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Abstract

The peculiarities of rotating frames of reference played an impor-
tant role in the genesis of general relativity. Considering them, Ein-
stein became convinced that coordinates have a different status in the
general theory of relativity than in the special theory. This line of
thinking was confused, however. To clarify the situation we investi-
gate the relation between coordinates and the results of space-time
measurements in rotating reference frames. We argue that the dif-
ference between rotating systems (or accelerating systems in general)
and inertial systems does not lie in a different status of the coor-
dinates (which are conventional in all cases), but rather in different
global chronogeometric properties of the various reference frames. In
the course of our discussion we comment on a number of related is-
sues, such as the question of whether a consideration of the behavior
of rods and clocks is indispensable for the foundation of kinematics,
the influence of acceleration on the behavior of measuring devices, the
conventionality of simultaneity, and the Ehrenfest paradox.
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1 Introduction

In his Autobiographical Notes [1], Einstein relates how important Machian
empiricist ideas were for his discovery of a theory that could reconcile the
idea that all inertial frames are equivalent with the principle that the ve-
locity of light has a fixed value that is independent of the velocity of the
emitting source. It was essential, he states, to realize what the meaning of
coordinates in physics is: they are nothing but the outcomes of length and
time measurements by means of rods, clocks and light signals. This idea led
Einstein to his famous critique of the classical notion of simultaneity, one of
the cornerstones of the special theory of relativity.

It soon turned out, however, that the special theory of relativity was
not able to accommodate gravitation, and the principle of equivalence, in
a natural way. Einstein fully recognized this problem in 1908, but it took
him another seven years before he succeeded in constructing the general
theory. As he explains in his Autobiographical Notes, the main reason for
the slowness of his progress in this period was the difficulty of abandoning
again, in the context of the general theory, the idea that coordinates should
possess immediate metrical meaning.

From a systematical (as opposed to a historical or psychological) point of
view this emphasis on the different meaning of coordinates, in the context of
the two theories, is very odd. For the practice of physics before, during and
after Einstein’s days, even if governed by the severest empiricist norms, does
not at all indicate that coordinates should possess a metrical significance,
relating to the indications of rods and clocks. Think, for example, of the
way coordinates are used in observational astronomy: the essential thing is
that the coordinates are assigned to celestial objects in an objective and
reproducible way; how the coordinates relate to distances is a matter to be
found out subsequently. Coordinates are even routinely attributed to regions
of the universe in which rods and clocks could not possibly exist. This is
obviously unobjectionable from an empiricist point of view, as long as the
method by which the coordinates are assigned is operationally specified. So,
even within the framework of special relativity general coordinate systems
that do not reflect the indications of rods and clocks are entirely permissible.

What finally led Einstein to abandon his special relativistic analysis of
the meaning of coordinates, he tells us, was the lack of metrical significance
of coordinates in accelerating frames of reference; the consideration of coordi-
nates on a rotating disc played an important role in reaching this conclusion
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[2]. But, as we will see, there is confusion here: the metrical significance
of coordinates in accelerating frames can be determined completely through
application of the principles of special relativity, so there can be no need to
revise the meaning of the notion of coordinates, or to invoke a new episte-
mological analysis.

As it turns out, the difference between inertial and non-inertial frames
of reference, and between special and general relativity, is not in the epis-
temological status of the coordinates. Rather, the difference is that chrono-
geometric characteristics become globally different. This is a physical rather
than a philosophical difference, and has nothing to do with the meaning or
permissibility of coordinate systems.

The rotating frame of reference nicely illustrates these points. There is
no problem in defining operationally meaningful coordinates in a rotating
(and therefore accelerating) frame. Furthermore, relating these coordinates
to distances and time intervals, and the behavior of moving objects, can
be done by the means provided by special relativity. However, the spatial
geometry becomes non-Euclidean, and local Einstein synchrony does not
lead to a global notion of time. These latter features constitute the essential
differences from the situation in an inertial frame.

In the course of our discussion we will have occasion to comment on a
number of related issues, such as the status of rods and clocks, the behavior
of accelerating measuring devices, the conventionality of simultaneity, and
the Ehrenfest paradox.

