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It is argued that nonrelativistic quantum mechanics does not in all respects behave as a fully
Galilean invariant theory. The difference is empirically significant, as is illustrated by the Sagnac
effect. The conclusion of this article sheds some new light on a recent discussion concerning the

status of de Broglie’s theory of matter waves.

L. INTRODUCTION

When Louis de Broglie introduced the concept of matter
waves, he made essential use of special relativity.' His fun-
damental argument was that quantum theory associates a
frequency with any energy, according to the formula
E = hv. If the relativistic energy E, = m,c? is substituted,
we get, for the frequency associated with a resting particle
of rest mass mg, v, = myc>/h. When the same particle is
described from an inertial frame that has a velocity » with
respect to the particle’s rest frame, its energy becomes
E=my*/\1 — 12/¢%. In a Lorentz invariant theory, we
should have the same relation between frequency and ener-
gy in every inertial frame, so that the frequency has to
transform as v = v,/J1 — #°/¢°. But this is the transfor-
mation formula for the frequency of a wave that is extended
in space (as opposed to the frequency of a periodic phe-
nomenon located in the particle; the latter frequency would
transform as v/ = vp/1 — £2/c?).

In this way de Broglie was led to associate an “accompa-
nying phase wave” with every particle. He assumed that
the wave has everywhere the same phase if seen from the
particle’s rest frame; from the transformation behavior of
the wave under Lorentz transformations, it then follows
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that for a particle with velocity v, the phase wave has fre-
quency mqyc?/h1 — v?/c%, wavelength k1 — v*/c*/ my,
and phase velocity ¢*/v.

When Schrédinger shortly afterward developed his
wave mechanics, he built on the foundations laid by de
Broglie.> But Schrédinger’s treatment was nonrelativistic.
He considered waves with frequency muv®/2h and with
wavelength 4 /mv (in the case of free particles), for which
his famous wave equation holds.

Schrédinger’s nonrelativistic quantum mechanics had
an enormous success; as a small part of its many accom-
plishments, it reproduced the exploits of de Broglie’s theo-
ry. In its applications no appeal to the theory of relativity is
necessary. It is somewhat surprising, and important to
note, that although the results of de Broglie’s relativistic
approach and the later nonrelativistic treatment are almost
the same, the reasoning involved is sometimes quite differ-
ent. Most notably, in de Broglie’s theory the frequency as-
sociated with a particle is always very high, due to the large
value of the rest energy mc”. In de Broglie’s view this con-
stituted an essential part of his theory. But in the Schré-
dinger theory there is no such “rest frequency.”

The differences in the relativistic and nonrelativistic ap-
proaches to wave mechanics have given rise to various re-
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actions in the literature. It has been alleged that the nonrel-
ativistic version of de Broglie’s phase waves is inconsistent,
and that this has grave consequences for the scientific sta-
tus of quantum mechanics.® On the other hand, it has re-
cently also been contended that a confusion on de Broglie’s
part is at the heart of the idea of relativistic phase waves,
and that only the nonrelativistic version can claim to be a
successful physical theory.* According to this criticism,
the high relativistic frequency of de Broglie’s original theo-
ry is unphysical and the agreement with the later Schro-
dinger theory more or less coincidental. Finally, the com-
mon view in textbooks on quantum mechanics seems to be
that nonrelativistic quantum mechanics is a perfectly al-
right Galilean invariant theory that is able to stand on its
own feet, quite independently of relativistic consider-
ations.” .

