<html>
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    Hello Richard,<br>
    <br>
    thanks for your detailed explanation. I think that it becomes more
    and more visible, how difficult it is to visualize such a
    3-dimensional process. <br>
    <br>
    I have added some further comments below in your text.<br>
    <br>
    <div class="moz-cite-prefix">Am 23.10.2015 um 22:41 schrieb Richard
      Gauthier:<br>
    </div>
    <blockquote
      cite="mid:F1DF4916-2B0C-4571-8246-07F9B59977D3@gmail.com"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html;
        charset=windows-1252">
      <div class="">Hello Albrecht (and others)</div>
      <div class=""><br class="">
      </div>
      <div class="">  Thank for your further comments. You arguments are
        correct, according to how I previously explained the plane waves
        emitted by the charged photon along its helical axis. I realized
        that I misinterpreted and therefore poorly explained my own
        proposed quantum plane wave function describing quantum waves
        coming from the circulating charged photon. The left side of
        Figure 2 is NOT merely the mathematically unwrapped helical
        trajectory of the charged photon. It is instead (or in addition)
        one of many “rays” of quantum plane waves emitted continuously
        from the circulating charged photon. </div>
      <div class=""><br class="">
      </div>
      <div class="">  The circulating charged photon’s proposed quantum
        plane wave function Ae^i(k dot r - wt)  , where k = (gamma
        mv)/hbar and w = (gamma mc^2)/hbar  are the wave vector and the
        angular frequency of the circulating charged photon, describes
        quantum plane waves emitted from the circulating charged photon
        in the direction that the charged photon is moving at any point
        in time. </div>
    </blockquote>
    The relation k = (gamma mv)/hbar cannot be applicable here, if I
    understand correctly that v is the speed of the electron. If the
    electron is at rest, then v=0 and so<br>
     k=0. But for a photon k=0 is not possible. It is in permanent
    motion and has energy, which you describe with  w = (gamma
    mc^2)/hbar . <br>
    <br>
    Here you try to apply the de Broglie wave length to the circling
    photon which you cannot do by two reasons:<br>
    1.) Your intention is to derive the de Broglie wave length. But you
    cannot do this by using the validity of the de Broglie wave length
    as a precondition. That would be circular reasoning. <br>
    2.) And anyway, for a photon the de Broglie wave length is identical
    the wave length of the phase wave as v=c .
    <blockquote
      cite="mid:F1DF4916-2B0C-4571-8246-07F9B59977D3@gmail.com"
      type="cite">
      <div class="">While emitting these quantum plane waves, the
        charged photon curves away on its helical trajectory, continuing
        to emit newer quantum plane waves at its own frequency and
        wavelength. But the quantum plane waves previously emitted by
        the charged photon continue in a straight line direction tangent
        to the helical trajectory at the point along the trajectory
        where they were emitted.  Those quantum plane waves emitted from
        the circulating charged photon at one location move out into
        space at light-speed away from the charged photon, as indicated
        by the left side of the big triangle in my Figure 2, and in the
        recently posted figure showing 4 wave fronts. Their quantum
        plane wave fronts DO intersect the charged photon’s helical axis
        further along the axis to the right, as shown in the two
        figures, creating de Broglie wavelengths along the helical axis.
         And these de Broglie wavelengths DO travel away to the right
        along the helical axis at the phase velocity c^2/v because their
        speed is (from the geometry shown in Figure 2) Vphase = speed of
        charged photon / cos(theta)  =    c/cos(theta) = c/(v/c) = c^2/v
        .</div>
    </blockquote>
    Your Figures 2 and 4 assume that the circling photon emits a plane
    wave. Is that possible? It means that the wave which just leaves the
    photon with a certain phase is immediately spread out to all sides
    until infinity. Otherwise it is not a <i>plane </i>wave. But if it
    does so, it means an infinite propagation speed to all directions
    perpendicular to the speed vector of the photon. This is in my
    understanding in strong conflict with relativity. (And it means also
    that for an observer in a system moving relative to this system
    there can be a violation of causality. He can observe that a part of
    the plane may exist at a certain phase even before this phase is
    emitted from the photon.) <br>
    <br>
    If you assume such kind of plane wave then your considerations about
    the wave on the axis caused by the sequence of intercept points are
    applicable. But again:  a plane wave of this kind violates
    causality. <br>
    <br>
    You mention further down as a visualization the case of a laser
    moving along the helix. A laser emits indeed a sort of a plane wave,
    however in a limited region given by the diameter of the laser's
    body. This plane wave is the result of a superposition of a huge
    number of photons oscillating forth and back in the laser. In
    contrast to this the photon in your model is a point source. If it
    emits waves then those are restricted to the speed of light. So they
    will leave the photon as a cone with a half angle of 45 degrees. (In
    acoustics this is called Mach's cone.) If we start now to follow
    this process using this way of propagation, we have to look how the
    cone touches the axis. The motion of these intercept points on the
    axis seems to be non-linear, and as further phases follow, there
    will be an overlay of such phases. - Do you think it is worth to
    follow this? I would like to first check whether we find an
    agreement at this point. <br>
    <blockquote
      cite="mid:F1DF4916-2B0C-4571-8246-07F9B59977D3@gmail.com"
      type="cite">
      <div class=""><br class="">
      </div>
      <div class="">  All these emitted quantum plane waves from the
        charged photon, described above by Ae^i(k dot r - wt) ,
        intersect the helical axis, as described by the derived
        relativistic de Broglie matter-wave function A^i(Kdb z -wt)
         where Kdb is the wave number corresponding to the de Broglie
        wavelength Ldb = h/(gamma mv). So Kdb =2pi /Ldb = (gamma
        mv)/hbar , and w =(gamma mc^2)/hbar  the angular frequency of
        the charged photon, corresponding to f=(gamma mc^2)/h  as
        before.</div>
    </blockquote>
    I understand that these considerations follow again the assumption
    of a "plane" wave which I do not believe to be possible as explained
    above. So I shall wait for your response to that.