2 The rotating frame of reference

Let us start from Minkowski space-time, coordinatized by inertial coordinates
r, ϕ, z and t: r and ϕ are polar coordinates in a plane, z is a Cartesian
coordinate orthogonal to this plane, and t is the standard time coordinate.
It so happens that r, z, and t can be thought of as representing the indications
of rods and clocks, but that is not important for their role as coordinates,
which is just to pinpoint events unequivocally. The choice of coordinates
is conventional and pragmatic. In this case we choose polar coordinates
because we are going to describe a system that possesses axial symmetry:
polar coordinates simplify the description.

Once we have laid down coordinates, the metrical aspects should be intro-
duced via further stipulations. This is ordinarily done through the introduc-
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tion of the ‘line element’ ds2 = c2dt2− dr2− r2dϕ2− dz2, plus a specification
of what this mathematical expression represents physically. The traditional
approach is to invoke standard rods and clocks: ds/c is the time measured
by a standard clock whose r, ϕ and z coordinates are constant. Furthermore,√
−ds2 is the length of a rod with a stationary position in the coordinates and

with constant coordinates and differences dr, dϕ, dz between its endpoints,
taken at one instant according to standard simultaneity (dt = 0). However, it
would be a mistake to think that rods and clocks are indispensable to relate
the coordinates to metrical concepts. In section 4 below we will discuss an
approach that does not make use of rods and material clocks.

We now introduce alternative coordinates for the events in this Minkowski
world: t′ = t, r′ = r, ϕ′ = ϕ − ωt and z′ = z, with ω a constant. Since rest
in the new coordinates obviously means uniform rotation with respect to the
old frame, we call the frame of reference defined by these new coordinates
the rotating frame of reference.

It is clear that if operational methods are at hand to fix the old coordi-
nates, the same methods can be used to assign values to the new coordinates
(we assume ω to be known). So from an empiricist or operational point of
view the new coordinates are impeccable. However, from the special theory
of relativity we know that material bodies at rest in the new coordinates
may not exist (ωr may be greater than c, the velocity of light). It is true,
therefore, that the new coordinates will not always have a direct interpreta-
tion in terms of co-moving bodies—but this is something to be distinguished
sharply from the more general question of whether they have adequate em-
pirical significance at all.

Substitution of the rotating coordinates into the expression for the line
element yields ds2 = (c2 − r′2ω2)dt′2 − dr′2 − r′2dϕ′2 − dz′2 − 2ωr′2dϕ′dt′.
As we already mentioned, it is a basic principle of the special theory of
relativity that the line element supplies all information about the physics of
the situation, as described in the given coordinates. It was also mentioned
above that the traditional link between ds and physical concepts makes use of
clocks and measuring rods. However, there is another and more fundamental
physical interpretation available that only makes use of the basic laws of
motion: as long as no disturbing forces act, point particles follow time-like
geodesics and light follows null-geodesics in the metric defined by ds2. The
relation between these dynamical aspects (how particles and light move) and
the metrical aspects (rods and clocks) will be the subject of comments in
section 4.
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3 Rods and clocks

Let us for the moment stay with the physical interpretation of ds in terms
of measurements performed with rods and clocks. Concerning time, the
coordinating principle is that ds/c represents proper time, measured by a
clock whose world line connects the events between which ds is calculated.
This principle entails that a clock at rest in the rotating frame will indicate
the proper time

ds/c =
√

(1− r′2ω2/c2)dt′. (1)

Because t′ = t and t has the physical meaning of the time indicated by a
clock at rest in the old frame, this implies that clocks at rest in the rotating
frame are slow compared to clocks in the original (“laboratory”) frame.

With regard to spatial distances, the interpretative principle is that
√
−ds2

gives the length of an infinitesimal rod whose endpoints are simultaneous ac-
cording to standard simultaneity in the rod’s rest frame ([3], p.187). (A rod
is a three-dimensional object, so we need a stipulation about the instants at
which its endpoints should be considered in order to get a four-dimensional
interval for which ds can be calculated.) When we apply this rule to rods
that are at rest in the rotating frame of reference, we encounter the com-
plication that dt′ = 0 does not automatically correspond to standard simul-
taneity in the rotating frame. The definition of standard synchrony of two
(infinitesimally near) clocks A and B is that a light signal sent from A to
B and immediately reflected to A, reaches B when B indicates a time that
is halfway between the instants of emission and reception, respectively, as
measured by A. Suppose that A and B, both at rest in the rotating frame,
have positions with coordinate differences dr, dϕ and dz—from now on we
drop the primes of the rotating coordinates. A light signal between A and B
follows a null-geodesic:

ds2 = (c2 − r2ω2)dt2 − dr2 − r2dϕ2 − dz2 − 2ωr2dϕdt = 0. (2)