The purpose of this article is to show that nonrelativistic
quantum mechanics in a subtle way does not behave as a
fully Galilean invariant theory. The phase of the wavefunc-
tion transforms in a way that is not compatible with the
behavior of classical waves under Galilei transformations.
This transformation behavior of the phase is empirically
significant: On account of it, the Schrédinger theory is able
to make predictions that have a typically relativistic char-
acter and cannot be expected from a Galilean invariant
theory. Although nonrelativistic quantum mechanics is
certainly an internally consistent theory in its own right, it
therefore does not completely fit in with the framework of
classical, prerelativistic theories. The theory can be regard-
ed as a nonrelativistic approximation to a relativistic theo-
ry. Its transformation group, the 11 parameter quantum
mechanical Galilei group®—which is the nonrelativistic
limit (c-» o) of a representation of the Poincaré group
(see Ref. 8, pp. 341-342)—is not a full symmetry group of
the theory in exactly the same way the Galilei group is a
symmetry group for classical theories.

II. THE TRANSFORMATION OF THE PHASE

Consider the nonrelativistic version of the theory of mat-
ter waves, according to which a particle with kinetic energy
E = Jmv* and with momentum p = muvis associated with a
wave with frequency v = E /h and wavelength A = h /p.
Suppose that the wave propagates in the direction of the
positive x axis. The phase at a point with coordinate x at
time ¢ is then given by the expression ¢ = (px — Et)/
#i= m(uvx — 1) /% If the same situation is described
from a Galilean frame (x’, ¢') that moves with a velocity

— useen from the frame (x,2), wehavex' = x 4+ ut,t' =1,
and v’ = v + u. In terms of the variables in the new frame,
the phase ¢ can be expressed as

= (m/B)(V'x — W' —ux' + u’t").
The fundamental formulas of the matter-wave theory

could, however, also be applied directly in the moving
frame, with the result

¢' = (m/#H) (v'x' — Wt").
Comparison of the formulas yields the transformation law
for the phase:

¢ =+ (m/h)(ux’ — Ju’t’).
The phase in the frame (x',z ') can therefore be found from

the one calculated in the frame (x,¢) by adding the “correc-
tion term” m(ux’ — Ju*t')/#. The phase is apparently not
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an invariant in the nonrelativistic theory.

In the Schrédinger formalism the same transformation
law holds for the Fourier components of the wavefunction.
Moreover, as the phase factor is the same for all Fourier
components, the transformation law is valid for an arbi-
trary wavefunction—also if the particle is not free. That
means that if ¥(x,?) is a solution of the Schrddinger equa-
tion in the inertial frame (x,¢), the corresponding solution
of the Schrédinger equation written down in the coordi-
nates of the inertial frame (x',¢") is given by

V'(x',t") = W (x' — ut,tyexp[ (im/#) (ux' — ") 1

For the Galilei transformations considered here, we have,
of course, t="11".

ITII. GALILEAN INVARIANCE

The transformations of the wavefunction that we have
just derived belong to a (projective) representation of the
group of Galilei transformations. Moreover, the Schro-
dinger equation is clearly invariant under the transforma-
tions. The derivation of the transformations had in fact as
its main premise that solutions of the Schrodinger equation
with momentum p are carried over into solutions of the
same equation (but in the new coordinates) with momen-
tum p + mu; from this, the general invariance of the Schro-
dinger equation already follows. The fact that these two
conditions are fulfilled (representation of the Galilei group
and form invariance of the evolution equation) is usually
taken as sufficient evidence that the Schrodinger theory is
Galilean invariant. The idea behind this, apparently, is that
the wavefunctions are only affected by the transformations
through multiplication by a phase factor, so that detection
probabilities phenomena remain the same regardless which
frame is used to make predictions.

But this reasoning is not cogent. A phase factor is only
without physical significance in quantum mechanics if the
total state vector in Hilbert space is multiplied by such a
factor. In the case we are considering, the various ¥ (x,2)—
which can be regarded as components of the total state vec-
tor on a basis of position eigenvectors—are multiplied by
different phase factors. That suggests that the factors may
have empirical significance; they affect the phase relations
between the components of the total wavefunction. These
phase relations may lead to empirical consequences in the
case of interference.