    <blockquote
      cite="mid:F1DF4916-2B0C-4571-8246-07F9B59977D3@gmail.com"
      type="cite">
      <div class=""><br class="">
      </div>
      <div class="">  This process can roughly be compared to a broad
        plane-wave beam emitted from a laser while the laser moves along
        a helical trajectory, directing its beam in new directions as
        the laser moves along its helical path. The parallel waves
        fronts from the laser intersect the axis and generate one de
        Broglie-like wavelength along the axis for each photon
        wavelength coming from the laser. <br>
      </div>
    </blockquote>
    For the laser example please see above.<br>
    <br>
    Best regards<br>
    Albrecht
    <blockquote
      cite="mid:F1DF4916-2B0C-4571-8246-07F9B59977D3@gmail.com"
      type="cite">
      <div class=""><br class="">
      </div>
      <div class="">   Does this new explanation answer your fundamental
        objection?</div>
      <div class=""><br class="">
      </div>
      <div class="">with best regards,</div>
      <div class="">      Richard</div>
      .<br class="">
      <div>
        <blockquote type="cite" class="">
          <div class="">On Oct 22, 2015, at 10:18 AM, Dr. Albrecht Giese
            <<a moz-do-not-send="true"
              href="mailto:genmail@a-giese.de" class="">genmail@a-giese.de</a>>
            wrote:</div>
          <br class="Apple-interchange-newline">
          <div class="">
            <meta content="text/html; charset=windows-1252"
              http-equiv="Content-Type" class="">
            <div text="#000000" bgcolor="#FFFFFF" class=""> Hello
              Richard,<br class="">
              <br class="">
              thank you and see my comments below.<br class="">
              <br class="">
              <div class="moz-cite-prefix">Am 22.10.2015 um 00:32
                schrieb Richard Gauthier:<br class="">
              </div>
              <blockquote
                cite="mid:3BF40319-FF10-493F-8966-13FF1FC5FFCE@gmail.com"
                type="cite" class="">
                <meta http-equiv="Content-Type" content="text/html;
                  charset=windows-1252" class="">
                <div class="">Hello Albert (and all),</div>
                <div class=""><br class="">
                </div>
                <div class=""> I think your fundamental objection that
                  you mentioned earlier can be answered below.</div>
                <div class=""><br class="">
                </div>
                <div class=""> The left side of the big triangle in
                  Figure 2 in my article is a purely mathematical
                  unfolding of the path of the helical trajectory, to
                  hopefully show more clearly the generation of de
                  Broglie wavelengths from plane waves emitted by the
                  actual charged photon moving along the helical
                  trajectory. Nothing is actually moving off into space
                  along this line.</div>
                <div class=""><br class="">
                </div>
                <div class=""> Consider an electron moving with velocity
                  v horizontally along the helical axis. Since in Figure
                  2 in my article, cos (theta) = v/c , the corresponding
                  velocity of the charged photon along the helical path
                  is v/ cos(theta) = c , the speed of the charged
                  photon, which we knew already because the helical
                  trajectory was defined so that this is the case. In a
                  short time T, the electron has moved a distance
                  Delectron = vT horizontally and the photon has moved a
                  distance Dphoton = Delectron/cos(theta) =vT/cos(theta)
                  = cT along its helical trajectory.</div>
              </blockquote>
              I agree.