This equation gives the following solutions for dt when it is applied to the
signals from A to B and back, respectively:

dt1,2 =
±ωr2dϕ +

√
(c2 − ω2r2)(dz2 + dr2) + c2r2dϕ2

c2 − ω2r2
. (3)

If t0 is the time coordinate of the emission event at A, the event at A with
time coordinate t0 + 1/2(dt1 + dt2) is standard-simultaneous with the event
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at B with time coordinate t0 + dt1. It follows that standard synchrony be-
tween infinitesimally close events corresponds to the following difference in
t-coordinate:

dt = (t0 + dt1)− (t0 + 1/2dt1 + 1/2dt2) = (ωr2dϕ)/(c2 − ω2r2). (4)

As was to be expected, it is only for events that differ in their ϕ-coordinates
that dt = 0 is not equivalent to standard simultaneity; indeed, the instan-
taneous velocity of the rotating frame is tangentially directed, and the rela-
tivistic dilation and contraction effects only take place in the direction of the
velocity.

The spatial distance between two infinitesimally near points, as measured
by a rod resting in the rotating frame, is found by substituting the just-
derived value of dt, (4), in the expression for ds. The result is the following
expression for the 3-dimensional spatial line element:

dl2 = dr2 +
r2dϕ2

1− ω2r2/c2
+ dz2. (5)

We could have found (1) and (5) in a simpler way by making use of the
standard expressions for the time dilation and Lorentz contraction under-
gone by clocks and rods, respectively, that possess the instantaneous velocity
ωr. However, the use of the line element as the central theoretical quantity
provides us with a unifying framework that makes it easier to discuss the
relation between metrical and dynamical concepts.

4 Space and time without rods and clocks

In his Autobiographical Notes, Einstein already points out that from a funda-
mental point of view it is unsatisfactory to interpret ds via measuring proce-
dures with complicated macroscopic instruments. Indeed, this could create
the false impression that rods and clocks are basic entities without which
the theory would have no physical content. However, it is clear that rods
and clocks themselves consist of more fundamental entities, like atoms and
molecules. In principle it would therefore be better to base the interpretation
of the theory directly on what it says about the fundamental constituents
of matter. It is only because no complete theory of matter was available,
Einstein explains, that it was expedient to introduce the theory through
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measurements by rods and clocks. In principle they should be eliminated at
a later stage.

This desideratum, to do without rods and clocks, becomes even more
urgent when accelerated frames of reference are considered, as in the case
of our rotating world. Obviously the motions of clocks and rods that are
stationary in the rotating frame are not inertial. Centrifugal and Coriolis
forces will therefore arise, which will distort the rotating instruments. It is
not a priori clear that such deformed instruments will keep on functioning as
indicators of ds. Indeed, one could easily think of rods or clocks that would
be torn apart by centrifugal forces and would therefore certainly not indicate
any length or time intervals.

Fortunately, it is possible to found the space-time description of our ro-
tating world on a more fundamental level than that of macroscopic measuring
devices. In fact, in general space-times one can use the basic principles that
time-like geodesics are physically realized by inertially moving point-particles
and that null-geodesics represent light rays, to define space-time distances
between neighboring events ([4], section 16.4). In our case, Minkowski space-
time, we can start by constructing a set of elementary ‘light clocks’ by let-
ting light signals bounce back and forth between neighboring parallel parti-
cle geodesics. If we confine our attention to the plane z = 0, we can take
the geodesics defined in the laboratory frame (the inertial system we started
with) by constant r, ϕ and r+dr, ϕ, respectively. The thus constructed clock
has a constant period (the dt between two ‘ticks’) of 2dr/c. In other words,
we have here an elementary process that provides a physical realization of t;
and we have come to this conclusion on the basis of the dynamical postulates
alone (the only ingredient is that light follows null-geodesics). Length can be
determined in a similar way: let a light signal depart from A, with fixed r and
ϕ and go to a neighboring position B with r + dr and ϕ + dϕ from which it
returns immediately to A. Let the round trip time measured at A be dt. We
can now define the spatial distance dl between A and B as cdt/2. From the
postulate that light follows null-geodesics it follows that dl2 = dr2 + r2dϕ2.
In this way the laboratory coordinates obtain metrical significance, without
reliance on macroscopic clocks and rigid rods. When such (complicated)
systems are introduced at a later stage, we can study their workings on the
basis of the fundamental laws of physics governing their constituents and see,
on that basis, whether they are indeed suitable to measure the just-defined
intervals.