In the following we shall see that there are indeed empiri-
cally verifiable interference effects related to the phase fac-
tors in the transformations of Sec. I1. The existence of these
effects implies that the Schrédinger theory is not a Galilean
invariant theory in exactly the same way as classical theo-
ries are. The common conception that the Schrédinger the-
ory isin that way Galilean invariant is based on an underes-
timation of the physical significance of the quantum
mechanical phase.

IV. THE SAGNAC EFFECT

Consider the situation of Fig. 1. On a disk a device has
been mounted that is able to simultaneously emit two sig-
nals of the same sort and with the same velocity in opposite
directions. The signals are made to run along the same cir-
cular path (with center in the middle of the disk). Upon
their return at the point of emission, the two signals are
detected and compared. Now the disk, with the complete
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Fig. 1. The Sagnac experiment. Two signals run in opposite directions
along a circular path. The whole setup can be set into rotation with
respect to the laboratory frame. Seen from the rotating system, the two
signals have equal speeds; measured in the laboratory system, the speeds
are v + wR.

experimental setup attached to it, is set into rotation
around its center. The question is whether the overall rota-
tion will have an effect on what is measured by the detector.

Classical and relativistic physics predict fundamentally
different things for this case. Let us first see what happens
from the point of view of a Galilean invariant theory. The
rotating disk is, of course, not an inertial frame, but during
very short times we may regard the motion of a small por-
tion of the circumference of the circle as uniform. The ef-
fects of centrifugal and Coriolis forces have, of course, tobe
compensated for in order to keep the signals on their circu-
lar trajectories. Because the acceleration a is then always
perpendicular to the velocity, the applicability of physical
laws in their inertial form is especially clear in this particu-
lar case: A possible deviation from the inertial form would
result through operation of a+d /dv on the inertial func-
tional form.

From Galilean invariance it is obvious that a comoving
observer on the disk sees the departure of two oppositely
directed signals with equal speeds. After a full revolution
the signals meet at the position of the source; the time need-
edis 27R /v, with R the radius of the circle and v the speed
of the signals. This equals the travel time when the disk
rests in an inertial system. Everything happens at the detec-
tor as if there were no rotation.

Of course, the experiment can also be described from the
inertial system with respect to which the disk has been
made to rotate. Then, the two signals have speeds v + wR
and v — wR, respectively (w is the angular velocity of the
disk). But this difference in speed is exactly compensated
by the difference in the distances that the signals have to
travel. The faster signal has to make more than one revolu-
tion, as seen from the laboratory frame, to catch up with
the detector, whereas the slower signal needs less than one
revolution because the detector is moving toward it. As a
result, the signals arrive simultaneously.

If the signals are waves, there is still the question of
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whether their phase relation is affected by the rotation. For
a Galilean invariant-wave theory (e.g., of sound waves in a
medium that is also brought into rotation), the answer is
again negative. For a comoving observer everything re-
mains the same as in an inertial system. Reasoning from the
(inertial) laboratory frame, we reach the same conclusion
in a slightly more complicated way. The two signals then
have different frequencies as a consequence of the Doppler
effect: Av = + wR /A. The wavelength A does not change
in the transition from one system to another. The time
needed to reach the detector is 7'= 27R /v, with v the
group velocity of the waves. In this time the faster signal
has traveled the distance /, = 27R(v + ®@R)/v and the
slower signal /, = 27R (v — wR) /v, so that there is a differ-
ence Al = + 2mwR */v compared with the static situation.
The total phase shift incurred by the individual signals as a
consequence of the rotation is therefore

2
27(—A—I—AUT)=i2(2moR }——%—ZWR) 0.
A v A A v

More generally, any theory that is fully Galilean invar-
iant, in the sense that for the comoving observer all physi-
cally relevant parameters are the same as for a correspond-
ing observer in rest, will not predict an observable effect of
the rotation.