              <blockquote
                cite="mid:3BF40319-FF10-493F-8966-13FF1FC5FFCE@gmail.com"
                type="cite" class="">
                <div class=""> A plane wave front emitted from the
                  photon at the distance Dphoton = cT along the photon’s
                  helical path will intersect the base of the big
                  triangle (the helical axis) at the distance along the
                  base given by Dwavefront = Dphoton / cos(theta) = cT/
                  (v/c) = T *  (c^2)/v  which means the intersection
                  point of the plane wave with the helical axis is
                  moving with a speed c^2/v which is the de Broglie
                  wave’s phase velocity. </div>
              </blockquote>
              Here I disagree. If we assume the wave front as an
              extended layer through the photon and with an orientation
              perpendicular to the actual direction of the photon, then
              the intersect point of this layer with the axis has the
              same z coordinate as the z-component of the photon's
              position. This is essential. (I have built myself a little
              3-d model to see this.)<br class="">
              <br class="">
              When now, say at time T<sub class="">0</sub>, a phase
              maximum of the wave front leaves the photon, then the same
              phase maximum passes the intersect point on the axis with
              the same z coordinate. After a while (i.e. after the time
              T<sub class="">p</sub>=1/frequency) the next phase maximum
              will exit from the photon and simultaneously the next
              phase maximum will cross the axis. The new z-value (of the
              photon and of the intersect point) is now displaced from
              the old one by the amount delta_z = v * T<sub class="">p</sub>.
              During this time the photon will have moved by c * T<sub
                class="">p</sub> on its helical path.<br class="">
              <br class="">
              Now the spacial distance between these two phase maxima,
              which is the wavelength, is: lambda<sub class="">photon</sub>
              = c * T<sub class="">p</sub>, and lambda<sub class="">electron</sub>
              = v * T<sub class="">p</sub>. <br class="">
              <br class="">
              This is my result. Or what (which detail) is wrong?<br
                class="">
              <br class="">
              best wishes<br class="">
              Albrecht<br class="">
              <br class="">
              <br class="">
              <blockquote
                cite="mid:3BF40319-FF10-493F-8966-13FF1FC5FFCE@gmail.com"
                type="cite" class="">
                <div class="">The length of the de Broglie wave itself
                  as shown previously from Figure 2 is Ldb =
                   Lambda-photon / cos(theta) = h/(gamma mc) / (v/c) =
                  h/(gamma mv). So as the electron moves with velocity v
                  along the z-axis, de Broglie waves of length h/(gamma
                  mv) produced along the z-axis are moving with velocity
                  c^2/v along the z-axis. The de Broglie waves created
                  by the circulating charged photon will speed away from
                  the electron (but more will be produced) to take their
                  place, one de Broglie wave during each period of the
                  circulating charged photon (corresponding to the
                  moving electron). As mentioned previously, the period
                  of the circulating charged photon is 1/f = 1/(gamma
                  mc^2/h) = h/(gamma mc^2/). As the electron speeds up
                  (v and gamma increase) the de Broglie wavelengths
                  h/(gamma mv) are shorter and move more slowly,
                  following the speed formula c^2/v .</div>
                <div class=""><br class="">
                </div>
                <br class="">
                <fieldset class="mimeAttachmentHeader"></fieldset>
                <br class="">
                <meta http-equiv="Content-Type" content="text/html;
                  charset=windows-1252" class="">
                <div class="">Unpublished graphic showing the generation
                  of de Broglie waves from a moving charged photon along
                  its helical trajectory. The corresponding moving
                  electron is the red dot moving to the right on the red
                  line. The charged photon is the blue dot moving at
                  light speed along the helix.The blue dot has moves a
                  distance of one charged photon wavelength h/(gamma mc)
                  along the helix from the left corner of the diagram On
                  the left diagonal line (representing the
                  mathematically unrolled helix), the blue dots
                  correspond to separations of 1 charged photon h/(gamma
                  mc) wavelength along the helical axis. In this
                  graphic, v/c = 0.5 so cos(theta)= 0.5 and theta= 60
                  degrees. The group velocity is c^2/v = c^2/0.5c = 2 c,
                  the speed of the de Broglie waves along the horizontal
                  axis . The distances between the intersection points
                  on the horizontal line each correspond to 1 de Broglie
                  wavelength, which in this example where v=0.5 c  is
                  h(gamma mv) = 2 x charged photon wavelength h/(gamma
                  mc).</div>
                <div class=""><br class="">
                </div>
                <div class="">  It is true that when the electron is at
                  rest, the wave fronts emitted by the circulating
                  charged photon all pass through the center of the
                  circular path of the charged photon and do not
                  intersect any helical axis, because no helical axis is
                  defined for a resting electron, i.e. the pitch of the
                  helix of the circulating charged photon is zero. For a
                  very slowly moving electron, the pitch of the helix of
                  the circulating charged photon is very small but
                  non-zero, but the de Broglie wavelength is very large,
                  much larger than the helical pitch. Perhaps you are
                  confusing these two lengths — the helical pitch of the
                  circulating charged photon and the de Broglie
                  wavelength generated by the wave fronts emitted by the
                  circulating charged photon. The pitch of the helix
                  starts at zero (for v=0 of the electron) and reaches a
                  maximum when the speed of the electron is c/sqrt(2)
                  and theta = 45 degrees (see my charged photon paper)
                  and then the helical pitch decreases towards zero as
                  the speed of the electron further increases towards
                  the speed of light. But the de Broglie wavelength Ldb
                  starts very large (when the electron is moving very
                  slowly) and decreases uniformly towards zero as the
                  speed of the electron increases, as given by Ldb =
                  h/gamma mv. It is the de Broglie wavelength generated
                  by the charged photon that has predictive physical
                  significance in diffraction and double-slit
                  experiments while the helical pitch of the charged
                  photon’s helical trajectory has no current predictive
                  physical significance (though if experimental
                  predictions based on the helical pitch could be made,
                  this could be a test of the charged photon model).</div>
                <div class=""><br class="">
                </div>
                <div class="">   I don’t have any comments yet on your
                  concerns about the de Broglie wavelength that you just
                  expressed to John W (below).</div>
                <div class=""><br class="">
                </div>
                <div class="">        all the best,</div>
                <div class="">            Richard</div>
                <br class="">
                <div class="">
                  <blockquote type="cite" class="">
                    <div class="">On Oct 21, 2015, at 12:42 PM, Dr.
