>     You asked what an
                                  observer standing beside the resting
                                  electron, but not in the plane of the
                                  charged photon's internal circular
                                  motion) would observe as the
                                  circulating charged photon emits a
                                  plane wave long its trajectory. The
                                  plane wave’s wavelength emitted by the
                                  circling charged photon would be the
                                  Compton wavelength h/mc. So when the
                                  charged photon is moving more towards
                                  (but an an angle to) the stationary
                                  observer, he would observe a wave of
                                  wavelength h/mc (which you call c/ny
                                  where ny is the frequency of charged
                                  photon’s orbital motion) coming
                                  towards and past him. This is not the
                                  de Broglie wavelength (which is
                                  undefined here and is only defined on
                                  the helical axis of the circulating
                                  photon for a moving electron) but is
                                  the Compton wavelength h/mc of the
                                  circulating photon of a resting
                                  electron. As the charged photon moves
                                  more away from the observer, he would
                                  observe a plane wave of wavelength
                                  h/mc moving away from him in the
                                  direction of the receding charged
                                  photon. But it is more complicated
                                  than this, because the observer at the
                                  side of the stationary electron
                                  (circulating charged photon) will also
                                  be receiving all the other plane waves
                                  with different phases emitted at other
                                  angles from the circulating charged
                                  photon during its whole circular
                                  trajectory. In fact all of these waves
                                  from the charged photon away from the
                                  circular axis or helical axis will
                                  interfere and may actually cancel out
                                  or partially cancel out (I don’t
                                  know), leaving a net result only along
                                  the axis of the electron, which if the
                                  electron is moving, corresponds to the
                                  de Broglie wavelength along this axis.
                                  This is hard to visualize in 3-D and
                                  this is why I think a 3-D computer
                                  graphic model of this plane-wave
                                  emitting process for a moving or
                                  stationary electron would be very
                                  helpful and informative.</div>
                                <div><br>
                                </div>
                                <div>   <span> </span>You
                                  asked about the electric charge of the
                                  charged photon and how it affects this
                                  process. Clearly the plane waves
                                  emitted by the circulating charged
                                  photon have to be different from the
                                  plane waves emitted by an uncharged
                                  photon, because these plane waves
                                  generate the quantum wave functions
                                  PHI that predict the probabilities of
                                  finding electrons or photons
                                  respectively in the future from their
                                  PHI*PHI functions. Plus the charged
                                  photon has to be emitting an
                                  additional electric field (not emitted
                                  by a regular uncharged photon), for
                                  example caused by virtual uncharged
                                  photons as described in QED, that
                                  produces the electrostatic field of a
                                  stationary electron or the
                                  electro-magnetic field around a moving
                                  electron. </div>
                                <div><br>
                                </div>
                                <div>   <span> </span>I
                                  hope this helps. Thanks again for your
                                  excellent questions.</div>
                                <div><br>
                                </div>
                                <div>     <span> </span>with
                                  best regards,</div>
                                <div>           Richard</div>
                                <div><br>
                                </div>
                                <br>
                                <div>
                                  <blockquote type="cite">
                                    <div>On Oct 19, 2015, at
                                      8:13 AM, Dr. Albrecht Giese <<a href="mailto:genmail@a-giese.de" target="_blank"></a><a href="mailto:genmail@a-giese.de" target="_blank">genmail@a-giese.de</a>>
                                      wrote:</div>
                                    <br>
                                    <div>
                                      <div bgcolor="#FFFFFF">Richard:<br>
                                        <br>
                                        I am still busy to understand
                                        the de Broglie wavelength from
                                        your model. I think that I
                                        understand your general idea,
                                        but I would like to also
                                        understand the details.<span> </span><br>
                                        <br>
                                        If a photon moves straight in
                                        the free space, how does the
                                        wave look like? You say that the
                                        photon emits a plane wave. If
                                        the photon is alone and moves
                                        straight, then the wave goes
                                        with the photon. No problem. And
                                        the wave front is in the forward
                                        direction. Correct? How far to
                                        the sides is the wave extended?
                                        That may be important in case of
                                        the photon in the electron.<br>
                                        <br>
                                        With the following I refer to
                                        the figures 1 and 2 in your
                                        paper referred in your preceding
                                        mail.<br>
                                        <br>
                                        In the electron, the photon
                                        moves according to your model on
                                        a circuit. It moves on a helix
                                        when the electron is in motion.