Now, consider the relativistic version of the above argu-
ments. Again, we treat the circular motion as uniform dur-
ing very short time intervals; we have to use Lorentz trans-
formations to relate the description in the momentarily
comoving Lorentz frames to the one valid in the laboratory
frame. For a Lorentz invariant theory, the equations a co-
moving observer can use to describe the propagation of the
signals are the same as the equations that apply in a rest
frame. So the observer attached to the rotating disk again
sees the departure of two signals with oppositely directed
velocities; at all times the velocities of the two signals, in
their respective momentary inertial frames, are vand — v.
This is the same situation as in the classical theory, and
perhaps one would be inclined to predict on this basis that
there will be no observable effect of the overall rotation.
But in fact there is such an effect. This typically relativistic
phenomenon is a consequence of the fact that time is not
absolute according to the theory of relativity. If x and ¢
denote the coordinates of a momentary inertial frame mov-
ing along with a segment of the moving disk (x measured
along the circular path of the signals), we have the follow-
ing relation between ¢ and the time ¢’ in the laboratory
frame:

t'= (t + wRx/*) /1 — o’R?/.

This is just the Lorentz transformation; the plus or minus
sign applies dependent on whether the direction of increas-
ing x is the same as or opposite to the direction of motion of
the circular segment. For the signal that moves in the same
direction as the rotating disk, we thus find, for the time Az |

needed for one complete revolution (from source to detec-

tor),
\/1—_— J‘ d + oR 27R
2[T—w’R?/E /c
and for the other signal,
wR 27R

2p 2
@R At;:fdt-————————.
¢ N e
C [0}

D. Dieks and G. Nienhuis 652



The integral § d¢ represents the total time as judged from
the successive momentary inertial frames; it equals

27R /1 — ’R %/c*. It must be kept in mind that Euclid-
ean geometry is not valid on the rotating disk; the circum-
ference of the circle as measured with measuring rods rest-

ing on the disk is 2R /\1 — @R 2/c” on account of the
Lorentz contraction. This is the origin of the square root at
the right-hand side of the above formulas.

Apparently, the two signals do not arrive simultaneously
at the detector. In the coordinate time of the laboratory
frame, the difference in arrival times is

At} — Aty = 47R*w/(¢* — &’R?).

The difference is Az = 47R 2w/c3/1 — @R /%, if mea-
sured by a comoving clock at the position of the detector.
The existence of the difference is due to the fact that the
momentary inertial frames do not mesh together
to form one global frame with standard simultaneity. Al-
though the proper time interval from source to detector
is the same for the two signals [it equals
27Rv~ (1 = v*/c%)/(1 — o®R%/c%) ], this does not
mean that the time interval is the same in terms of coordi-
nate time—and interesting variation on the notorious twin
paradox.

The appearance of a difference in arrival times—and an
associated phase difference—when the total system is set
into rotation is known as the Sagnac effect. In the above
derivation of the effect, it is transparent that the magnitude
of the time difference does not depend on the speed v of the
signals, but only on the angular velocity of the rotating
system. This is one of the reasons that the effect provides an
expedient tool to detect rotation with respect to an inertial
frame. If an interferometer has been mounted on the disk, a
shift in the fringes at the detector is evidence for rotational
motion of the system (the principle of the laser gyroscope).

The Sagnac effect was originally discussed for the case of
light’; in this case the time difference At is connected with a
phase difference

Ad = 2mv At = 87°R v/ A1 — w’R %/ .

The effect is, however, as shown in the preceding para-
graphs, quite general. A rotational motion of the experi-
mental setup always produces a difference in arrival times,
independently of the type or velocity of the signal (for wave
phenomena the time difference is, of course, associated
with a phase difference). The origin of the effect is purely
relativistic. The crucial ingredient in the derivation are the
relations between times as measured in inertial systems
that are in relative motion.®

V. THE QUANTUM SAGNAC EFFECT

Let us now use the transformation formulas for the
quantum mechanical phase (Sec. IT) to see what nonrela-
tivistic quantum mechanics predicts for the results of an
experiment of the Sagnac type. According to the Schro-
dinger theory, two particles with opposite velocities can be
represented by two wave packets with opposite group ve-
locities. On a disk that is in rest with respect to the laborato-
ry frame, the two packets, of course, arrive simultaneously
at the detector. The question now is whether anything ob-
servable will change when the whole experimental arrange-
ment is set into uniform rotation. '