                      Albrecht Giese <<a moz-do-not-send="true"
                        href="mailto:genmail@a-giese.de" class="">genmail@a-giese.de</a>>

                      wrote:</div>
                    <br class="Apple-interchange-newline">
                    <div class=""><small style="font-family: Helvetica;
                        font-style: normal; font-variant: normal;
                        font-weight: normal; letter-spacing: normal;
                        line-height: normal; orphans: auto; text-align:
                        start; text-indent: 0px; text-transform: none;
                        white-space: normal; widows: auto; word-spacing:
                        0px; -webkit-text-stroke-width: 0px;
                        background-color: rgb(255, 255, 255);" class="">Dear
                        John W and all,<br class="">
                        <br class="">
                        about the<span class="Apple-converted-space"> </span><u
                          class="">de Broglie wave</u>:<br class="">
                        <br class="">
                        There are a lot of elegant derivations for the
                        de Broglie wave length, that is true.
                        Mathematical deductions. What is about the
                        physics behind it?<br class="">
                        <br class="">
                        De Broglie derived this wave in his first paper
                        in the intention to explain, why the internal
                        frequency in a moving electron is dilated, but
                        this frequency on the other hand has to be
                        increased for an external observer to reflect
                        the increase of energy. To get a result, he
                        invented a "fictitious wave" which has the phase
                        speed c/v, where v is the speed of the electron.
                        And he takes care to synchronize this wave with
                        the internal frequency of the electron. That
                        works and can be used to describe the scattering
                        of the electron at the double slit.  -  But is
                        this physical understanding? De Broglie himself
                        stated that this solution does not fulfil the
                        expectation in a "complete theory". Are we any
                        better today?<br class="">
                        <br class="">
                        Let us envision the following situation. An
                        electron moves at moderate speed, say 0.1*c
                        (=> gamma=1.02) . An observer moves parallel
                        to the electron. What will the observer see or
                        measure?<span class="Apple-converted-space"> </span><br
                          class="">
                        The internal frequency of the electron will be
                        observed by him as frequency = m<sub class="">0</sub>*c<sup
                          class="">2</sup>/h , because in the observer's
                        system the electron is at rest. The wave length
                        of the wave leaving the electron (e.g. in the
                        model of a circling photon) is now not exactly 
                        lambda<sub class="">1</sub><span
                          class="Apple-converted-space"> </span>=
                        c/frequency , but a little bit larger as the
                        rulers of the observer are a little bit
                        contracted (by gamma = 1.02), so this is a small
                        effect. What is now about the phase speed of the
                        de Broglie wave? For an observer at rest it must
                        be quite large as it is extended by the factor
                        c/v  which is 10. For the co-moving observer it
                        is mathematically infinite (in fact he will see
                        a constant phase). This is not explained by the
                        time dilation (=2%), so not compatible. And what
                        about the de Broglie wave length? For the
                        co-moving observer, who is at rest in relation
                        to the electron, it is lambda<sub class="">dB</sub><span
                          class="Apple-converted-space"> </span>=
                        h/(1*m*0), which is again infinite or at least
                        extremely large.  For the observer at rest there
                        is lambda<sub class="">dB</sub><span
                          class="Apple-converted-space"> </span>=
                        h/(1.02*m*0.1c) . Also not comparable to the
                        co-moving observer.<br class="">
                        <br class="">
                        To summarize: these differences are not
                        explained by the normal SR effects. So, how to
                        explain these incompatible results?<br class="">
                        <br class="">
                        Now let's assume, that the electron closes in to
                        the double slit. Seen from the co-moving
                        observer, the double slit arrangement moves
                        towards him and the electron. What are now the
                        parameters which will determine the scattering?
                        The (infinite) de Broglie wave length? The phase
                        speed which is 10*c ? Remember: For the
                        co-moving observer the electron does not move.
