<html>
  <head>
    <meta content="text/html; charset=utf-8" http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <font face="Helvetica, Arial, sans-serif"><span
        style="mso-ansi-language:EN-US" lang="EN-US"><font size="-1">Dear
          Martin, dear Adam, dear all:<br>
          <br>
          QM, de Broglie and his wave:<br>
          <br>
          It is true that de Broglie started from Special Relativity
          (using some results) to develop his first considerations about
          particles, so about QM. But that does of course not guarantee
          that all his conclusions are correct with respect to
          relativity. The de Broglie wave length is a very special case.<br>
          <br>
          I have shown the other day by a little example that the de
          Broglie wave length as defined by himself and as used by
          present physics is <i>not Lorentz-invariant</i>. We can see
          (confirmed by experiments) that this wave length works
          correctly if used and observed in an inertial system, in which
          the double slit arrangement is at rest. But if such experiment
          is observed by someone who moves with respect to this
          arrangement, the results are incorrect. They can be
          drastically wrong as I have shown with the numbers in my
          example.<br>
          <br>
          How is it possible that this concept in some instances seems
          correct but in others not? A plausible assumption (mentioned
          earlier) seems to be that the scattering process of an
          electron at such scattering device develops some local details
          in which this de Broglie wave length in fact occurs; but only
          there. And with this assumption we can explain both
          consequences, the good and the bad one.<br>
          <br>
          This now has a severe consequence: As the de Broglie wave
          length (and dB's considerations about it) is not
          Lorentz-invariant, it cannot be valid for a free particle, as
          for a free particle there is no natural reference system. And
          a further, even more dramatic consequence, is that the
          according part of the Schrödinger equation cannot be correct.<br>
          <br>
          Best regards<br>
          Albrecht</font><br>
      </span></font><br>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
    <br>
    Am 23.10.2015 um 00:50 schrieb Mark, Martin van der:<br>
    <blockquote
cite="mid:3e12a835fd64467494fffec492cbfda6@AM3PR90MB0100.MGDPHG.emi.philips.com"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      <meta name="Generator" content="Microsoft Word 15 (filtered
        medium)">
      <!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]-->
      <style><!--
/* Font Definitions */
@font-face
        {font-family:Helvetica;
        panose-1:2 11 6 4 2 2 2 2 2 4;}
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:Tahoma;
        panose-1:2 11 6 4 3 5 4 4 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:"Times New Roman",serif;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
p
        {mso-style-priority:99;
        mso-margin-top-alt:auto;
        margin-right:0cm;
        mso-margin-bottom-alt:auto;
        margin-left:0cm;
        font-size:12.0pt;
        font-family:"Times New Roman",serif;}
span.EmailStyle18
        {mso-style-type:personal;
        font-family:"Calibri",sans-serif;
        color:#1F497D;}
span.EmailStyle19
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri",sans-serif;}
@page WordSection1
        {size:612.0pt 792.0pt;
        margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
      <div class="WordSection1">
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Dear
            Adam, I was still following  up on Richards idea of the
            origin of the de Broglie wavelength.<o:p></o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">I
            was trying to make clear to you Richard and the group how
            the order of events was (roughly), and how quantum mechanics
            was born from special relativity and that the two theories
            are in complete accordance despite a general believe that
            there are unsurmountable problems with causality and that
            Einstein was wrong, etc. Thank you for the article by Felix
            Bloch, which confirms what I said about the origin of the
            wave equation by Schroedinger, based on de Broglie’s ideas.<o:p></o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">I
            must say that you have not yet understood the salient point
            of the EPR experiment, but let me try to fix it. First of
            all, before I do so, you must realize that I am not claiming
            anything, I am only telling you what is the present
            situation in physics and that EPR experiments show that
            quantum mechanics is essentially correct.<o:p></o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Now
            let’s go to the point that you are missing in your example
            of the white and black marbles. You have forgotten that each
            of the two envelopes, with a concealed marble in it, must be
            delivered through the slit of a mailbox. The rule is that if
            the slit is horizontal, that it selects for white/black. If
            it is vertical it selects for green/red, when it is slanted
            at some angle it is selecting for yellow/violet, etcetera.
            While the postman is underway from sender to you, you are
            allowed to alter the angle of your mailbox (perhaps you like
            some particular color pair better than another pair). The
            sender cannot do anything anymore about the marbles he has
            put in the envelope, but in quantum mechanics it appears
            that the measurement reveals colors as corresponding to the
            angle of the mailboxes slit! This makes it mysterious and is
            seen as a non-local action, kind of spooky indeed. It
            implies that the marbles that went in the envelope at the
            sender had opposite colors of all possible colors
            simultaneously, somehow.<o:p></o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Now
            I can understand that the rest of what I have written
            earlier is not going to make much sense to you until you get
            the above.<o:p></o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">I
            hope this is of some help.<o:p></o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Very
            best,
            <o:p></o:p></span></p>
        <p class="MsoNormal"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D">Martin<o:p></o:p></span></p>
        <p class="MsoNormal"><o:p> </o:p></p>
        <p class="MsoNormal"><b><span
              style="font-size:11.0pt;font-family:"Calibri",sans-serif">From:</span></b><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif">
            General
[<a class="moz-txt-link-freetext" href="mailto:general-bounces+martin.van.der.mark=philips.com@lists.natureoflightandparticles.org">mailto:general-bounces+martin.van.der.mark=philips.com@lists.natureoflightandparticles.org</a>]<b>On
              Behalf Of </b>Adam K<br>
            <b>Sent:</b> donderdag 22 oktober 2015 22:19<br>
            <b>To:</b> <a class="moz-txt-link-abbreviated" href="mailto:phys@a-giese.de">phys@a-giese.de</a>; Nature of Light and Particles -
            General Discussion
            <a class="moz-txt-link-rfc2396E" href="mailto:general@lists.natureoflightandparticles.org"><general@lists.natureoflightandparticles.org></a><br>
            <b>Cc:</b> Joakim Pettersson <a class="moz-txt-link-rfc2396E" href="mailto:joakimbits@gmail.com"><joakimbits@gmail.com></a>;
            Ariane Mandray <a class="moz-txt-link-rfc2396E" href="mailto:ariane.mandray@wanadoo.fr"><ariane.mandray@wanadoo.fr></a>; ARNOLD
            BENN <a class="moz-txt-link-rfc2396E" href="mailto:arniebenn@mac.com"><arniebenn@mac.com></a><br>
            <b>Subject:</b> Re: [General] research papers<o:p></o:p></span></p>
        <p class="MsoNormal"><o:p> </o:p></p>
        <div>
          <p class="MsoNormal">Dear Martin,<o:p></o:p></p>
          <div>
            <p class="MsoNormal"><o:p> </o:p></p>
          </div>
          <div>
            <p class="MsoNormal">I am not sure whether or not you were
              expressing doubt as to the provenance of the wave
              equation, and what Schrodinger owed to de Broglie, but in
              either case you would probably enjoy reading this first
              person account by Felix Bloch <o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><o:p> </o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><a moz-do-not-send="true"
href="http://www.physics.smu.edu/scalise/P5382fa15/FelixBlochPhysTodayDec1976b.pdf">http://www.physics.smu.edu/scalise/P5382fa15/FelixBlochPhysTodayDec1976b.pdf</a><o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><o:p> </o:p></p>
          </div>
          <div>
            <p class="MsoNormal">As for EPR, it would probably make
              sense to start another thread, I'll leave that to you or
              anyone else who wishes to reply to decide if it's worth
              doing. I am biased by my own thinking against your claim
              of spooky action. To be honest, I could never bring myself
              to believe that the properties of a particle are
              indeterminate in the way standardly thought. The pilot
              wave model makes much more sense than, and the same
              predictions as, the mysterian Copenhagen, "particles are
              smears and reality does not exist until I look at it" <i>niaiserie</i>. <o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><o:p> </o:p></p>
          </div>
          <div>
            <p class="MsoNormal">I could be wrong, and would welcome
              correction from those with more physics experience than
              me, but there seems to be an enormous conceptual leap from
              the notion that A) We cannot know, even in principle,
              whether 1 or 2 obtains, to B) Neither 1 nor 2 actually
              obtains (they are in superposition) until actually
              measured. It seems to me a grotesque error, and this is a
              long story of course. Many people have weighed in. It is a
              conceptual leap like that from A) The Universe exists, to
              B) The Creator of the Universe does not want me to have
              sex with people who are the same gender as myself. The
              chasm between these propositions can only be spanned by
              some enormous error. <o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><o:p> </o:p></p>
          </div>
          <div>
            <p class="MsoNormal">A positron was trapped for so long by
              Dehmelt that he gave it a proper name: Priscilla. <o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><o:p> </o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><i>Dehmelt says: “[t]here can be little
                doubt about the identity of Priscilla during this
                period, since in ultrahigh vacuum she never had a chance
                to trade places with a passing antimatter twin. The
                well-defined identity of this elementary particle is
                something fundamentally new, which deserves to be
                recognized by being given a name, as pets are give names
                of persons” </i><o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><i> </i><o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal">I can accept that reality is nonlocal
              (in a certain sense), and I have been aware of the intense
              problem which is supposedly posed for relativity by Bell's
              inequalities and the notion of entanglement. Supposedly
              there is no actual information transmitted faster than
              light, but all the same the state of one entangled
              particle is altered by measuring the other one. Why is it
              so hard for people to accept that there is no alteration
              going on, and it is just as if I colored a marble white
              and a marble black, and sent them to two different people
              in the mail? The person who opens the envelope and sees a
              black marble knows that the other person has the white
              one, but there was no spooky action at a distance going
              on. So what if there is no way of knowing,
              <i>even in principle</i>, whether a particle is spin up or
              spin down? Are we humans really so arrogant that by
              instinct we must project ontological restrictions out of
              our epistemological ones?<o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><o:p> </o:p></p>
          </div>
          <div>
            <p class="MsoNormal">The Schrodinger equation gives us
              probabilities. Quantum physics is a statistical theory.