Clearly, the rotation has no effect on the time needed by
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the wave packets to reach the detector. The velocities trans-
form according to a Galilei transformation, and this im-
plies that for an observer in rest with respect to the rotating
disk the travel times are the same as when the disk is resting
in the laboratory frame. But for the phases there is a differ-
ence. The observer on the disk should now not perform the
calculations by directly using the expression for the de
Broglie phase, ¢ = (px — Et)/#, everywhere in the frame,
but should take the “correction term” m(ux' — %uzt)/ #i
into account in order to relate the results to phase calcula-
tions in the laboratory frame. The reason is that the corre-
sponding phase factor assumes different values for the two
wave packets, which gives rise to a phase shift at the posi-
tion of the detector. Indeed, as the relative directions of
increasing x and u are different for the two packets, there is
a total difference in phase at the detector of
2moR 27R /% = 47R >mw/#. Thisequals, apart from arel-

ativistic correction factor 1/{/1 — @R 2/c?, the phase shift
to be expected on the relativistic theory. Relativistically,
there is a difference in arrival times of the packets
AT=4nR *w/c? and in view of the relativistic frequency of
the matter waves v = mc’/h this leads to a phase shift
A¢ =27 AT v =4nR*mw/#. The same expression is
found if the frequency—mass relation v = mc®/h is inserted
in the formula for the phase shift in the case of light (Sec.
IV). It is worth noting that in the relativistic derivation,
essential use is made of the very high frequency mc?/h of
the matter waves. Only because of the high frequency, pro-
portional to ¢?, is there a phase difference of zeroth order in
¢~ ' (AT is of order ¢ —? ). The nonrelativistic theory re-
produces the phase difference, but without ascribing the
relativistic frequency to the waves and without predicting a
difference in arrival times.

The calculation of the phase shift can also be carried out
directly in the laboratory frame. We can then use the
expression for the phase ¢ = (px — Et)/#; one wave pack-
et is associated with a momentum m (v + wR) and energy
im(v + wR)?, and the other with momentum m(v — wR)
and energy im(v— wR )2, In other words, there is a
Doppler effect not only on the frequency, but also on the
wavelength—already an indication that we are not dealing
with a Galilean invariant theory. The time needed by the
wave packets to reach the detector is the same: T'= 27R /v;
the traversed distance is (v + wR)T. The first packet then
acquires a phase

¢, = % (m(v + @R)’T — % m(v+ wR)zT)

=m(v+ wR)*T /2%,

and the second one a phase ¢2 =m(v— wR)? T/ 2#%. The
phase difference consequently is

b, — b, = 47R *mor/#.

Note that direct application of the Schrédinger theory
everywhere in the comoving frame, with E=Av and
p = h /A, would have led to the wrong result that there is no
Sagnac phase shift.

The phase shift gives rise to an observable effect. If ¥ and
® designate the wave packets in the situation without rota-
tion,we find for the total wavefunction at the detector, if
the disk is rotating, k(We'® + ®e'#:), with k a normaliza-
tion constant. The probability to detect a particle is
consequently  proportional to  [¥|* 4+ |®]*+ 2 Re

Y*e't — ¢ The Sagnac phase shift is therefore reflect-
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ed in the counting rate of particles in the detector. The
effect has been verified experimentally in neutron interfer-
ometry, where the rotation of the Earth has proved to be
detectable in this way.’