We now turn our attention to measurements performed within the rotat-
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ing system, i.e. with instruments resting in the rotating coordinates. From
Eq. (3) we see that the round trip time dt needed by a light signal between
two neighboring points that are stationary in the rotating frame of reference
is given by

dt = dt1 + dt2 = 2

√
(c2 − ω2r2)dr2 + c2r2dϕ2

c2 − ω2r2
.

If the laboratory coordinate t is used as the measure of time, and if the
definition dl = cdt/2 is used to fix spatial distances, we arrive at the metric

dl2 =
(1− ω2r2/c2)dr2 + r2dϕ2

(1− ω2r2/c2)2
.

However, it is more natural to link the measure of time intervals in the ro-
tating system to the indications furnished by light clocks that are co-moving,
i.e. stationary in the rotating coordinates instead of stationary in the labora-
tory frame. So let a light ray bounce back and forth between two points that
only differ in their r-coordinate, by the amount dr, in the rotating frame. It
follows from the expression (2) that the period of the thus defined clock is
2dr/

√
c2 − ω2r2, whereas the period of the similar and instantaneously co-

inciding clock in the laboratory frame is 2dr/c. The period of the rotating
light clock is therefore longer, by a factor 1/

√
1− ω2r2/c2, than the period

of the laboratory clock. When we now define distances as cdτ/2, with τ mea-
sured in the new ‘co-moving’ time units, we have to multiply the distances
we found a moment ago by

√
1− ω2r2/c2. The final result is

dl2 = dr2 + r2dϕ2/(1− ω2r2/c2).

This is the same result as we found in Eq. (5).

5 Accelerating measuring devices

The above sketch shows how we can achieve a physical implementation of the
two systems of coordinates, and give them metrical meaning, by the sole use
of point-particles and light. The thus defined space-time distances can be
used to calibrate macroscopic measuring rods and clocks. Indeed, it is clear
that in general such instruments will be deformed by the rotational motion,
and that this will introduce inaccuracies in their readings.
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The general effect of accelerations can be illustrated by the consideration
of a light-clock of the kind mentioned above: a light signal bouncing back and
forth between two particle world-lines. Light travelling to and fro between
two mirrors resting in an inertial system, with mutual distance L, defines a
clock with half period T = L/c. When the two mirrors move uniformly with
the same velocity −→v , in a direction parallel to their planes, a simple appli-
cation of the Pythagorean theorem shows that the half period of the moving
clock becomes L/(c

√
1− v2/c2) = T/

√
1− v2/c2. This demonstrates the

presence of time dilation in the case of a moving light-clock (by means of
the relativity principle this result can be extended to other time-keeping de-
vices). Consider now what happens if the velocity is not uniform but the
system starts accelerating when the light leaves the first mirror, with a small
acceleration −→a in the direction of −→v . As judged from the inertial frame,
the light now needs a time T ′ to reach the second mirror; during this time
the accelerating mirror system has covered a distance s ≈ vT ′ + 1/2aT ′2.
Application of Pythagoras now yields c2T ′2 = L2 + s2. It follows that

c2T ′2 = L2 + v2T ′2 + avT ′3 + 1/4a2T ′4. (6)

The half period T ′ that follows from this equation obviously depends on a.
However, it is also obvious that the extent of the change in the period caused
by a depends on the magnitude of T ′ itself. If we make T ′ in Eq. (6) very
small, by reducing L, we find in the limiting situation T ′ = T/

√
1− v2/c2,

just as in the case of the uniformly moving clock. In other words, the ac-
celeration has an effect, but the magnitude of this effect depends on the
peculiarities of the specific clock we are considering (in this case on L). This
acceleration-dependent effect can be made as small as we wish, by using suit-
ably constructed clocks (in the example: by reducing L). What remains in
all cases is the universal effect caused by the velocity.