              Thus all of its predictions hold in the long time limit
              (an electron in a box over sufficient cycles of the
              electron's frequency), or the multiple particle limit
              (diffraction experiments). This alone should be enough for
              thinking individuals to realize that quantum physics is
              not the end of the road.   <o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><o:p> </o:p></p>
          </div>
          <div>
            <p class="MsoNormal">Adam<o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><o:p> </o:p></p>
          </div>
          <div>
            <p class="MsoNormal">    <o:p></o:p></p>
          </div>
          <div>
            <p class="MsoNormal"><o:p> </o:p></p>
          </div>
          <div>
            <p class="MsoNormal"> <o:p></o:p></p>
          </div>
        </div>
        <div>
          <p class="MsoNormal"><o:p> </o:p></p>
          <div>
            <p class="MsoNormal">On Thu, Oct 22, 2015 at 10:18 AM, Dr.
              Albrecht Giese <<a moz-do-not-send="true"
                href="mailto:genmail@a-giese.de" target="_blank">genmail@a-giese.de</a>>
              wrote:<o:p></o:p></p>
            <blockquote style="border:none;border-left:solid #CCCCCC
              1.0pt;padding:0cm 0cm 0cm
              6.0pt;margin-left:4.8pt;margin-right:0cm">
              <div>
                <p class="MsoNormal" style="margin-bottom:12.0pt">Hello
                  Richard,<br>
                  <br>
                  thank you and see my comments below.<o:p></o:p></p>
                <div>
                  <p class="MsoNormal">Am 22.10.2015 um 00:32 schrieb
                    Richard Gauthier:<o:p></o:p></p>
                </div>
                <blockquote style="margin-top:5.0pt;margin-bottom:5.0pt">
                  <div>
                    <p class="MsoNormal">Hello Albert (and all),<o:p></o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal"><o:p> </o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal"> I think your fundamental
                      objection that you mentioned earlier can be
                      answered below.<o:p></o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal"><o:p> </o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal"> The left side of the big
                      triangle in Figure 2 in my article is a purely
                      mathematical unfolding of the path of the helical
                      trajectory, to hopefully show more clearly the
                      generation of de Broglie wavelengths from plane
                      waves emitted by the actual charged photon moving
                      along the helical trajectory. Nothing is actually
                      moving off into space along this line.<o:p></o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal"><o:p> </o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal"> Consider an electron moving
                      with velocity v horizontally along the helical
                      axis. Since in Figure 2 in my article, cos (theta)
                      = v/c , the corresponding velocity of the charged
                      photon along the helical path is v/ cos(theta) = c
                      , the speed of the charged photon, which we knew
                      already because the helical trajectory was defined
                      so that this is the case. In a short time T, the
                      electron has moved a distance Delectron = vT
                      horizontally and the photon has moved a distance
                      Dphoton = Delectron/cos(theta) =vT/cos(theta) = cT
                      along its helical trajectory.<o:p></o:p></p>
                  </div>
                </blockquote>
                <p class="MsoNormal">I agree. <o:p></o:p></p>
                <blockquote style="margin-top:5.0pt;margin-bottom:5.0pt">
                  <div>
                    <p class="MsoNormal">A plane wave front emitted from
                      the photon at the distance Dphoton = cT along the
                      photon’s helical path will intersect the base of
                      the big triangle (the helical axis) at the
                      distance along the base given by Dwavefront =
                      Dphoton / cos(theta) = cT/ (v/c) = T *  (c^2)/v
                       which means the intersection point of the plane
                      wave with the helical axis is moving with a speed
                      c^2/v which is the de Broglie wave’s phase
                      velocity.
                      <o:p></o:p></p>
                  </div>
                </blockquote>
                <p class="MsoNormal">Here I disagree. If we assume the
                  wave front as an extended layer through the photon and
                  with an orientation perpendicular to the actual
                  direction of the photon, then the intersect point of
                  this layer with the axis has the same z coordinate as
                  the z-component of the photon's position. This is
                  essential. (I have built myself a little 3-d model to
                  see this.)<br>
                  <br>
                  When now, say at time T<sub>0</sub>, a phase maximum
                  of the wave front leaves the photon, then the same
                  phase maximum passes the intersect point on the axis
                  with the same z coordinate. After a while (i.e. after
                  the time T<sub>p</sub>=1/frequency) the next phase
                  maximum will exit from the photon and simultaneously
                  the next phase maximum will cross the axis. The new
                  z-value (of the photon and of the intersect point) is
                  now displaced from the old one by the amount delta_z =
                  v * T<sub>p</sub>. During this time the photon will
                  have moved by c * T<sub>p</sub> on its helical path.<br>
                  <br>
                  Now the spacial distance between these two phase
                  maxima, which is the wavelength, is: lambda<sub>photon</sub>
                  = c * T<sub>p</sub>, and lambda<sub>electron</sub> = v
                  * T<sub>p</sub>.
                  <br>
                  <br>
                  This is my result. Or what (which detail) is wrong?<br>
                  <br>
                  best wishes<br>
                  Albrecht<br>
                  <br>
                  <br>
                  <br>
                  <o:p></o:p></p>
                <blockquote style="margin-top:5.0pt;margin-bottom:5.0pt">
                  <div>
                    <p class="MsoNormal">The length of the de Broglie
                      wave itself as shown previously from Figure 2 is
                      Ldb =  Lambda-photon / cos(theta) = h/(gamma mc) /
                      (v/c) = h/(gamma mv). So as the electron moves
                      with velocity v along the z-axis, de Broglie waves
                      of length h/(gamma mv) produced along the z-axis
                      are moving with velocity c^2/v along the z-axis.