In summary, nonrelativistic quantum mechanics pre-
dicts a Sagnac effect. It was argued in Sec. IV that a Gali-
lean invariant theory, in which all inertial frames are equiv-
alent and can be used alternately, cannot entail such an
effect. The Schrodinger theory (and the nonrelativistic
version of the de Broglie theory of matter waves) can there-
fore not be fully Galilean invariant in this sense. The pre-
ceding calculations also make it clear where in the formal-
ism the nonGalilean characteristics have to be located. The
phase of the wavefunction transforms in a nonclassical
way, and in some situations this can be the origin of observ-
able effects. In such circumstances not all frames that are
related by Galilei transformations to the inertial frame of
the laboratory are physically equivalent . In the case
of the rotating disk, the expression for the phase
¢=(px—Et)/fi can be applied in the lab-
oratory frame, but it can not be correct in a// momentary
Galilean frames moving along with the periphery of the
disk. This does not mean that there is a preferred frame of
reference. The de Broglie phase relations can be applied in
any one chosen local inertial system, but not in all these
systems at once. The lack of complete Galilean invariance
can be seen as resulting from the fact that the phase of the
nonrelativistic de Broglie or Schrodinger waves is an ap-
proximation (to zeroth order in ¢~ ') of the relativistic
phase, as will be shown in Sec. VL.

The situation closely parallels the one encountered in the
theory of electrodynamics. In the presence of an externally
given four-vector field 4“, the wavefunction acquires a
phase factor,which can be transformed away locally by a
gauge transformation—just as the phase shift can be made
to vanish in our case by means of the choice of the local
inertial system in which the de Broglie relations are to hold.
However, the electromagnetic phase shift usually cannot
be transformed away everpwhere along a closed loop; the
phase factor is nonintegrable, as demonstrated in the Ahar-
onov-Bohm effect. The requirement that there should be
an underlying theory that is invariant under local gauge
transformations then leads to the full Maxwell theory, in
which the field 4* is dynamically coupled to the electrical
charge. In the same way the existence of the Sagnac phase
shift points into the direction of an underlying gravitational
theory, containing a coupling to the mass rather than to the
electrical charge, which dynamically determines the iner-
tial systems. Following up this analogy here would take us
too far afield, however.'°

VI. CONCLUSION

In the relativistic theory, the Sagnac effect for the phase
of matter waves is in a sense “‘doubly relativistic”: It results
from the combination of two typically relativistic features.
First, there is the time difference AT =47 R *w/c*; second,
there is the frequency associated with the energy mc’:
v = mc?/h. Together this gives the phase shift 47R *maw/#.
How is it possible that the nonrelativistic theory, which
operates with the much lower frequency v = imv*/h,
yields the same phase shift? Moreover, how is it possible
that the nonrelativistic theory predicts a Sagnac effect at
all? The answer is that the nonrelativistic de Broglie and
Schrodinger theories are not in all respects full-blown Gali-
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lean invariant theories. They can be seen as nonrelativistic
approximation schemes to a relativistic, Lorentz invariant
theory. The details of the approximation clearly come out if
one looks at how the Schrodinger equation follows as a
limiting case from, e.g., the Dirac equation.'' The first step
in the transition to the classical limit consists in the multi-
plication of the Dirac wavefunction with the phase factor
exp (imyc’t /#), to take account of the relativistic rest ener-
gy. It is then shown that the resulting wavefunction (or
rather the first two of its four components) obeys, in first
approximation, a Schrodinger-type of equation. This
means that the phase in the Schrédinger theory equals, to
zeroth order in ¢ 7', the relativistic phase minus mc’t /.
Phase differences at one moment are not affected by this
subtraction procedure. That explains how the nonrelativis-
tic theory, although working with a completely different
frequency, can predict the same phase relations as the rela-
tivistic theory. However, the approximation procedure is
not Galilean, but Lorentz invariant. If we go from an iner-
tial frame (x,¢) to an inertial frame (x', ¢'), with
t'= (t+ux/cH /N1 — /3, x' = (x+ ut) /1 — ¥/,

and then define the “Galilean coordinates” ¢ =t and
xg = X + ut, we find for the phase in these new Galilean
coordinates, after subtraction of m,c’t /#, and neglecting
terms of order (v/¢) and higher, exactly the expression of
Sec. I, ¢' =@ + m(uxg — W't ) /A, with ¢ = (p'x§