This shows in what sense velocities have a universal effect on length and
time determinations, but accelerations not. There is no independent postu-
late involved here; everything can be derived from the dynamical principles
of special relativity theory, by considering the inner workings of the measur-
ing devices. It turns out that acceleration-dependent effects are there, but
can be varied, and corrected for, by varying the characteristics of the devices.
This is the real content of the textbook statement that acceleration has no
metrical effects. It should be stressed again that this does not constitute
a new hypothesis that has to be added to the dynamical principles of the
theory of relativity. Quite to the contrary, the effects of accelerations on any
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given clock or measuring rod can be computed from the dynamical principles
applied to these devices.

Of course, that the magnitudes of distortions will depend on the specific
constitutions of the rods or clocks in question is only to be expected. Ro-
bust rods and clocks will be less affected accelerations than fragile ones. One
way of correcting for the deformations is to gauge the accelerating instru-
ments against the light measurements results described in section (4). The
expressions (1) and (5) should be understood as applying to the results of
space-time measurements performed with thus corrected measuring devices.

6 Space and time in the rotating frame

The spatial geometry defined by the line element (5) is non-Euclidean, with a
negative r-dependent curvature (see [5], pp. 330-337). One of the notorious
characteristics of this geometry is that the circumference of a circle with
radius r (in the plane z = 0) is 2πr/(1−ω2r2/c2), which is greater than 2πr.
The recognition that the geometry in accelerated frames of reference will in
general be non-Euclidean, which through the equivalence principle suggests
that the presence of gravitation will also cause deviations from Euclidean
geometry, played an important role in Einstein’s route to General Relativity.
We will restrict ourselves to the special theory, however.

The properties of time in the rotating frame are perhaps even more in-
teresting than the spatial characteristics. Expression (4) demonstrates that
standard simultaneity between neighboring events in the rotating frame cor-
responds to a non-zero difference dt. It follows that if we go along a circle
with radius r, in the positive φ-direction, while establishing standard simul-
taneity along the way, we create a ‘time gap’ 4t = 2πωr2/(c2 − ω2r2) upon
completion of the circle. Doing the same thing in the opposite direction re-
sults in a time gap of the same absolute value but with opposite sign. So
the total time difference generated by synchronizing over a complete circle
in one direction, and comparing the result with doing the same thing in the
other direction is 4t = 4πωr2/(c2 − ω2r2).

Now suppose that two light signals are emitted from a source fixed in the
rotating frame and start travelling, in opposite directions, along the same
circle of constant r. We follow the two signals while locally using standard
synchrony; this has the advantage that locally the standard constant velocity
c can be attributed to the signals. We therefore conclude that the two signals
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use the same amount of time in order to complete their circles and return to
their source, as calculated by integrating the elapsed time intervals measured
in the successive local comoving inertial frames (the signals cover the same
distances, with the same velocity c, as judged from these frames). However,
because of the just-mentioned time gaps the two signals do not complete
their circles simultaneously, in one event. There is a time difference 4t =
4πωr2/(c2−ω2r2) between their arrival times, as measured in the coordinate
t. This is the celebrated Sagnac effect (see [6], p. 652 for a related derivation).

The Sagnac effect directly reflects the space-time geometry of the rotating
frame; it does not depend on the specific nature of the signals that propagate
in the two directions. Indeed, as long as the two signals have the same
velocities in the locally defined inertial frames with standard synchrony, the
difference in arrival times is given by the above time gap. So the same
Sagnac time difference is there not only for light, but for any two identical
signals running into two directions. The Sagnac experiment directly probes
the space-time relations in the rotating frame.

Because of the difference in arrival times of the two light signals, the
velocity of light obviously cannot be everywhere the same in the rotating
coordinates. This is a consequence of the fact that in the rotating frame
events with equal time coordinate t are not standard simultaneous. So t may
appear as an unnatural time coordinate for the rotating frame: it would be
desirable to have a time coordinate that would reflect standard simultaneity
everywhere. The question can therefore be asked whether we could define a
coordinate t̃ in such a way that dt̃ = 0 would imply standard synchrony in
the local inertial frame. Suppose that t̃ = t̃(t, r, ϕ), then we should have that
dt̃ = 0 if Eq. (4) holds. This implies that ω2r2/(c2 − ω2r2)∂t̃/∂t+∂t̃/∂ϕ = 0
and ∂t̃/∂r = 0. In view of the axial symmetry in our frame we may assume
that ∂t̃/∂ϕ = 0. The only solution of our partial differential equations is
therefore that t̃ is independent of r, ϕ and t, which clearly is unacceptable.
Therefore, it turns out to be a basic characteristic of the rotating frame that
the locally defined Lorentz frames do not mesh: they cannot be combined
into one frame with a globally defined standard simultaneity. Evidently it
is possible to define global time coordinates, like t; but the description of
physical processes in terms of these coordinates must necessarily differ from
the standard description in inertial systems. The non-constancy of the veloc-
ity of light in the rotating system furnishes an example. It should be noted
that this peculiarity of the description of physical processes in the rotating
system is not a consequence of the presence of centrifugal and Coriolis forces:
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indeed, in our space-time determinations we have compensated for the effects
of such forces. It is the space-time geometry itself that is at issue.