                      The de Broglie waves created by the circulating
                      charged photon will speed away from the electron
                      (but more will be produced) to take their place,
                      one de Broglie wave during each period of the
                      circulating charged photon (corresponding to the
                      moving electron). As mentioned previously, the
                      period of the circulating charged photon is 1/f =
                      1/(gamma mc^2/h) = h/(gamma mc^2/). As the
                      electron speeds up (v and gamma increase) the de
                      Broglie wavelengths h/(gamma mv) are shorter and
                      move more slowly, following the speed formula
                      c^2/v .<o:p></o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal"><o:p> </o:p></p>
                  </div>
                  <p class="MsoNormal" style="margin-bottom:12.0pt"><o:p> </o:p></p>
                  <div>
                    <p class="MsoNormal">Unpublished graphic showing the
                      generation of de Broglie waves from a moving
                      charged photon along its helical trajectory. The
                      corresponding moving electron is the red dot
                      moving to the right on the red line. The charged
                      photon is the blue dot moving at light speed along
                      the helix.The blue dot has moves a distance of one
                      charged photon wavelength h/(gamma mc) along the
                      helix from the left corner of the diagram On the
                      left diagonal line (representing the
                      mathematically unrolled helix), the blue dots
                      correspond to separations of 1 charged photon
                      h/(gamma mc) wavelength along the helical axis. In
                      this graphic, v/c = 0.5 so cos(theta)= 0.5 and
                      theta= 60 degrees. The group velocity is c^2/v =
                      c^2/0.5c = 2 c, the speed of the de Broglie waves
                      along the horizontal axis . The distances between
                      the intersection points on the horizontal line
                      each correspond to 1 de Broglie wavelength, which
                      in this example where v=0.5 c  is h(gamma mv) = 2
                      x charged photon wavelength h/(gamma mc).<o:p></o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal"><o:p> </o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal">  It is true that when the
                      electron is at rest, the wave fronts emitted by
                      the circulating charged photon all pass through
                      the center of the circular path of the charged
                      photon and do not intersect any helical axis,
                      because no helical axis is defined for a resting
                      electron, i.e. the pitch of the helix of the
                      circulating charged photon is zero. For a very
                      slowly moving electron, the pitch of the helix of
                      the circulating charged photon is very small but
                      non-zero, but the de Broglie wavelength is very
                      large, much larger than the helical pitch. Perhaps
                      you are confusing these two lengths — the helical
                      pitch of the circulating charged photon and the de
                      Broglie wavelength generated by the wave fronts
                      emitted by the circulating charged photon. The
                      pitch of the helix starts at zero (for v=0 of the
                      electron) and reaches a maximum when the speed of
                      the electron is c/sqrt(2) and theta = 45 degrees
                      (see my charged photon paper) and then the helical
                      pitch decreases towards zero as the speed of the
                      electron further increases towards the speed of
                      light. But the de Broglie wavelength Ldb starts
                      very large (when the electron is moving very
                      slowly) and decreases uniformly towards zero as
                      the speed of the electron increases, as given by
                      Ldb = h/gamma mv. It is the de Broglie wavelength
                      generated by the charged photon that has
                      predictive physical significance in diffraction
                      and double-slit experiments while the helical
                      pitch of the charged photon’s helical trajectory
                      has no current predictive physical significance
                      (though if experimental predictions based on the
                      helical pitch could be made, this could be a test
                      of the charged photon model).<o:p></o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal"><o:p> </o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal">   I don’t have any comments
                      yet on your concerns about the de Broglie
                      wavelength that you just expressed to John W
                      (below).<o:p></o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal"><o:p> </o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal">        all the best,<o:p></o:p></p>
                  </div>
                  <div>
                    <p class="MsoNormal">            Richard<o:p></o:p></p>
                  </div>
                  <p class="MsoNormal"><o:p> </o:p></p>
                  <div>
                    <blockquote
                      style="margin-top:5.0pt;margin-bottom:5.0pt">
                      <div>
                        <p class="MsoNormal">On Oct 21, 2015, at 12:42
                          PM, Dr. Albrecht Giese <<a
                            moz-do-not-send="true"
                            href="mailto:genmail@a-giese.de"
                            target="_blank"><a class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de">genmail@a-giese.de</a></a>>
                          wrote:<o:p></o:p></p>
                      </div>
                      <p class="MsoNormal"><o:p> </o:p></p>
                      <div>
                        <p class="MsoNormal"><span
style="font-size:10.0pt;font-family:"Helvetica",sans-serif;background:white">Dear
                            John W and all,<br>
                            <br>
                            about the <u>de Broglie wave</u>:<br>
                            <br>
                            There are a lot of elegant derivations for
                            the de Broglie wave length, that is true.
                            Mathematical deductions. What is about the
                            physics behind it?<br>
                            <br>
                            De Broglie derived this wave in his first
                            paper in the intention to explain, why the
                            internal frequency in a moving electron is
                            dilated, but this frequency on the other
                            hand has to be increased for an external
                            observer to reflect the increase of energy.
                            To get a result, he invented a "fictitious
                            wave" which has the phase speed c/v, where v
                            is the speed of the electron. And he takes
                            care to synchronize this wave with the
                            internal frequency of the electron. That
                            works and can be used to describe the
                            scattering of the electron at the double
                            slit.  -  But is this physical
                            understanding? De Broglie himself stated
                            that this solution does not fulfil the
                            expectation in a "complete theory". Are we
                            any better today?<br>
                            <br>
                            Let us envision the following situation. An
                            electron moves at moderate speed, say 0.1*c
                            (=> gamma=1.02) . An observer moves
                            parallel to the electron. What will the
                            observer see or measure? <br>
                            The internal frequency of the electron will
                            be observed by him as frequency = m<sub>0</sub>*c<sup>2</sup>/h
                            , because in the observer's system the
                            electron is at rest. The wave length of the
                            wave leaving the electron (e.g. in the model
                            of a circling photon) is now not exactly 
                            lambda<sub>1</sub> = c/frequency , but a
                            little bit larger as the rulers of the
                            observer are a little bit contracted (by
                            gamma = 1.02), so this is a small effect.
                            What is now about the phase speed of the de
                            Broglie wave? For an observer at rest it
                            must be quite large as it is extended by the
                            factor c/v  which is 10. For the co-moving
                            observer it is mathematically infinite (in
                            fact he will see a constant phase). This is
                            not explained by the time dilation (=2%), so
                            not compatible. And what about the de
                            Broglie wave length? For the co-moving
                            observer, who is at rest in relation to the
                            electron, it is lambda<sub>dB</sub> =
                            h/(1*m*0), which is again infinite or at
                            least extremely large.  For the observer at
                            rest there is lambda<sub>dB</sub> =
                            h/(1.02*m*0.1c) . Also not comparable to the
                            co-moving observer.<br>
                            <br>
                            To summarize: these differences are not
                            explained by the normal SR effects. So, how
                            to explain these incompatible results?<br>
                            <br>
                            Now let's assume, that the electron closes
                            in to the double slit. Seen from the
                            co-moving observer, the double slit
                            arrangement moves towards him and the
                            electron. What are now the parameters which
                            will determine the scattering? The
                            (infinite) de Broglie wave length? The phase
                            speed which is 10*c ? Remember: For the
                            co-moving observer the electron does not
                            move. Only the double slit moves and the
                            screen behind the double slit will be ca. 2%
                            closer than in the standard case. But will
                            that be a real change?<br>
                            <br>
                            I do not feel that this is a situation which
                            in physically understood.<br>
                            <br>
                            Regards<br>
                            Albrecht</span><o:p></o:p></p>
                        <div>
                          <div>
                            <p class="MsoNormal"><span
                                style="font-size:9.0pt;font-family:"Helvetica",sans-serif"><br
style="text-align:start;word-spacing:0px">
                                <br>
                              </span><o:p></o:p></p>
                            <div>
                              <p class="MsoNormal"
                                style="background:white"><span
                                  style="font-size:9.0pt;font-family:"Helvetica",sans-serif">Am
                                  21.10.2015 um 16:34 schrieb John
                                  Williamson:<o:p></o:p></span></p>
                            </div>
                            <blockquote
style="margin-top:5.0pt;margin-bottom:5.0pt;text-align:start;word-spacing:0px">
                              <div>
                                <p class="MsoNormal"
                                  style="background:white"><span
                                    style="font-size:10.0pt;font-family:"Tahoma",sans-serif">Dear
                                    all,<br>
                                    <br>
                                    The de Broglie wavelength is best
                                    understood, in my view, in one of
                                    two ways. Either read de Broglies
                                    thesis for his derivation (if you do
                                    not read french, Al has translated
                                    it and it is available online).
                                    Alternatively derive it yourself.
                                    All you need to do is consider the
                                    interference between a standing wave
                                    in one (proper frame) as it
                                    transforms to other relativistic
                                    frames. That is standing-wave
                                    light-in-a-box. This has been done
                                    by may folk, many times. Martin did
                                    it back in 1991. It is in our 1997
                                    paper. One of the nicest
                                    illustrations I have seen is that of
                                    John M - circulated to all of you
                                    earlier in this series.<br>
                                    <br>
                                    It is real, and quite simple.<br>
                                    <br>
                                    Regards, John.<o:p></o:p></span></p>
                                <div>
                                  <div class="MsoNormal"
                                    style="text-align:center;background:white"
                                    align="center">
                                    <hr size="2" width="100%"
                                      align="center">
                                  </div>
                                  <div>
                                    <p class="MsoNormal"
                                      style="margin-bottom:12.0pt;background:white"><b><span
style="font-size:10.0pt;font-family:"Tahoma",sans-serif">From:</span></b><span
style="font-size:10.0pt;font-family:"Tahoma",sans-serif"> General
                                        [<a moz-do-not-send="true"
href="mailto:general-bounces+john.williamson=glasgow.ac.uk@lists.natureoflightandparticles.org"
                                          target="_blank">general-bounces+john.williamson=glasgow.ac.uk@lists.natureoflightandparticles.org</a>]
                                        on behalf of Dr. Albrecht Giese
                                        [<a moz-do-not-send="true"
                                          href="mailto:genmail@a-giese.de"
                                          target="_blank">genmail@a-giese.de</a>]<br>
                                        <b>Sent:</b> Wednesday, October
                                        21, 2015 3:14 PM<br>
                                        <b>To:</b> Richard Gauthier<br>
                                        <b>Cc:</b> Nature of Light and
                                        Particles - General Discussion;
                                        David Mathes<br>
                                        <b>Subject:</b> Re: [General]
                                        research papers</span><o:p></o:p></p>
                                  </div>
                                  <div>
                                    <p class="MsoNormal"
                                      style="margin-bottom:12.0pt;background:white">Hello
                                      Richard,<br>
                                      <br>
                                      thanks for your detailed
                                      explanation. But I have a
                                      fundamental objection.<br>
                                      <br>
                                      Your figure 2 is unfortunately
                                      (but unavoidably) 2-dimensional,
                                      and that makes a difference to the
                                      reality as I understand it. <br>
                                      <br>
                                      In your model the charged electron
                                      moves on a helix around the axis
                                      of the electron (or equivalently
                                      the axis of the helix). That means
                                      that the electron has a constant
                                      distance to this axis. Correct?