                        Only the double slit moves and the screen behind
                        the double slit will be ca. 2% closer than in
                        the standard case. But will that be a real
                        change?<br class="">
                        <br class="">
                        I do not feel that this is a situation which in
                        physically understood.<br class="">
                        <br class="">
                        Regards<br class="">
                        Albrecht<br class="">
                      </small><br style="font-family: Helvetica;
                        font-size: 12px; font-style: normal;
                        font-variant: normal; font-weight: normal;
                        letter-spacing: normal; line-height: normal;
                        orphans: auto; text-align: start; text-indent:
                        0px; text-transform: none; white-space: normal;
                        widows: auto; word-spacing: 0px;
                        -webkit-text-stroke-width: 0px;
                        background-color: rgb(255, 255, 255);" class="">
                      <br style="font-family: Helvetica; font-size:
                        12px; font-style: normal; font-variant: normal;
                        font-weight: normal; letter-spacing: normal;
                        line-height: normal; orphans: auto; text-align:
                        start; text-indent: 0px; text-transform: none;
                        white-space: normal; widows: auto; word-spacing:
                        0px; -webkit-text-stroke-width: 0px;
                        background-color: rgb(255, 255, 255);" class="">
                      <div class="moz-cite-prefix" style="font-family:
                        Helvetica; font-size: 12px; font-style: normal;
                        font-variant: normal; font-weight: normal;
                        letter-spacing: normal; line-height: normal;
                        orphans: auto; text-align: start; text-indent:
                        0px; text-transform: none; white-space: normal;
                        widows: auto; word-spacing: 0px;
                        -webkit-text-stroke-width: 0px;
                        background-color: rgb(255, 255, 255);">Am
                        21.10.2015 um 16:34 schrieb John Williamson:<br
                          class="">
                      </div>
                      <blockquote
cite="mid:7DC02B7BFEAA614DA666120C8A0260C914714222@CMS08-01.campus.gla.ac.uk"
                        type="cite" style="font-family: Helvetica;
                        font-size: 12px; font-style: normal;
                        font-variant: normal; font-weight: normal;
                        letter-spacing: normal; line-height: normal;
                        orphans: auto; text-align: start; text-indent:
                        0px; text-transform: none; white-space: normal;
                        widows: auto; word-spacing: 0px;
                        -webkit-text-stroke-width: 0px;
                        background-color: rgb(255, 255, 255);" class="">
                        <div style="direction: ltr; font-family: Tahoma;
                          font-size: 10pt;" class="">Dear all,<br
                            class="">
                          <br class="">
                          The de Broglie wavelength is best understood,
                          in my view, in one of two ways. Either read de
                          Broglies thesis for his derivation (if you do
                          not read french, Al has translated it and it
                          is available online). Alternatively derive it
                          yourself. All you need to do is consider the
                          interference between a standing wave in one
                          (proper frame) as it transforms to other
                          relativistic frames. That is standing-wave
                          light-in-a-box. This has been done by may
                          folk, many times. Martin did it back in 1991.
                          It is in our 1997 paper. One of the nicest
                          illustrations I have seen is that of John M -
                          circulated to all of you earlier in this
                          series.<br class="">
                          <br class="">
                          It is real, and quite simple.<br class="">
                          <br class="">
                          Regards, John.<br class="">
                          <div style="font-family: 'Times New Roman';
                            font-size: 16px;" class="">
                            <hr tabindex="-1" class="">
                            <div id="divRpF555421" style="direction:
                              ltr;" class=""><font class="" size="2"
                                face="Tahoma"><b class="">From:</b><span
                                  class="Apple-converted-space"> </span>General
                                [<a moz-do-not-send="true"
                                  class="moz-txt-link-abbreviated"
href="mailto:general-bounces+john.williamson=glasgow.ac.uk@lists.natureoflightandparticles.org">general-bounces+john.williamson=glasgow.ac.uk@lists.natureoflightandparticles.org</a>]
                                on behalf of Dr. Albrecht Giese [<a
                                  moz-do-not-send="true"
                                  class="moz-txt-link-abbreviated"
                                  href="mailto:genmail@a-giese.de"><a class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de">genmail@a-giese.de</a></a>]<br
                                  class="">
                                <b class="">Sent:</b><span
                                  class="Apple-converted-space"> </span>Wednesday,

                                October 21, 2015 3:14 PM<br class="">
                                <b class="">To:</b><span
                                  class="Apple-converted-space"> </span>Richard

                                Gauthier<br class="">
                                <b class="">Cc:</b><span
                                  class="Apple-converted-space"> </span>Nature
                                of Light and Particles - General
                                Discussion; David Mathes<br class="">
                                <b class="">Subject:</b><span
                                  class="Apple-converted-space"> </span>Re:

                                [General] research papers<br class="">
                              </font><br class="">
                            </div>
                            <div class="">Hello Richard,<br class="">
                              <br class="">
                              thanks for your detailed explanation. But
                              I have a fundamental objection.<br
                                class="">
                              <br class="">
                              Your figure 2 is unfortunately (but
                              unavoidably) 2-dimensional, and that makes
                              a difference to the reality as I
                              understand it.<span
                                class="Apple-converted-space"> </span><br
                                class="">
                              <br class="">
                              In your model the charged electron moves
                              on a helix around the axis of the electron
                              (or equivalently the axis of the helix).
                              That means that the electron has a
                              constant distance to this axis. Correct?