7 Simultaneity, slow clock transport and con-

ventionality

As we saw in the previous section, the Sagnac effect is independent of the
nature of the signals that propagate into the two directions on the rotating
disc. So, if we transport two clocks along a circle with radius r around the
center of the disk, one clockwise and one counter-clockwise, while keeping
their velocities the same in the locally co-moving inertial frames, there will
be a difference4t = 4πωr2/(c2−ω2r2) between their return times (measured
in the laboratory time t). It is well known that the indications of the clocks
will conform to standard simultaneity in the limiting situation of vanishing
velocities. That is, if the clocks are transported very slowly with respect
to the rotating disc, they will remain synchronized according to standard
simultaneity in the local inertial frames. It follows that slow clock transport
cannot be used to define an unambiguous global time coordinate on the
rotating disc: in the just-mentioned case the result will depend on whether
a clockwise or counter-clockwise path is chosen. In general, the result of
synchronization by slow clock transport will be path dependent.

With regard to time in inertial frames, there has been a long-standing and
notorious debate about whether standard simultaneity (ε = 1/2 according
to Reichenbach’s formulation) is conventional or not. One of the arguments
often put forward against the conventionality thesis is that the natural pro-
cedure of slow clock transport leads to ε = 1/2, thus showing its privileged
status. In the case of the rotating world, this argument can only be applied
locally. Neither the Einstein light signal procedure, nor the slow transport of
clocks can be used to establish a global notion of simultaneity on the rotating
disc.

More generally, it cannot be denied that in inertial frames standard si-
multaneity has a special status: it allows a simple formulation of the laws,
conforms to slow clock transport and other physically plausible synchroniza-
tion procedures, and agrees with Minkowski-orthogonality with respect to
world lines representing the state of rest [7]. So time coordinates t that cor-
respond to this notion of simultaneity (in the sense that dt = 0 expresses
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simultaneity) may be said to be privileged. In non-inertial frames this still
is so, though now the argument applies only locally. The rotating system
illustrates the situation very well: in each point on the disc standard simul-
taneity can be defined just as in an inertial system, but this does not result
in a global time coordinate. This supports the general conclusion of this pa-
per, namely that the difference between the status of coordinates in inertial
and non-inertial frames of reference, or special and general relativity, is not
so much a matter of epistemology—or philosophical analysis of the mean-
ing of coordinates—but rather a matter of physical facts. In global inertial
systems privileged coordinates can be chosen that have a global metrical
interpretation. In reference frames that are not globally inertial such privi-
leged coordinates do not exist in general. This is not a matter of a different
philosophical status of coordinates, but rather a reflection of different global
space-time symmetry properties—a factual physical difference rather than a
philosophical distinction.

The purpose of coordinates is to label events unambiguously, which can
be done in infinitely many different ways. The choice between these different
possibilities is a matter of pragmatics; though there may be very good reasons
to prefer one choice over another. Thus, in inertial frames of reference time
coordinates that reflect standard simultaneity lead for many purposes to an
especially simple description. In this case there exists a physically significant
global temporal relation between events, and coordinates that are adapted to
this relation inherit its special status. But in the general case no physically
significant simultaneity relation exists. Global ”simultaneity” can then only
refer to some global time coordinate, which is chosen conventionally. This is
true in non-inertial frames of reference, like the rotating disc, and in generally
relativistic space-times in which there are no global temporal symmetries.
These non-inertial frames of reference, and general relativistic space-times,
seem an arena where the thesis that (global) simultaneity is conventional can
be defended without controversy.