                                        But let take us first the case
                                        of the electron at rest, so that
                                        the photon moves on this
                                        circuit. In any moment the plane
                                        wave accompanied with the photon
                                        will momentarily move in the
                                        tangential direction of the
                                        circuit. But the direction will
                                        permanently change to follow the
                                        path of the photon on the
                                        circuit. What is then about the
                                        motion of the wave? The front of
                                        the wave should follow this
                                        circuit. Would an observer next
                                        to the electron at rest (but not
                                        in the plane of the internal
                                        motion) notice the wave? This
                                        can only happen, I think, if the
                                        wave does not only propagate on
                                        a straight path forward but has
                                        an extension to the sides. Only
                                        if this is the case, there will
                                        be a wave along the axis of the
                                        electron. Now an observer next
                                        to the electron will see a
                                        modulated wave coming from the
                                        photon, which will be modulated
                                        with the frequency of the
                                        rotation, because the photon
                                        will in one moment be closer to
                                        the observer and in the next
                                        moment be farer from him. Which
                                        wavelength will be noticed by
                                        the observer? It should be
                                        lambda = c / ny, where c is the
                                        speed of the propagation and ny
                                        the frequency of the orbital
                                        motion. But this lambda is by my
                                        understanding not be the de
                                        Broglie wave length.<br>
                                        <br>
                                        For an electron at rest your
                                        model expects a wave with a
                                        momentarily similar phase for
                                        all points in space. How can
                                        this orbiting photon cause this?
                                        And else, if the electron is not
                                        at rest but moves at a very
                                        small speed, then the situation
                                        will not be very different from
                                        that of the electron at rest.<br>
                                        <br>
                                        Further: What is the influence
                                        of the charge in the photon?
                                        There should be a modulated
                                        electric field around the
                                        electron with a frequency ny
                                        which follows also from E =
                                        h*ny, with E the dynamical
                                        energy of the photon. Does this
                                        modulated field have any
                                        influence to how the electron
                                        interacts with others?<span> </span><br>
                                        <br>
                                        Some questions, perhaps you can
                                        help me for a better
                                        understanding.<br>
                                        <br>
                                        With best regards and thanks in
                                        advance<br>
                                        Albrecht<br>
                                        <br>
                                        PS: I shall answer you mail from
                                        last night tomorrow.<br>
                                        <br>
                                        <br>
                                        <div>Am
                                          14.10.2015 um 22:32 schrieb
                                          Richard Gauthier:<br>
                                        </div>
                                        <blockquote type="cite">
                                          <div>Hello Albrecht,</div>
                                          <div><br>
                                          </div>
                                          <div>   <span> </span>I
                                            second David’s question. The
                                            last I heard
                                            authoritatively, from
                                            cosmologist Sean Carroll -
                                            "The Particle at the End of
                                            the Universe” (2012), is
                                            that fermions are not
                                            affected by the strong
                                            nuclear force. If they were,
                                            I think it would be common
                                            scientific knowledge by
                                            now. </div>
                                          <div><br>
                                          </div>
                                          <div>You wrote: "<span style="font-size:16px;background-color:rgb(255,255,255)">I see
                                              it as a valuable goal for
                                              the further development to
                                              find an answer (a</span><span style="font-size:16px;background-color:rgb(255,255,255)"> </span><i style="font-size:16px">physical </i><span style="font-size:16px;background-color:rgb(255,255,255)">answer!)
                                              to the question of the de
                                              Broglie wavelength."</span></div>
                                          <div> <span> </span>My
                                            spin 1/2 charged photon
                                            model DOES give a simple
                                            physical explanation for the
                                            origin of the de Broglie
                                            wavelength. The
                                            helically-circulating
                                            charged photon is proposed
                                            to emit a plane wave
                                            directed along its helical
                                            path based on its
                                            relativistic wavelength
                                            lambda = h/(gamma mc) and
                                            relativistic frequency
                                            f=(gamma mc^2)/h. The wave
                                            fronts of this plane wave
                                            intersect the axis of the
                                            charged photon’s helical
                                            trajectory, which is the
                                            path of the electron being
                                            modeled by the charged
                                            photon, creating a de
                                            Broglie wave pattern of
                                            wavelength h/(gamma mv)
                                            which travels along the
                                            charged photon’s helical
                                            axis at speed c^2/v. For a
                                            moving electron, the wave
                                            fronts emitted by the
                                            charged photon do not
                                            intersect the helical axis
                                            perpendicularly but at an
                                            angle (see Figure 2 of my
                                            SPIE paper at <a href="https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength" target="_blank"></a><a href="https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength" target="_blank">https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength</a> )
                                            that is simply related to
                                            the speed of the electron
                                            being modeled.  This
                                            physical origin of the
                                            electron’s de Broglie wave
                                            is similar to when a series
                                            of parallel and
                                            evenly-spaced ocean waves
                                            hits a straight beach at an
                                            angle greater than zero
                                            degrees to the beach — a
                                            wave pattern is produced at
                                            the beach that travels in
                                            one direction along the
                                            beach at a speed faster than
                                            the speed of the waves
                                            coming in from the ocean.