                              But in the view of your figure 2 the
                              photon seems to start on the axis and
                              moves away from it forever. In this latter
                              case the wave front would behave as you
                              write it.<span
                                class="Apple-converted-space"> </span><br
                                class="">
                              <br class="">
                              Now, in the case of a constant distance,
                              the wave front as well intersects the
                              axis, that is true. But this intersection
                              point moves along the axis at the
                              projected speed of the photon to this
                              axis. - You can consider this also in
                              another way. If the electron moves during
                              a time, say T1, in the direction of the
                              axis, then the photon will during this
                              time T1 move a longer distance, as the
                              length of the helical path (call it L)  is
                              of course longer than the length of the
                              path of the electron during this time
                              (call it Z). Now you will during the time
                              T1 have a number of waves (call this N) on
                              the helical path L. On the other hand, the
                              number of waves on the length Z has also
                              to be N. Because otherwise after an
                              arbitrary time the whole situation would
                              diverge. As now Z is smaller than L, the
                              waves on the axis have to be shorter. So,
                              not the de Broglie wave length. That is my
                              understanding.<span
                                class="Apple-converted-space"> </span><br
                                class="">
                              <br class="">
                              In my present view, the de Broglie wave
                              length has no immediate correspondence in
                              the physical reality. I guess that the
                              success of de Broglie in using this wave
                              length may be understandable if we
                              understand in more detail, what happens in
                              the process of scattering of an electron
                              at the double (or multiple) slits.<br
                                class="">
                              <br class="">
                              Best wishes<br class="">
                              Albrecht<br class="">
                              <br class="">
                              <br class="">
                              <div class="moz-cite-prefix">Am 21.10.2015
                                um 06:28 schrieb<span
                                  class="Apple-converted-space"> </span><br
                                  class="">
                                Richard Gauthier:<br class="">
                              </div>
                              <blockquote type="cite" class="">
                                <div class="">Hello Albrecht,</div>
                                <div class=""><br class="">
                                </div>
                                <div class="">   Thank you for your
                                  effort to understand the physical
                                  process described geometrically in my
                                  Figure 2. You have indeed
                                  misunderstood the Figure as you
                                  suspected. The LEFT upper side of the
                                  big 90-degree triangle is one
                                  wavelength h/(gamma mc) of the charged
                                  photon, mathematically unrolled from
                                  its two-turned helical shape (because
                                  of the double-loop model of the
                                  electron) so that its full length
                                  h/(gamma mc) along the helical
                                  trajectory can be easily visualized.
                                  The emitted wave fronts described in
                                  my article are perpendicular to this
                                  mathematically unrolled upper LEFT
                                  side of the triangle (because the
                                  plane waves emitted by the charged
                                  photon are directed along the
                                  direction of the helix when it is
                                  coiled (or mathematically uncoiled),
                                  and the plane wave fronts are
                                  perpendicular to this direction). The
                                  upper RIGHT side of the big 90-degree
                                  triangle corresponds to one of the
                                  plane wave fronts (of constant phase
                                  along the wave front) emitted at one
                                  wavelength lambda = h/(gamma mc) of
                                  the helically circulating charged
                                  photon. The length of the horizontal
                                  base of the big 90-degree triangle,
                                  defined by where this upper RIGHT side
                                  of the triangle (the generated plane
                                  wave front from the charged photon)
                                  intersects the horizontal axis of the
                                  helically-moving charged photon, is
                                  the de Broglie wavelength h/(gamma mv)
                                  of the electron model (labeled in the
                                  diagram). By geometry the length (the
                                  de Broglie wavelength) of this
                                  horizontal base of the big right
                                  triangle in the Figure is equal to the
                                  top left side of the triangle (the
                                  photon wavelength h/(gamma mc) divided
                                  (not multiplied) by cos(theta) = v/c
                                  because we are calculating the
                                  hypotenuse of the big right triangle
                                  starting from the upper LEFT side of
                                  this big right triangle, which is the
                                  adjacent side of the big right
                                  triangle making an angle theta with
                                  the hypotenuse. </div>
                                <div class=""><br class="">
                                </div>
                                <div class="">   What you called the
                                  projection of the charged photon’s
                                  wavelength h/(gamma mc) onto the
                                  horizontal axis is actually just the
                                  distance D that the electron has moved
                                  with velocity v along the x-axis in
                                  one period T of the circulating
                                  charged photon. That period T equals
                                  1/f = 1/(gamma mc^2/h) = h/(gamma
                                  mc^2). By the geometry in the Figure,
                                  that distance D is the adjacent side
                                  of the smaller 90-degree triangle in
                                  the left side of the Figure, making an
                                  angle theta with cT,  the hypotenuse
                                  of that smaller triangle, and so D =
                                  cT cos (theta) = cT x v/c = vT , the
                                  distance the electron has moved to the
                                  right with velocity v in the time T.