                                      But in the view of your figure 2
                                      the photon seems to start on the
                                      axis and moves away from it
                                      forever. In this latter case the
                                      wave front would behave as you
                                      write it. <br>
                                      <br>
                                      Now, in the case of a constant
                                      distance, the wave front as well
                                      intersects the axis, that is true.
                                      But this intersection point moves
                                      along the axis at the projected
                                      speed of the photon to this axis.
                                      - You can consider this also in
                                      another way. If the electron moves
                                      during a time, say T1, in the
                                      direction of the axis, then the
                                      photon will during this time T1
                                      move a longer distance, as the
                                      length of the helical path (call
                                      it L)  is of course longer than
                                      the length of the path of the
                                      electron during this time (call it
                                      Z). Now you will during the time
                                      T1 have a number of waves (call
                                      this N) on the helical path L. On
                                      the other hand, the number of
                                      waves on the length Z has also to
                                      be N. Because otherwise after an
                                      arbitrary time the whole situation
                                      would diverge. As now Z is smaller
                                      than L, the waves on the axis have
                                      to be shorter. So, not the de
                                      Broglie wave length. That is my
                                      understanding. <br>
                                      <br>
                                      In my present view, the de Broglie
                                      wave length has no immediate
                                      correspondence in the physical
                                      reality. I guess that the success
                                      of de Broglie in using this wave
                                      length may be understandable if we
                                      understand in more detail, what
                                      happens in the process of
                                      scattering of an electron at the
                                      double (or multiple) slits.<br>
                                      <br>
                                      Best wishes<br>
                                      Albrecht<br>
                                      <br>
                                      <o:p></o:p></p>
                                    <div>
                                      <p class="MsoNormal"
                                        style="background:white">Am
                                        21.10.2015 um 06:28 schrieb <br>
                                        Richard Gauthier:<o:p></o:p></p>
                                    </div>
                                    <blockquote
                                      style="margin-top:5.0pt;margin-bottom:5.0pt">
                                      <div>
                                        <p class="MsoNormal"
                                          style="background:white">Hello
                                          Albrecht,<o:p></o:p></p>
                                      </div>
                                      <div>
                                        <p class="MsoNormal"
                                          style="background:white"><o:p> </o:p></p>
                                      </div>
                                      <div>
                                        <p class="MsoNormal"
                                          style="background:white"> 
                                           Thank you for your effort to
                                          understand the physical
                                          process described
                                          geometrically in my Figure 2.
                                          You have indeed misunderstood
                                          the Figure as you suspected.
                                          The LEFT upper side of the big
                                          90-degree triangle is one
                                          wavelength h/(gamma mc) of the
                                          charged photon, mathematically
                                          unrolled from its two-turned
                                          helical shape (because of the
                                          double-loop model of the
                                          electron) so that its full
                                          length h/(gamma mc) along the
                                          helical trajectory can be
                                          easily visualized. The emitted
                                          wave fronts described in my
                                          article are perpendicular to
                                          this mathematically unrolled
                                          upper LEFT side of the
                                          triangle (because the plane
                                          waves emitted by the charged
                                          photon are directed along the
                                          direction of the helix when it
                                          is coiled (or mathematically
                                          uncoiled), and the plane wave
                                          fronts are perpendicular to
                                          this direction). The upper
                                          RIGHT side of the big
                                          90-degree triangle corresponds
                                          to one of the plane wave
                                          fronts (of constant phase
                                          along the wave front) emitted
                                          at one wavelength lambda =
                                          h/(gamma mc) of the helically
                                          circulating charged photon.
                                          The length of the horizontal
                                          base of the big 90-degree
                                          triangle, defined by where
                                          this upper RIGHT side of the
                                          triangle (the generated plane
                                          wave front from the charged
                                          photon) intersects the
                                          horizontal axis of the
                                          helically-moving charged
                                          photon, is the de Broglie
                                          wavelength h/(gamma mv) of the
                                          electron model (labeled in the
                                          diagram). By geometry the
                                          length (the de Broglie
                                          wavelength) of this horizontal
                                          base of the big right triangle
                                          in the Figure is equal to the
                                          top left side of the triangle
                                          (the photon wavelength
                                          h/(gamma mc) divided (not
                                          multiplied) by cos(theta) =
                                          v/c because we are calculating
                                          the hypotenuse of the big
                                          right triangle starting from
                                          the upper LEFT side of this
                                          big right triangle, which is
                                          the adjacent side of the big
                                          right triangle making an angle
                                          theta with the hypotenuse. <o:p></o:p></p>
                                      </div>
                                      <div>
                                        <p class="MsoNormal"
                                          style="background:white"><o:p> </o:p></p>
                                      </div>
                                      <div>
                                        <p class="MsoNormal"
                                          style="background:white"> 
                                           What you called the
                                          projection of the charged
                                          photon’s wavelength h/(gamma
                                          mc) onto the horizontal axis
                                          is actually just the distance
                                          D that the electron has moved
                                          with velocity v along the
                                          x-axis in one period T of the
                                          circulating charged photon.
                                          That period T equals 1/f =
                                          1/(gamma mc^2/h) = h/(gamma
                                          mc^2). By the geometry in the
                                          Figure, that distance D is the
                                          adjacent side of the smaller
                                          90-degree triangle in the left
                                          side of the Figure, making an
                                          angle theta with cT,  the
                                          hypotenuse of that smaller
                                          triangle, and so D = cT cos
                                          (theta) = cT x v/c = vT , the
                                          distance the electron has
                                          moved to the right with
                                          velocity v in the time T. In
                                          that same time T one de
                                          Broglie wavelength has been
                                          generated along the horizontal
                                          axis of the circulating
                                          charged photon. <o:p></o:p></p>
                                      </div>
                                      <div>
                                        <p class="MsoNormal"
                                          style="background:white"><o:p> </o:p></p>
                                      </div>
                                      <div>
                                        <p class="MsoNormal"
                                          style="background:white">   I
                                          will answer your question
                                          about the double slit in a
                                          separate e-mail.<o:p></o:p></p>
                                      </div>
                                      <div>
                                        <p class="MsoNormal"
                                          style="background:white"><o:p> </o:p></p>
                                      </div>
                                      <div>
                                        <p class="MsoNormal"
                                          style="background:white">     
                                            all the best,<o:p></o:p></p>
                                      </div>
                                      <div>
                                        <p class="MsoNormal"
                                          style="background:white">     
                                                Richard<o:p></o:p></p>
                                      </div>
                                      <p class="MsoNormal"
                                        style="background:white"><o:p> </o:p></p>
                                      <div>
                                        <blockquote
                                          style="margin-top:5.0pt;margin-bottom:5.0pt">
                                          <div>
                                            <p class="MsoNormal"
                                              style="background:white">On
                                              Oct 20, 2015, at 10:06 AM,
                                              Dr. Albrecht Giese <<a
                                                moz-do-not-send="true"
                                                href="mailto:genmail@a-giese.de"
                                                target="_blank"><a class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de">genmail@a-giese.de</a></a>>
                                              wrote:<o:p></o:p></p>
                                          </div>
                                          <p class="MsoNormal"
                                            style="background:white"><o:p> </o:p></p>
                                          <div>
                                            <div>
                                              <p class="MsoNormal"
                                                style="margin-bottom:12.0pt;background:white">Hello
                                                Richard,<br>
                                                <br>
                                                thank you for your
                                                explanations. I would
                                                like to ask further
                                                questions and will place
                                                them into the text
                                                below.<o:p></o:p></p>
                                              <div>
                                                <p class="MsoNormal"
                                                  style="background:white">Am
                                                  19.10.2015 um 20:08
                                                  schrieb Richard
                                                  Gauthier:<o:p></o:p></p>
                                              </div>
                                              <blockquote
                                                style="margin-top:5.0pt;margin-bottom:5.0pt">
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white">Hello
                                                    Albrecht,<o:p></o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"><o:p> </o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"> 
                                                      Thank your for
                                                    your detailed
                                                    questions about my
                                                    electron model,
                                                    which I will answer
                                                    as best as I can. <o:p></o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"><o:p> </o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"> 
                                                       My approach of
                                                    using the formula
                                                    e^i(k*r-wt)    =
                                                     e^i (k dot r minus
                                                    omega t)  for a
                                                    plane wave emitted
                                                    by charged photons
                                                    is also used for
                                                    example in the
                                                    analysis of x-ray
                                                    diffraction from
                                                    crystals when you
                                                    have many incoming
                                                    parallel photons in
                                                    free space moving in
                                                    phase in a plane
                                                    wave. Please see for
                                                    example <span
                                                      style="font-size:10.0pt"><a
moz-do-not-send="true"
                                                        href="http://www.pa.uky.edu/%7Ekwng/phy525/lec/lecture_2.pdf"
                                                        target="_blank"><a class="moz-txt-link-freetext" href="http://www.pa.uky.edu/~kwng/phy525/lec/lecture_2.pdf">http://www.pa.uky.edu/~kwng/phy525/lec/lecture_2.pdf</a></a></span> .