— E’'t ;)/# and the nonrelativistic expressions for p’ and
E’. This is, of course, not surprising. But this way of deriv-
ing the expression shows how the *strange” correction
term in the nonrelativistic theory results from approximat-
ing the Lorentz invariant phase of the relativistic theory in
terms of the ““wrong,” i.e., Galilean, coordinates. The con-
tributions to the correction term, although of zeroth order
in ¢~ !, have a typically relativistic character; one contri-
bution, e.g., results from the multiplication of the term
ux/c? from the relativistic time transformation with the
relativistic frequency mc*/h.

Qur conclusion is that nonrelativistic quantum mechan-
ics contains relativistic elements: It is able to make predic-
tions about observable effects that are typically relativistic.
The essential background of this is the fact that the funda-
mental formulas of de Broglie’s nonrelativistic wave me-
chanics cannot hold in a// Galilei frames of reference at
once. Although the quantum mechanical Galilei group
leaves the Schridinger equation invariant in the transition
from one inertial frame to another, it is therefore not an
invariance group in exactly the same way as the Galilei
group is for classical theories.
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A simple electromechanical analog for Landau’s classical theory of second-order symmetry-
breaking transitions is presented. The apparatus consists of a torsion pendulum, where a ceramic
magnet suspended by two torsion springs is subjected to a uniform magnetic field. The pendulum
angle is the analog of the order parameter in a phase transition, while the current passing through
the Helmholtz coil, which produces the magnetic field, plays the role of temperature. With this
setup, the critical exponents 3, 8, ¥, and ¥’ can be determined with good accuracy.

I. INTRODUCTION

One of the fundamental theories concerning the nature
of changes in thermodynamic quantities in a phase transi-
tion between phases of different symmetries was intro-
duced by Landau."* He was the first to emphasize the fun-
damental importance of symmetry in phase transitions.?
The ferroelectricity of barium titanate, for instance, is a
well-known example of a symmetry-breaking transition:
As the temperature is reduced and passes through the criti-
cal point, there is a transition to a lower crystal symmetry
(cubic to tetragonal ), which is accompanied by the sudden
appearance of a macroscopic lattice polarization.* Apart
from this canonical example, there are many other critical
phenomena such as liquid—solid transitions, ferromagne-
tism, superconductivity, and superfluidity that can, as in
the case of the ferroelectricity in barium titanate, be de-
scribed in terms of symmetry-breaking transitions.

In critical phenomena involving broken symmetry, the
less symmetric phase is usually characterized by an order
parameter 77 with a nonzero value, which may represent the
dielectric polarization in ferroelectrics, the magnetization
in ferromagnets, etc. On the other hand, the value of 7 is
zero in the symmetric phase. During the phase transition,
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whenever the value of 77 goes from zero to a finite valuein a
continuous way, we have a second-order transition; other-
wise, the transition is a first-order one, like the liquid—solid
transition.

The mathematical treatment given by Landau to a sec-
ond-order transition is a simple and very elegant specula-
tion concerning a possible universal behavior of a thermo-
dynamic potential near the critical point. However, this
approach fails in many cases, and the reason for this failure
is related to Landau’s assumption about the existence of a
particular series expansion for the thermodynamic poten-
tial. The so-called classical exponents, which are a direct
consequence of these assumptions, are not in agreement
with experimental values in many substances. The dis-
agreement is particularly noticeable in systems that appear
to have an infinite specific heat at the critical point. How-
ever, Landau’s theory still provides a reasonable descrip-
tion of systems like ferroelectrics and superconductors in
which the specific heat does not diverge at the critical
point.

In this work we present an electromechanical system
showing an inversion symmetry-breaking transition,
whose potential energy has the same critical behavior pre-
dicted by Landau’s theory. In contrast to previous mechan-
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