                                  In that same time T one de Broglie
                                  wavelength has been generated along
                                  the horizontal axis of the circulating
                                  charged photon. </div>
                                <div class=""><br class="">
                                </div>
                                <div class="">   I will answer your
                                  question about the double slit in a
                                  separate e-mail.</div>
                                <div class=""><br class="">
                                </div>
                                <div class="">       <span
                                    class="Apple-converted-space"> </span>all
                                  the best,</div>
                                <div class="">           <span
                                    class="Apple-converted-space"> </span>Richard</div>
                                <br class="">
                                <div class="">
                                  <blockquote type="cite" class="">
                                    <div class="">On Oct 20, 2015, at
                                      10:06 AM, Dr. Albrecht Giese <<a
                                        moz-do-not-send="true"
                                        class="moz-txt-link-abbreviated"
                                        href="mailto:genmail@a-giese.de"><a class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de">genmail@a-giese.de</a></a>>

                                      wrote:</div>
                                    <br
                                      class="Apple-interchange-newline">
                                    <div class="">
                                      <div bgcolor="#FFFFFF" class="">Hello

                                        Richard,<br class="">
                                        <br class="">
                                        thank you for your explanations.
                                        I would like to ask further
                                        questions and will place them
                                        into the text below.<br class="">
                                        <br class="">
                                        <div class="moz-cite-prefix">Am
                                          19.10.2015 um 20:08 schrieb
                                          Richard Gauthier:<br class="">
                                        </div>
                                        <blockquote type="cite" class="">
                                          <div class="">Hello Albrecht,</div>
                                          <div class=""><br class="">
                                          </div>
                                          <div class="">   <span
                                              class="Apple-converted-space"> </span>Thank

                                            your for your detailed
                                            questions about my electron
                                            model, which I will answer
                                            as best as I can. </div>
                                          <div class=""><br class="">
                                          </div>
                                          <div class="">     My approach
                                            of using the formula
                                            e^i(k*r-wt)    =  e^i (k dot
                                            r minus omega t)  for a
                                            plane wave emitted by
                                            charged photons is also used
                                            for example in the analysis
                                            of x-ray diffraction from
                                            crystals when you have many
                                            incoming parallel photons in
                                            free space moving in phase
                                            in a plane wave. Please see
                                            for example <font class=""
                                              size="2"><a
                                                moz-do-not-send="true"
                                                class="moz-txt-link-freetext"
href="http://www.pa.uky.edu/%7Ekwng/phy525/lec/lecture_2.pdf"><a class="moz-txt-link-freetext" href="http://www.pa.uky.edu/~kwng/phy525/lec/lecture_2.pdf">http://www.pa.uky.edu/~kwng/phy525/lec/lecture_2.pdf</a></a></font> .

                                            When Max Born studied
                                            electron scattering using
                                            quantum mechanics (where he
                                            used PHI*PHI of the quantum
                                            wave functions to predict
                                            the electron scattering
                                            amplitudes), he also
                                            described the incoming
                                            electrons as a plane wave
                                            moving forward with the de
                                            Broglie wavelength towards
                                            the target. I think this is
                                            the general analytical
                                            procedure used in scattering
                                            experiments.  In my charged
                                            photon model the helically
                                            circulating charged photon,
                                            corresponding to a moving
                                            electron, is emitting a
                                            plane wave of wavelength
                                            lambda = h/(gamma mc) and
                                            frequency f=(gamma mc^2)/h
                                             along the direction of its
                                            helical trajectory, which
                                            makes a forward angle theta
                                            with the helical axis given
                                            by cos (theta)=v/c. Planes
                                            of constant phase emitted
                                            from the charged photon in
                                            this way intersect the
                                            helical axis of the charged
                                            photon. When a charged
                                            photon has traveled one
                                            relativistic wavelength
                                            lambda = h/(gamma mc) along
                                            the helical axis, the
                                            intersection point of this
                                            wave front with the helical
                                            axis has traveled (as seen
                                            from the geometry of Figure
                                            2 in my charged photon
                                            article) a distance
                                            lambda/cos(theta) =  lambda
                                            / (v/c) = h/(gamma mv)  i.e
                                            the relativistic de Broglie
                                            wavelength along the helical
                                            axis.</div>
                                        </blockquote>
                                        Here I have a question with
                                        respect to your Figure 2. The
                                        circling charged photon is
                                        accompanied by a wave which
                                        moves at any moment in the
                                        direction of the photon on its
                                        helical path. This wave has its
                                        normal wavelength in the
                                        direction along this helical
                                        path. But if now this wave is
                                        projected onto the axis of the
                                        helix, which is the axis of the
                                        moving electron, then the
                                        projected wave will be shorter
                                        than the original one. So the
                                        equation will not be  lambda<sub
                                          class="">deBroglie</sub><span
                                          class="Apple-converted-space"> </span>=
                                        lambda<sub class="">photon</sub><span
                                          class="Apple-converted-space"> </span>/
                                        cos theta , but: lambda<sub
                                          class="">deBroglie</sub><span
                                          class="Apple-converted-space"> </span>=
                                        lambda<sub class="">photon</sub><span
                                          class="Apple-converted-space"> </span>*
                                        cos theta . The result will not
                                        be the (extended) de Broglie
                                        wave but a shortened wave. Or do
                                        I completely misunderstand the
                                        situation here?<br class="">
                                        <br class="">
                                        Or let's use another view to the
                                        process. Lets imagine a
                                        scattering process of the
                                        electron at a double slit. This
                                        was the experiment where the de
                                        Broglie wavelength turned out to
                                        be helpful.<span
                                          class="Apple-converted-space"> </span><br
                                          class="">
                                        So, when now the electron, and
                                        that means the cycling photon,
                                        approaches the slits, it will
                                        approach at a slant angle theta
                                        at the layer which has the
                                        slits. Now assume the momentary
                                        phase such that the wave front
                                        reaches two slits at the same
                                        time (which means that the
                                        photon at this moment moves
                                        downwards or upwards, but else
                                        straight with respect to the
                                        azimuth). This situation is
                                        similar to the front wave of a<span
                                          class="Apple-converted-space"> </span><i
                                          class="">single</i><span
                                          class="Apple-converted-space"> </span>normal

                                        photon which moves upwards or
                                        downwards by an angle theta.