                                                    When Max Born
                                                    studied electron
                                                    scattering using
                                                    quantum mechanics
                                                    (where he used
                                                    PHI*PHI of the
                                                    quantum wave
                                                    functions to predict
                                                    the electron
                                                    scattering
                                                    amplitudes), he also
                                                    described the
                                                    incoming electrons
                                                    as a plane wave
                                                    moving forward with
                                                    the de Broglie
                                                    wavelength towards
                                                    the target. I think
                                                    this is the general
                                                    analytical procedure
                                                    used in scattering
                                                    experiments.  In my
                                                    charged photon model
                                                    the helically
                                                    circulating charged
                                                    photon,
                                                    corresponding to a
                                                    moving electron, is
                                                    emitting a plane
                                                    wave of wavelength
                                                    lambda = h/(gamma
                                                    mc) and frequency
                                                    f=(gamma mc^2)/h
                                                     along the direction
                                                    of its helical
                                                    trajectory, which
                                                    makes a forward
                                                    angle theta with the
                                                    helical axis given
                                                    by cos (theta)=v/c.
                                                    Planes of constant
                                                    phase emitted from
                                                    the charged photon
                                                    in this way
                                                    intersect the
                                                    helical axis of the
                                                    charged photon. When
                                                    a charged photon has
                                                    traveled one
                                                    relativistic
                                                    wavelength lambda =
                                                    h/(gamma mc) along
                                                    the helical axis,
                                                    the intersection
                                                    point of this wave
                                                    front with the
                                                    helical axis has
                                                    traveled (as seen
                                                    from the geometry of
                                                    Figure 2 in my
                                                    charged photon
                                                    article) a distance
                                                    lambda/cos(theta) =
                                                     lambda / (v/c) =
                                                    h/(gamma mv)  i.e
                                                    the relativistic de
                                                    Broglie wavelength
                                                    along the helical
                                                    axis.<o:p></o:p></p>
                                                </div>
                                              </blockquote>
                                              <p class="MsoNormal"
                                                style="background:white">Here
                                                I have a question with
                                                respect to your Figure
                                                2. The circling charged
                                                photon is accompanied by
                                                a wave which moves at
                                                any moment in the
                                                direction of the photon
                                                on its helical path.
                                                This wave has its normal
                                                wavelength in the
                                                direction along this
                                                helical path. But if now
                                                this wave is projected
                                                onto the axis of the
                                                helix, which is the axis
                                                of the moving electron,
                                                then the projected wave
                                                will be shorter than the
                                                original one. So the
                                                equation will not be 
                                                lambda<sub>deBroglie</sub> =

                                                lambda<sub>photon</sub> /
                                                cos theta , but: lambda<sub>deBroglie</sub> =
                                                lambda<sub>photon</sub> *
                                                cos theta . The result
                                                will not be the
                                                (extended) de Broglie
                                                wave but a shortened
                                                wave. Or do I completely
                                                misunderstand the
                                                situation here?<br>
                                                <br>
                                                Or let's use another
                                                view to the process.
                                                Lets imagine a
                                                scattering process of
                                                the electron at a double
                                                slit. This was the
                                                experiment where the de
                                                Broglie wavelength
                                                turned out to be
                                                helpful. <br>
                                                So, when now the
                                                electron, and that means
                                                the cycling photon,
                                                approaches the slits, it
                                                will approach at a slant
                                                angle theta at the layer
                                                which has the slits. Now
                                                assume the momentary
                                                phase such that the wave
                                                front reaches two slits
                                                at the same time (which
                                                means that the photon at
                                                this moment moves
                                                downwards or upwards,
                                                but else straight with
                                                respect to the azimuth).
                                                This situation is
                                                similar to the front
                                                wave of a <i>single</i> normal
                                                photon which moves
                                                upwards or downwards by
                                                an angle theta. There is
                                                now no phase difference
                                                between the right and
                                                the left slit. Now the
                                                question is whether this
                                                coming-down (or -up)
                                                will change the temporal
                                                sequence of the phases
                                                (say: of the maxima of
                                                the wave). This distance
                                                (by time or by length)
                                                determines at which
                                                angle the next
                                                interference maxima to
                                                the right or to the left
                                                will occur behind the
                                                slits. <br>
                                                <br>
                                                To my understanding the
                                                temporal distance will
                                                be the same distance as
                                                of wave maxima on the
                                                helical path of the
                                                photon, where the latter
                                                is  lambda<sub>1</sub> =
                                                c / frequency; frequency
                                                = (gamma*mc<sup>2</sup>)
                                                / h. So, the geometric
                                                distance of the wave
                                                maxima passing the slits
                                                is   lambda<sub>1</sub> =
                                                c*h / (gamma*mc<sup>2</sup>).
                                                Also here the result is
                                                a shortened wavelength
                                                rather than an extended
                                                one, so not the de
                                                Broglie wavelength.<br>
                                                <br>
                                                Again my question: What
                                                do I misunderstand?<br>
                                                <br>
                                                For the other topics of
                                                your answer I
                                                essentially agree, so I
                                                shall stop here.<br>
                                                <br>
                                                Best regards<br>
                                                Albrecht<br>
                                                <br>
                                                <br>
                                                <o:p></o:p></p>
                                              <blockquote
                                                style="margin-top:5.0pt;margin-bottom:5.0pt">
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"><o:p> </o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"> 
                                                       Now as seen from
                                                    this geometry, the
                                                    slower the
                                                    electron’s velocity
                                                    v, the longer is the
                                                    electron’s de
                                                    Broglie wavelength —
                                                    also as seen from
                                                    the relativistic de
                                                    Broglie wavelength
                                                    formula Ldb =
                                                     h/(gamma mv). For a
                                                    resting electron
                                                    (v=0) the de Broglie
                                                    wavelength is
                                                    undefined in this
                                                    formula as also in
                                                    my model for v = 0.
                                                    Here, for stationary
                                                    electron, the
                                                    charged photon’s
                                                    emitted wave fronts
                                                    (for waves of
                                                    wavelength equal to
                                                    the Compton
                                                    wavelength h/mc)
                                                     intersect the axis
                                                    of the circulating
                                                    photon along its
                                                    whole length rather
                                                    than at a single
                                                    point along the
                                                    helical axis. This
                                                    condition
                                                    corresponds to the
                                                    condition where de
                                                    Broglie said
                                                    (something like)
                                                    that the electron
                                                    oscillates with the
                                                    frequency given by f
                                                    = mc^2/h for the
                                                    stationary electron,
                                                    and that the phase
                                                    of the wave of this
                                                    oscillating electron
                                                    is the same at all
                                                    points in space. But
                                                    when the electron is
                                                    moving slowly, long
                                                    de Broglie waves are
                                                    formed along the
                                                    axis of the moving
                                                    electron.<o:p></o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"><o:p> </o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"> 
                                                       In this basic
                                                    plane wave model
                                                    there is no
                                                    limitation on how
                                                    far to the sides of
                                                    the charged photon
                                                    the plane wave
                                                    fronts extend. In a
                                                    more detailed model
                                                    a finite
                                                    side-spreading of
                                                    the plane wave would
                                                    correspond to a
                                                    pulse of many
                                                    forward moving
                                                    electrons that is
                                                    limited in both
                                                    longitudinal and
                                                    lateral extent (here
                                                    a Fourier
                                                    description of the
                                                    wave front for a
                                                    pulse of electrons
                                                    of a particular
                                                    spatial extent would
                                                    probably come into
                                                    play), which is
                                                    beyond the present
                                                    description.<o:p></o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"><o:p> </o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"> 
                                                       You asked what an
                                                    observer standing
                                                    beside the resting
                                                    electron, but not in
                                                    the plane of the
                                                    charged photon's
                                                    internal circular
                                                    motion) would
                                                    observe as the
                                                    circulating charged
                                                    photon emits a plane
                                                    wave long its
                                                    trajectory. The
                                                    plane wave’s
                                                    wavelength emitted
                                                    by the circling
                                                    charged photon would
                                                    be the Compton
                                                    wavelength h/mc. So
                                                    when the charged
                                                    photon is moving
                                                    more towards (but an
                                                    an angle to) the
                                                    stationary observer,
                                                    he would observe a
                                                    wave of wavelength
                                                    h/mc (which you call
                                                    c/ny where ny is the
                                                    frequency of charged
                                                    photon’s orbital
                                                    motion) coming
                                                    towards and past
                                                    him. This is not the
                                                    de Broglie
                                                    wavelength (which is
                                                    undefined here and
                                                    is only defined on
                                                    the helical axis of
                                                    the circulating
                                                    photon for a moving
                                                    electron) but is the
                                                    Compton wavelength
                                                    h/mc of the
                                                    circulating photon
                                                    of a resting
                                                    electron. As the
                                                    charged photon moves
                                                    more away from the
                                                    observer, he would
                                                    observe a plane wave
                                                    of wavelength h/mc
                                                    moving away from him
                                                    in the direction of
                                                    the receding charged
                                                    photon. But it is
                                                    more complicated
                                                    than this, because
                                                    the observer at the
                                                    side of the
                                                    stationary electron
                                                    (circulating charged
                                                    photon) will also be
                                                    receiving all the
                                                    other plane waves
                                                    with different
                                                    phases emitted at
                                                    other angles from
                                                    the circulating
                                                    charged photon
                                                    during its whole
                                                    circular trajectory.