8 The rotating Ehrenfest cylinder

Not only in its temporal aspects, but also in its spatial physical properties
the rotating frame differs globally from an inertial frame. Until now we spoke
about a rotating frame of reference as defined by a set of rotating coordinates,
without discussing a possible material realization of this frame. It is clear

13



from the outset that the special theory of relativity sets limits to such a
realization: objects at rest in the rotating frame should not move faster than
light as judged from the inertial laboratory frame. This implies that ωr < c
should hold for such an object. In other words, there is an upper bound to
the value of r that can be realized materially.

However, even if this condition is satisfied there remain interesting ques-
tions, as made clear by Ehrenfest in his famous note on the subject [8]. Sup-
pose that a solid cylinder of radius R is gradually put into rotation about
its axis; finally it reaches a state of uniform rotation with angular velocity
ω. It would seem that in the final state the cylinder has to satisfy contra-
dictory requirements: on the one hand the Lorentz contraction should make
the circumference shorter, on the other hand the radial elements should not
contract because their motion is normal to their lengths. From symmetry
it is clear that the form of a cross section of the moving cylinder remains a
circle, as judged from the laboratory frame; but this would apparently mean
that the circumference of the circle has become smaller while the radius has
stayed the same. This is inconsistent (remember that Euclidean geometry
holds in the laboratory frame).

The solution of this paradox is that the various parts of the cylinder, be-
ing fastened to each other, cannot move freely and therefore cannot Lorentz
contract as freely moving infinitesimal measuring rods would do. What will
happen to the cylinder during its acceleration depends on the elastic prop-
erties of the material: tensions will develop because the tangential elements
want to shrink, whereas the radial elements do not. A possible scenario is
that the tangential elements will be stretched as compared to their natural
(i.e. Lorentz contracted) lengths. Another possibility, if the material is suffi-
ciently strong, is that the radius will contract, allowing the circumference to
contract too. However, if ω becomes big enough one would have to expect
that the tensions and strains grow to such an extent that they cause the
cylinder to explode. This makes it clear that the Lorentz contraction can
be responsible for clearly dynamical effects—the contractions are not just a
matter of “perspective” (see [9] and [10]). (Of course, this whole discussion
is rather academical because centrifugal forces will tear the cylinder apart
before the relativistic effects become noticeable.)

As long as the cylinder survives, and keeps its cylindrical shape (as judged
from the laboratory frame), not all its elements will be free from deforma-
tions, tensions or strains. However, the length determinations by measuring
rods at rest in the rotating frame, as discussed in section 3, were supposed
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to be carried out with freely movable rods that are not hampered in their
Lorentz contractions. So measuring rods laid out along the circumference
of the circle will have undergone a Lorentz contraction, whereas rods laid
out along a radius will have retained their rest length (as judged from the
laboratory system). The measurement would reveal that the circumference
is longer than 2π times the radius, in conformity with equation (5).

The spatial geometry of the disc is therefore non-Euclidean. That means
that distance relations must be represented by a metrical tensor that cannot
be put into the Euclidean diagonal form everywhere. It remains possible, of
course, to choose coordinates locally in such a way that the Euclidean form
results at the point in question. The difference from the inertial system con-
cerns global aspects, not local ones. The impossibility to define a global coor-
dinate system in which the metrical tensor reduces to its Euclidean standard
form implies that there cannot be coordinates whose differences correspond
to distances everywhere. The situation is analogous to the one we discussed
in the context of time coordinates: nothing changes in the status and mean-
ing of coordinates when we go from inertial to non-inertial systems. The
things that do change are the global characteristics of the physical geometry,
which are coordinate-independent.

Conclusion

The transition from inertial to non-inertial frames of reference, and the transi-
tion from special to general relativity, does not imply a change in the status
and meaning of coordinate systems. It is therefore a misunderstanding to
think that general relativity allows a wider class of coordinate systems than
classical physics or special relativity. In classical physics and in relativity
theory, both in inertial systems and non-inertial systems, coordinates just
serve to label events. The choice for a particular coordinate system from the
infinity of possible ones is dictated by pragmatic considerations.

What does change in the transition from inertial to non-inertial systems,
and from special to general relativity, are the global aspects of the physical
spatial and temporal relations. Pragmatic arguments for choosing one co-
ordinate system over another may therefore lead to different choices in the
different situations: if geometrical relations have become different, coordi-
nate systems with different characteristics, adapted to the new geometry,
may lead to a simpler description. But this does not change the conventional
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nature of the coordinates.
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