                                            But that beach wave pattern
                                            can't transmit “information”
                                            along the beach faster than
                                            the speed of the ocean
                                            waves, just as the de
                                            Broglie matter-wave can’t
                                            (according to special
                                            relativity) transmit
                                            information faster than
                                            light, as de Broglie
                                            recognized.  As far as I
                                            know this geometric
                                            interpretation for the
                                            generation of the
                                            relativistic electron's de
                                            Broglie wavelength, phase
                                            velocity, and matter-wave
                                            equation is unique.</div>
                                          <div><br>
                                          </div>
                                          <div> <span> </span>For
                                            a resting (v=0) electron,
                                            the de Broglie wavelength
                                            lambda = h/(gamma mv) is not
                                            defined since one can’t
                                            divide by zero. It
                                            corresponds to the ocean
                                            wave fronts in the above
                                            example hitting the beach at
                                            a zero degree angle, where
                                            no velocity of the wave
                                            pattern along the beach can
                                            be defined.</div>
                                          <div><br>
                                          </div>
                                          <div>  <span style="color:rgb(37,37,37);line-height:22px;background-color:rgb(255,255,255)">Schrödinger</span> took
                                            de Broglie’s matter-wave and
                                            used  it
                                            non-relativistically with a
                                            potential V  to generate
                                            the <span style="color:rgb(37,37,37);line-height:22px;background-color:rgb(255,255,255)">Schrödinger</span> equation
                                            and wave mechanics, which is
                                            mathematically identical in
                                            its predictions to
                                            Heisenberg’s matrix
                                            mechanics. Born interpreted
                                            Psi*Psi of the <span style="color:rgb(37,37,37);line-height:22px;background-color:rgb(255,255,255)">Schrödinger</span> equation
                                            as the probability density
                                            for the result of an
                                            experimental measurement and
                                            this worked well for
                                            statistical predictions.
                                            Quantum mechanics was built
                                            on this de Broglie wave
                                            foundation and Born's
                                            probabilistic interpretation
                                            (using Hilbert space math.)</div>
                                          <div><br>
                                          </div>
                                          <div> <span> </span>The
                                            charged photon model of the
                                            electron might be used to
                                            derive the <span style="color:rgb(37,37,37);line-height:22px;background-color:rgb(255,255,255)">Schrödinger</span> equation,
                                            considering the electron to
                                            be a circulating charged
                                            photon that generates the
                                            electron’s matter-wave,
                                            which depends on the
                                            electron’s variable kinetic
                                            energy in a potential field.
                                            This needs to be explored
                                            further, which I began in <a href="https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schr%C3%B6dinger_Equation" target="_blank"></a><a href="https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schrödinger_Equation" target="_blank">https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schrödinger_Equation</a> .
                                            Of course, to treat the
                                            electron relativistically
                                            requires the Dirac equation.
                                            But the spin 1/2 charged
                                            photon model of the
                                            relativistic electron has a
                                            number of features of the
                                            Dirac electron, by design.</div>
                                          <div><br>
                                          </div>
                                          <div> <span> </span>As
                                            to why the charged photon
                                            circulates helically rather
                                            than moving in a straight
                                            line (in the absence of
                                            diffraction, etc) like an
                                            uncharged photon, this could
                                            be the effect of the charged
                                            photon moving in the Higgs
                                            field, which turns a
                                            speed-of-light particle with
                                            electric charge into a
                                            less-than-speed-of-light
                                            particle with a rest mass,
                                            which in this case is the
                                            electron’s rest mass 0.511
                                            MeV/c^2 (this value is not
                                            predicted by the Higgs field
                                            theory however.) So the
                                            electron’s inertia may also
                                            be caused by the Higgs
                                            field. I would not say that
                                            an unconfined photon has
                                            inertia, although it has
                                            energy and momentum but no
                                            rest mass, but opinions
                                            differ on this point.