                                                    In fact all of these
                                                    waves from the
                                                    charged photon away
                                                    from the circular
                                                    axis or helical axis
                                                    will interfere and
                                                    may actually cancel
                                                    out or partially
                                                    cancel out (I don’t
                                                    know), leaving a net
                                                    result only along
                                                    the axis of the
                                                    electron, which if
                                                    the electron is
                                                    moving, corresponds
                                                    to the de Broglie
                                                    wavelength along
                                                    this axis. This is
                                                    hard to visualize in
                                                    3-D and this is why
                                                    I think a 3-D
                                                    computer graphic
                                                    model of this
                                                    plane-wave emitting
                                                    process for a moving
                                                    or stationary
                                                    electron would be
                                                    very helpful and
                                                    informative.<o:p></o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"><o:p> </o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"> 
                                                      You asked about
                                                    the electric charge
                                                    of the charged
                                                    photon and how it
                                                    affects this
                                                    process. Clearly the
                                                    plane waves emitted
                                                    by the circulating
                                                    charged photon have
                                                    to be different from
                                                    the plane waves
                                                    emitted by an
                                                    uncharged photon,
                                                    because these plane
                                                    waves generate the
                                                    quantum wave
                                                    functions PHI that
                                                    predict the
                                                    probabilities of
                                                    finding electrons or
                                                    photons respectively
                                                    in the future from
                                                    their PHI*PHI
                                                    functions. Plus the
                                                    charged photon has
                                                    to be emitting an
                                                    additional electric
                                                    field (not emitted
                                                    by a regular
                                                    uncharged photon),
                                                    for example caused
                                                    by virtual uncharged
                                                    photons as described
                                                    in QED, that
                                                    produces the
                                                    electrostatic field
                                                    of a stationary
                                                    electron or the
                                                    electro-magnetic
                                                    field around a
                                                    moving electron. <o:p></o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"><o:p> </o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"> 
                                                      I hope this helps.
                                                    Thanks again for
                                                    your excellent
                                                    questions.<o:p></o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"><o:p> </o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"> 
                                                        with best
                                                    regards,<o:p></o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"> 
                                                             Richard<o:p></o:p></p>
                                                </div>
                                                <div>
                                                  <p class="MsoNormal"
                                                    style="background:white"><o:p> </o:p></p>
                                                </div>
                                                <p class="MsoNormal"
                                                  style="background:white"><o:p> </o:p></p>
                                                <div>
                                                  <blockquote
                                                    style="margin-top:5.0pt;margin-bottom:5.0pt">
                                                    <div>
                                                      <p
                                                        class="MsoNormal"
style="background:white">On Oct 19, 2015, at 8:13 AM, Dr. Albrecht Giese
                                                        <<a
                                                          moz-do-not-send="true"
href="mailto:genmail@a-giese.de" target="_blank"><a class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de">genmail@a-giese.de</a></a>>
                                                        wrote:<o:p></o:p></p>
                                                    </div>
                                                    <p class="MsoNormal"
style="background:white"><o:p> </o:p></p>
                                                    <div>
                                                      <div>
                                                        <p
                                                          class="MsoNormal"
style="margin-bottom:12.0pt;background:white">Richard:<br>
                                                          <br>
                                                          I am still
                                                          busy to
                                                          understand the
                                                          de Broglie
                                                          wavelength
                                                          from your
                                                          model. I think
                                                          that I
                                                          understand
                                                          your general
                                                          idea, but I
                                                          would like to
                                                          also
                                                          understand the
                                                          details. <br>
                                                          <br>
                                                          If a photon
                                                          moves straight
                                                          in the free
                                                          space, how
                                                          does the wave
                                                          look like? You
                                                          say that the
                                                          photon emits a
                                                          plane wave. If
                                                          the photon is
                                                          alone and
                                                          moves
                                                          straight, then
                                                          the wave goes
                                                          with the
                                                          photon. No
                                                          problem. And
                                                          the wave front
                                                          is in the
                                                          forward
                                                          direction.
                                                          Correct? How
                                                          far to the
                                                          sides is the
                                                          wave extended?
                                                          That may be
                                                          important in
                                                          case of the
                                                          photon in the
                                                          electron.<br>
                                                          <br>
                                                          With the
                                                          following I
                                                          refer to the
                                                          figures 1 and
                                                          2 in your
                                                          paper referred
                                                          in your
                                                          preceding
                                                          mail.<br>
                                                          <br>
                                                          In the
                                                          electron, the
                                                          photon moves
                                                          according to
                                                          your model on
                                                          a circuit. It
                                                          moves on a
                                                          helix when the
                                                          electron is in
                                                          motion. But
                                                          let take us
                                                          first the case
                                                          of the
                                                          electron at
                                                          rest, so that
                                                          the photon
                                                          moves on this
                                                          circuit. In
                                                          any moment the
                                                          plane wave
                                                          accompanied
                                                          with the
                                                          photon will
                                                          momentarily
                                                          move in the
                                                          tangential
                                                          direction of
                                                          the circuit.
                                                          But the
                                                          direction will
                                                          permanently
                                                          change to
                                                          follow the
                                                          path of the
                                                          photon on the
                                                          circuit. What
                                                          is then about
                                                          the motion of
                                                          the wave? The
                                                          front of the
                                                          wave should
                                                          follow this
                                                          circuit. Would
                                                          an observer
                                                          next to the
                                                          electron at
                                                          rest (but not
                                                          in the plane
                                                          of the
                                                          internal
                                                          motion) notice
                                                          the wave? This
                                                          can only
                                                          happen, I
                                                          think, if the
                                                          wave does not
                                                          only propagate
                                                          on a straight
                                                          path forward
                                                          but has an
                                                          extension to
                                                          the sides.
                                                          Only if this
                                                          is the case,
                                                          there will be
                                                          a wave along
                                                          the axis of
                                                          the electron.
                                                          Now an
                                                          observer next
                                                          to the
                                                          electron will
                                                          see a
                                                          modulated wave
                                                          coming from
                                                          the photon,
                                                          which will be
                                                          modulated with
                                                          the frequency
                                                          of the
                                                          rotation,
                                                          because the
                                                          photon will in
                                                          one moment be
                                                          closer to the
                                                          observer and
                                                          in the next
                                                          moment be
                                                          farer from
                                                          him. Which
                                                          wavelength
                                                          will be
                                                          noticed by the
                                                          observer? It
                                                          should be
                                                          lambda = c /
                                                          ny, where c is
                                                          the speed of
                                                          the
                                                          propagation
                                                          and ny the
                                                          frequency of
                                                          the orbital
                                                          motion. But
                                                          this lambda is
                                                          by my
                                                          understanding
                                                          not be the de
                                                          Broglie wave
                                                          length.<br>
                                                          <br>
                                                          For an
                                                          electron at
                                                          rest your
                                                          model expects
                                                          a wave with a
                                                          momentarily
                                                          similar phase
                                                          for all points
                                                          in space. How
                                                          can this
                                                          orbiting
                                                          photon cause
                                                          this? And
                                                          else, if the
                                                          electron is
                                                          not at rest
                                                          but moves at a
                                                          very small
                                                          speed, then
                                                          the situation
                                                          will not be
                                                          very different
                                                          from that of
                                                          the electron
                                                          at rest.<br>
                                                          <br>
                                                          Further: What
                                                          is the
                                                          influence of
                                                          the charge in
                                                          the photon?
                                                          There should
                                                          be a modulated
                                                          electric field
                                                          around the
                                                          electron with
                                                          a frequency ny
                                                          which follows
                                                          also from E =
                                                          h*ny, with E
                                                          the dynamical
                                                          energy of the
                                                          photon. Does
                                                          this modulated
                                                          field have any
                                                          influence to
                                                          how the
                                                          electron
                                                          interacts with
                                                          others? <br>
                                                          <br>
                                                          Some
                                                          questions,
                                                          perhaps you
                                                          can help me
                                                          for a better
                                                          understanding.<br>
                                                          <br>
                                                          With best
                                                          regards and
                                                          thanks in
                                                          advance<br>
                                                          Albrecht<br>
                                                          <br>
                                                          PS: I shall
                                                          answer you
                                                          mail from last
                                                          night
                                                          tomorrow.<br>
                                                          <br>
                                                          <o:p></o:p></p>
                                                        <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">Am 14.10.2015 um 22:32 schrieb Richard
                                                          Gauthier:<o:p></o:p></p>
                                                        </div>
                                                        <blockquote
                                                          style="margin-top:5.0pt;margin-bottom:5.0pt">
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">Hello Albrecht,<o:p></o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white"><o:p> </o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">    I second David’s question. The last I heard
                                                          authoritatively,
                                                          from
                                                          cosmologist
                                                          Sean Carroll -
                                                          "The Particle
                                                          at the End of
                                                          the Universe”
                                                          (2012), is
                                                          that fermions
                                                          are not
                                                          affected by
                                                          the strong
                                                          nuclear force.
                                                          If they were,
                                                          I think it
                                                          would be
                                                          common
                                                          scientific
                                                          knowledge by
                                                          now. <o:p></o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white"><o:p> </o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">You wrote: "<span style="background:white">I
                                                          see it as a
                                                          valuable goal
                                                          for the
                                                          further
                                                          development to
                                                          find an answer
                                                          (a </span><i>physical </i><span
style="background:white">answer!) to the question of the de Broglie
                                                          wavelength."</span><o:p></o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">  My spin 1/2 charged photon model DOES give a
                                                          simple
                                                          physical
                                                          explanation
                                                          for the origin
                                                          of the de
                                                          Broglie
                                                          wavelength.
                                                          The
                                                          helically-circulating
                                                          charged photon
                                                          is proposed to
                                                          emit a plane
                                                          wave directed
                                                          along its
                                                          helical path
                                                          based on its
                                                          relativistic
                                                          wavelength
                                                          lambda =
                                                          h/(gamma mc)
                                                          and
                                                          relativistic
                                                          frequency
                                                          f=(gamma
                                                          mc^2)/h. The
                                                          wave fronts of
                                                          this plane
                                                          wave intersect
                                                          the axis of
                                                          the charged
                                                          photon’s
                                                          helical
                                                          trajectory,
                                                          which is the
                                                          path of the
                                                          electron being
                                                          modeled by the
                                                          charged
                                                          photon,
                                                          creating a de
                                                          Broglie wave
                                                          pattern of
                                                          wavelength
                                                          h/(gamma mv)
                                                          which travels
                                                          along the
                                                          charged
                                                          photon’s
                                                          helical axis
                                                          at speed
                                                          c^2/v. For a
                                                          moving
                                                          electron, the
                                                          wave fronts
                                                          emitted by the
                                                          charged photon
                                                          do not
                                                          intersect the
                                                          helical axis
                                                          perpendicularly
                                                          but at an
                                                          angle (see
                                                          Figure 2 of my
                                                          SPIE paper at <a
moz-do-not-send="true"
href="https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength"
target="_blank"><a class="moz-txt-link-freetext" href="https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength">https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength</a></a> )

                                                          that is simply
                                                          related to the
                                                          speed of the
                                                          electron being
                                                          modeled.  This
                                                          physical
                                                          origin of the
                                                          electron’s de
                                                          Broglie wave
                                                          is similar to
                                                          when a series
                                                          of parallel
                                                          and
                                                          evenly-spaced
                                                          ocean waves
                                                          hits a
                                                          straight beach
                                                          at an angle
                                                          greater than
                                                          zero degrees
                                                          to the beach —
                                                          a wave pattern
                                                          is produced at
                                                          the beach that
                                                          travels in one
                                                          direction
                                                          along the
                                                          beach at a
                                                          speed faster
                                                          than the speed
                                                          of the waves
                                                          coming in from
                                                          the ocean. But
                                                          that beach
                                                          wave pattern
                                                          can't transmit
                                                          “information”
                                                          along the
                                                          beach faster
                                                          than the speed
                                                          of the ocean
                                                          waves, just as
                                                          the de Broglie
                                                          matter-wave
                                                          can’t
                                                          (according to
                                                          special
                                                          relativity)
                                                          transmit
                                                          information
                                                          faster than
                                                          light, as de
                                                          Broglie
                                                          recognized. 
                                                          As far as I
                                                          know this
                                                          geometric
                                                          interpretation
                                                          for the
                                                          generation of
                                                          the
                                                          relativistic
                                                          electron's de
                                                          Broglie
                                                          wavelength,
                                                          phase
                                                          velocity, and
                                                          matter-wave
                                                          equation is
                                                          unique.<o:p></o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white"><o:p> </o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">  For a resting (v=0) electron, the de Broglie
                                                          wavelength
                                                          lambda =
                                                          h/(gamma mv)
                                                          is not defined
                                                          since one
                                                          can’t divide
                                                          by zero. It
                                                          corresponds to
                                                          the ocean wave
                                                          fronts in the
                                                          above example
                                                          hitting the
                                                          beach at a
                                                          zero degree
                                                          angle, where
                                                          no velocity of
                                                          the wave
                                                          pattern along
                                                          the beach can
                                                          be defined.<o:p></o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white"><o:p> </o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">  <span style="color:#252525;background:white">Schrödinger</span> took
                                                          de Broglie’s
                                                          matter-wave
                                                          and used  it
                                                          non-relativistically
                                                          with a
                                                          potential V
                                                           to generate
                                                          the <span
                                                          style="color:#252525;background:white">Schrödinger</span> equation

                                                          and wave
                                                          mechanics,
                                                          which is
                                                          mathematically
                                                          identical in
                                                          its
                                                          predictions to
                                                          Heisenberg’s
                                                          matrix
                                                          mechanics.
                                                          Born
                                                          interpreted
                                                          Psi*Psi of
                                                          the <span
                                                          style="color:#252525;background:white">Schrödinger</span> equation
                                                          as the
                                                          probability
                                                          density for
                                                          the result of
                                                          an
                                                          experimental
                                                          measurement
                                                          and this
                                                          worked well
                                                          for
                                                          statistical
                                                          predictions.
                                                          Quantum
                                                          mechanics was
                                                          built on this
                                                          de Broglie
                                                          wave
                                                          foundation and
                                                          Born's
                                                          probabilistic
                                                          interpretation
                                                          (using Hilbert
                                                          space math.)<o:p></o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white"><o:p> </o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">  The charged photon model of the electron
                                                          might be used
                                                          to derive the <span
style="color:#252525;background:white">Schrödinger</span> equation,
                                                          considering
                                                          the electron
                                                          to be a
                                                          circulating
                                                          charged photon
                                                          that generates
                                                          the electron’s
                                                          matter-wave,
                                                          which depends
                                                          on the
                                                          electron’s
                                                          variable
                                                          kinetic energy
                                                          in a potential
                                                          field. This
                                                          needs to be
                                                          explored
                                                          further, which
                                                          I began in <a
moz-do-not-send="true"
href="https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schr%C3%B6dinger_Equation"
target="_blank"><a class="moz-txt-link-freetext" href="https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schrödinger_Equation">https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schrödinger_Equation</a></a> .

                                                          Of course, to
                                                          treat the
                                                          electron
                                                          relativistically
                                                          requires the
                                                          Dirac
                                                          equation. But
                                                          the spin 1/2
                                                          charged photon
                                                          model of the
                                                          relativistic
                                                          electron has a
                                                          number of
                                                          features of
                                                          the Dirac
                                                          electron, by
                                                          design.<o:p></o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white"><o:p> </o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">  As to why the charged photon circulates
                                                          helically
                                                          rather than
                                                          moving in a
                                                          straight line
                                                          (in the
                                                          absence of
                                                          diffraction,
                                                          etc) like an
                                                          uncharged
                                                          photon, this
                                                          could be the
                                                          effect of the
                                                          charged photon
                                                          moving in the
                                                          Higgs field,
                                                          which turns a
                                                          speed-of-light
                                                          particle with
                                                          electric
                                                          charge into a
                                                          less-than-speed-of-light
                                                          particle with
                                                          a rest mass,
                                                          which in this
                                                          case is the
                                                          electron’s
                                                          rest mass
                                                          0.511 MeV/c^2
                                                          (this value is
                                                          not predicted
                                                          by the Higgs
                                                          field theory
                                                          however.) So
                                                          the electron’s
                                                          inertia may
                                                          also be caused
                                                          by the Higgs
                                                          field. I would
                                                          not say that
                                                          an unconfined
                                                          photon has
                                                          inertia,
                                                          although it
                                                          has energy and
                                                          momentum but
                                                          no rest mass,
                                                          but opinions
                                                          differ on this
                                                          point.
                                                          “Inertia” is a
                                                          vague term and
                                                          perhaps should
                                                          be dropped— it
                                                          literally
                                                          means
                                                          "inactive,
                                                          unskilled”.<o:p></o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white"><o:p> </o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">  You said that a faster-than-light phase wave
                                                          can only be
                                                          caused by a
                                                          superposition
                                                          of waves. I’m
                                                          not sure this
                                                          is correct,
                                                          since in my
                                                          charged photon
                                                          model a single
                                                          plane wave
                                                          pattern
                                                          emitted by the
                                                          circulating
                                                          charged photon
                                                          generates the
                                                          electron’s
                                                          faster-than-light
                                                          phase wave of
                                                          speed c^2/v .