                                            “Inertia” is a vague term
                                            and perhaps should be
                                            dropped— it literally means
                                            "inactive, unskilled”.</div>
                                          <div><br>
                                          </div>
                                          <div> <span> </span>You
                                            said that a
                                            faster-than-light phase wave
                                            can only be caused by a
                                            superposition of waves. I’m
                                            not sure this is correct,
                                            since in my charged photon
                                            model a single plane wave
                                            pattern emitted by the
                                            circulating charged photon
                                            generates the electron’s
                                            faster-than-light phase wave
                                            of speed c^2/v . A group
                                            velocity of an electron
                                            model may be generated by a
                                            superposition of waves to
                                            produce a wave packet whose
                                            group velocity equals the
                                            slower-than-light speed of
                                            an electron modeled by such
                                            an wave-packet approach.</div>
                                          <div><br>
                                          </div>
                                          <div>with best
                                            regards,</div>
                                          <div>       Richard</div>
                                          <br>
                                        </blockquote>
                                      </div>
                                    </div>
                                  </blockquote>
                                </div>
                              </blockquote>
                            </div>
                          </div>
                        </blockquote>
                      </div>
                    </blockquote>
                    <br>
                    <br>
                    <br>
                    <hr style="border:none;color:rgb(144,144,144);background-color:rgb(176,176,176);min-height:1px;width:808.828125px">
                    <table style="border-collapse:collapse;border:none">
                      <tbody>
                        <tr>
                          <td style="border:none;padding:0px 15px 0px 8px"><a href="https://www.avast.com/antivirus" target="_blank"><img src="http://static.avast.com/emails/avast-mail-stamp.png" alt="Avast logo" border="0"></a></td>
                          <td>
                            <div style="margin-top:0px;margin-bottom:0px;color:rgb(61,77,90);font-family:Calibri,Verdana,Arial,Helvetica;font-size:12pt">Diese E-Mail
                              wurde von Avast Antivirus-Software auf
                              Viren geprüft.<span> </span><br>
                              <a href="https://www.avast.com/antivirus" target="_blank">www.avast.com</a></div>
                          </td>
                        </tr>
                      </tbody>
                    </table>
                    <br>
                  </div>
                </div>
              </div>
            </blockquote>
            <br style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255)">
            <br style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255)">
            <br style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255)">
            <hr style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;border:none;color:rgb(144,144,144);background-color:rgb(176,176,176);min-height:1px;width:818.71875px">
            <table style="font-family:Helvetica;letter-spacing:normal;text-indent:0px;text-transform:none;word-spacing:0px;background-color:rgb(255,255,255);border-collapse:collapse;border:none">
              <tbody>
                <tr>
                  <td style="border:none;padding:0px 15px 0px 8px"><a href="https://www.avast.com/antivirus" target="_blank"><img src="http://static.avast.com/emails/avast-mail-stamp.png" alt="Avast logo" border="0"></a></td>
                  <td>
                    <div style="margin-top:0px;margin-bottom:0px;color:rgb(61,77,90);font-family:Calibri,Verdana,Arial,Helvetica;font-size:12pt">Diese E-Mail wurde von Avast
                      Antivirus-Software auf Viren geprüft.<span> </span><br>
                      <a href="https://www.avast.com/antivirus" target="_blank">www.avast.com</a></div>
                  </td>
                </tr>
              </tbody>
            </table>
            <br style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255)">
            <br>
          </div></div></div>
        </blockquote>
      </div>
      <br>
    </blockquote><div><div class="h5">
    <br>
  
<br><br>
<hr style="border:none;color:#909090;background-color:#b0b0b0;min-height:1px;width:99%">
<table style="border-collapse:collapse;border:none">
        <tbody><tr>
                <td style="border:none;padding:0px 15px 0px 8px">
                        <a href="https://www.avast.com/antivirus" target="_blank">
                                <img border="0" src="http://static.avast.com/emails/avast-mail-stamp.png" alt="Avast logo">
                        </a>
                </td>
                <td>
                        <p style="color:#3d4d5a;font-family:"Calibri","Verdana","Arial","Helvetica";font-size:12pt">
                                Diese E-Mail wurde von Avast Antivirus-Software auf Viren geprüft.
                                <br><a href="https://www.avast.com/antivirus" target="_blank">www.avast.com</a>
                        </p>
                </td>
        </tr>
</tbody></table>
<br>
</div></div></div>

<br>_______________________________________________<br>
If you no longer wish to receive communication from the Nature of Light and Particles General Discussion List at <a href="mailto:afokay@gmail.com">afokay@gmail.com</a><br>
<a href="<a href="http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/afokay%40gmail.com?unsub=1&unsubconfirm=1" rel="noreferrer" target="_blank">http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/afokay%40gmail.com?unsub=1&unsubconfirm=1</a>"><br>
Click here to unsubscribe<br>
</a><br>
<br></blockquote></div><br></div>