                                                          A group
                                                          velocity of an
                                                          electron model
                                                          may be
                                                          generated by a
                                                          superposition
                                                          of waves to
                                                          produce a wave
                                                          packet whose
                                                          group velocity
                                                          equals the
                                                          slower-than-light
                                                          speed of an
                                                          electron
                                                          modeled by
                                                          such an
                                                          wave-packet
                                                          approach.<o:p></o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white"><o:p> </o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">with best regards,<o:p></o:p></p>
                                                          </div>
                                                          <div>
                                                          <p
                                                          class="MsoNormal"
style="background:white">       Richard<o:p></o:p></p>
                                                          </div>
                                                          <p
                                                          class="MsoNormal"
style="background:white"><o:p> </o:p></p>
                                                        </blockquote>
                                                      </div>
                                                    </div>
                                                  </blockquote>
                                                </div>
                                              </blockquote>
                                            </div>
                                          </div>
                                        </blockquote>
                                      </div>
                                    </blockquote>
                                    <p class="MsoNormal"
                                      style="margin-bottom:12.0pt;background:white"><br>
                                      <br>
                                      <o:p></o:p></p>
                                    <div class="MsoNormal"
                                      style="text-align:center;background:white"
                                      align="center">
                                      <hr style="width:606.6pt"
                                        noshade="noshade" size="2"
                                        width="809" align="center">
                                    </div>
                                    <table class="MsoNormalTable"
                                      style="border-collapse:collapse"
                                      border="0" cellpadding="0"
                                      cellspacing="0">
                                      <tbody>
                                        <tr>
                                          <td style="padding:0cm 11.25pt
                                            0cm 6.0pt">
                                            <p class="MsoNormal"><a
                                                moz-do-not-send="true"
                                                href="https://www.avast.com/antivirus"
                                                target="_blank"><span
                                                  style="text-decoration:none"><img
moz-do-not-send="true" id="_x0000_i1027"
                                                    src="http://static.avast.com/emails/avast-mail-stamp.png"
                                                    alt="Avast logo"
                                                    border="0"></span></a><o:p></o:p></p>
                                          </td>
                                          <td style="padding:.75pt .75pt
                                            .75pt .75pt">
                                            <div>
                                              <p class="MsoNormal"><span
style="font-family:"Calibri",sans-serif;color:#3D4D5A">Diese
                                                  E-Mail wurde von Avast
                                                  Antivirus-Software auf
                                                  Viren geprüft. <br>
                                                  <a
                                                    moz-do-not-send="true"
href="https://www.avast.com/antivirus" target="_blank"><a class="moz-txt-link-abbreviated" href="http://www.avast.com">www.avast.com</a></a><o:p></o:p></span></p>
                                            </div>
                                          </td>
                                        </tr>
                                      </tbody>
                                    </table>
                                    <p class="MsoNormal"
                                      style="background:white"><o:p> </o:p></p>
                                  </div>
                                </div>
                              </div>
                            </blockquote>
                            <p class="MsoNormal"><span
                                style="font-size:9.0pt;font-family:"Helvetica",sans-serif"><br>
                                <br
                                  style="text-align:start;word-spacing:0px">
                                <br>
                              </span><o:p></o:p></p>
                            <div class="MsoNormal"
                              style="text-align:center" align="center">
                              <hr style="width:614.05pt"
                                noshade="noshade" size="2" width="819"
                                align="center">
                            </div>
                            <table class="MsoNormalTable"
                              style="background:white;border-collapse:collapse;word-spacing:0px"
                              border="0" cellpadding="0" cellspacing="0">
                              <tbody>
                                <tr>
                                  <td style="padding:0cm 11.25pt 0cm
                                    6.0pt">
                                    <p class="MsoNormal"><span
                                        style="font-family:"Helvetica",sans-serif"><a
                                          moz-do-not-send="true"
                                          href="https://www.avast.com/antivirus"
                                          target="_blank"><span
                                            style="text-decoration:none"><img
                                              moz-do-not-send="true"
                                              id="_x0000_i1029"
                                              src="http://static.avast.com/emails/avast-mail-stamp.png"
                                              alt="Avast logo"
                                              border="0"></span></a><o:p></o:p></span></p>
                                  </td>
                                  <td style="padding:.75pt .75pt .75pt
                                    .75pt">
                                    <div>
                                      <p class="MsoNormal"><span
                                          style="font-family:"Calibri",sans-serif;color:#3D4D5A">Diese
                                          E-Mail wurde von Avast
                                          Antivirus-Software auf Viren
                                          geprüft. <br>
                                          <a moz-do-not-send="true"
                                            href="https://www.avast.com/antivirus"
                                            target="_blank">www.avast.com</a><o:p></o:p></span></p>
                                    </div>
                                  </td>
                                </tr>
                              </tbody>
                            </table>
                            <p class="MsoNormal"
                              style="margin-bottom:12.0pt"><o:p> </o:p></p>
                          </div>
                        </div>
                      </div>
                    </blockquote>
                  </div>
                  <p class="MsoNormal"><o:p> </o:p></p>
                </blockquote>
                <div>
                  <div>
                    <p class="MsoNormal" style="margin-bottom:12.0pt"><br>
                      <br>
                      <o:p></o:p></p>
                    <div class="MsoNormal" style="text-align:center"
                      align="center">
                      <hr style="color:#909090" noshade="noshade"
                        size="2" width="99%" align="center">
                    </div>
                    <table class="MsoNormalTable"
                      style="border-collapse:collapse" border="0"
                      cellpadding="0" cellspacing="0">
                      <tbody>
                        <tr>
                          <td style="padding:0cm 11.25pt 0cm 6.0pt">
                            <p class="MsoNormal"><a
                                moz-do-not-send="true"
                                href="https://www.avast.com/antivirus"
                                target="_blank"><span
                                  style="text-decoration:none"><img
                                    moz-do-not-send="true"
                                    id="_x0000_i1031"
                                    src="http://static.avast.com/emails/avast-mail-stamp.png"
                                    alt="Avast logo" border="0"></span></a><o:p></o:p></p>
                          </td>
                          <td style="padding:.75pt .75pt .75pt .75pt">
                            <p><span
                                style="font-family:"Calibri",sans-serif;color:#3D4D5A">Diese
                                E-Mail wurde von Avast
                                Antivirus-Software auf Viren geprüft.
                                <br>
                                <a moz-do-not-send="true"
                                  href="https://www.avast.com/antivirus"
                                  target="_blank">www.avast.com</a> <o:p>
                                </o:p></span></p>
                          </td>
                        </tr>
                      </tbody>
                    </table>
                    <p class="MsoNormal"><o:p> </o:p></p>
                  </div>
                </div>
              </div>
              <p class="MsoNormal" style="margin-bottom:12.0pt"><br>
                _______________________________________________<br>
                If you no longer wish to receive communication from the
                Nature of Light and Particles General Discussion List at
                <a moz-do-not-send="true" href="mailto:afokay@gmail.com">afokay@gmail.com</a><br>
                <a href="<a moz-do-not-send="true"
href="http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/afokay%40gmail.com?unsub=1&unsubconfirm=1"
                  target="_blank">http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/afokay%40gmail.com?unsub=1&unsubconfirm=1</a>"><br>
                Click here to unsubscribe<br>
                </a><o:p></o:p></p>
            </blockquote>
          </div>
          <p class="MsoNormal"><o:p> </o:p></p>
        </div>
      </div>
      <br>
      <hr>
      <font size="1" color="Gray" face="Arial">The information contained
        in this message may be confidential and legally protected under
        applicable law. The message is intended solely for the
        addressee(s). If you are not the intended recipient, you are
        hereby notified that any use, forwarding, dissemination, or
        reproduction of this message is strictly prohibited and may be
        unlawful. If you are not the intended recipient, please contact
        the sender by return e-mail and destroy all copies of the
        original message.<br>
      </font>
    </blockquote>
    <br>
  
<br /><br />
<hr style='border:none; color:#909090; background-color:#B0B0B0; height: 1px; width: 99%;' />
<table style='border-collapse:collapse;border:none;'>
        <tr>
                <td style='border:none;padding:0px 15px 0px 8px'>
                        <a href="https://www.avast.com/antivirus">
                                <img border=0 src="http://static.avast.com/emails/avast-mail-stamp.png" alt="Avast logo" />
                        </a>
                </td>
                <td>
                        <p style='color:#3d4d5a; font-family:"Calibri","Verdana","Arial","Helvetica"; font-size:12pt;'>
                                Diese E-Mail wurde von Avast Antivirus-Software auf Viren geprüft.
                                <br><a href="https://www.avast.com/antivirus">www.avast.com</a>
                        </p>
                </td>
        </tr>
</table>
<br />
</body>
</html>