                                        There is now no phase difference
                                        between the right and the left
                                        slit. Now the question is
                                        whether this coming-down (or
                                        -up) will change the temporal
                                        sequence of the phases (say: of
                                        the maxima of the wave). This
                                        distance (by time or by length)
                                        determines at which angle the
                                        next interference maxima to the
                                        right or to the left will occur
                                        behind the slits.<span
                                          class="Apple-converted-space"> </span><br
                                          class="">
                                        <br class="">
                                        To my understanding the temporal
                                        distance will be the same
                                        distance as of wave maxima on
                                        the helical path of the photon,
                                        where the latter is  lambda<sub
                                          class="">1</sub><span
                                          class="Apple-converted-space"> </span>=
                                        c / frequency; frequency =
                                        (gamma*mc<sup class="">2</sup>)
                                        / h. So, the geometric distance
                                        of the wave maxima passing the
                                        slits is   lambda<sub class="">1</sub><span
                                          class="Apple-converted-space"> </span>=
                                        c*h / (gamma*mc<sup class="">2</sup>).

                                        Also here the result is a
                                        shortened wavelength rather than
                                        an extended one, so not the de
                                        Broglie wavelength.<br class="">
                                        <br class="">
                                        Again my question: What do I
                                        misunderstand?<br class="">
                                        <br class="">
                                        For the other topics of your
                                        answer I essentially agree, so I
                                        shall stop here.<br class="">
                                        <br class="">
                                        Best regards<br class="">
                                        Albrecht<br class="">
                                        <br class="">
                                        <blockquote type="cite" class="">
                                          <div class=""><br class="">
                                          </div>
                                          <div class="">     Now as seen
                                            from this geometry, the
                                            slower the electron’s
                                            velocity v, the longer is
                                            the electron’s de Broglie
                                            wavelength — also as seen
                                            from the relativistic de
                                            Broglie wavelength formula
                                            Ldb =  h/(gamma mv). For a
                                            resting electron (v=0) the
                                            de Broglie wavelength is
                                            undefined in this formula as
                                            also in my model for v = 0.
                                            Here, for stationary
                                            electron, the charged
                                            photon’s emitted wave fronts
                                            (for waves of wavelength
                                            equal to the Compton
                                            wavelength h/mc)  intersect
                                            the axis of the circulating
                                            photon along its whole
                                            length rather than at a
                                            single point along the
                                            helical axis. This condition
                                            corresponds to the condition
                                            where de Broglie said
                                            (something like) that the
                                            electron oscillates with the
                                            frequency given by f =
                                            mc^2/h for the stationary
                                            electron, and that the phase
                                            of the wave of this
                                            oscillating electron is the
                                            same at all points in space.
                                            But when the electron is
                                            moving slowly, long de
                                            Broglie waves are formed
                                            along the axis of the moving
                                            electron.</div>
                                          <div class=""><br class="">
                                          </div>
                                          <div class="">     In this
                                            basic plane wave model there
                                            is no limitation on how far
                                            to the sides of the charged
                                            photon the plane wave fronts
                                            extend. In a more detailed
                                            model a finite
                                            side-spreading of the plane
                                            wave would correspond to a
                                            pulse of many forward moving
                                            electrons that is limited in
                                            both longitudinal and
                                            lateral extent (here a
                                            Fourier description of the
                                            wave front for a pulse of
                                            electrons of a particular
                                            spatial extent would
                                            probably come into play),
                                            which is beyond the present
                                            description.</div>
                                          <div class=""><br class="">
                                          </div>
                                          <div class="">     You asked
                                            what an observer standing
                                            beside the resting electron,
                                            but not in the plane of the
                                            charged photon's internal
                                            circular motion) would
                                            observe as the circulating
                                            charged photon emits a plane
                                            wave long its trajectory.
                                            The plane wave’s wavelength
                                            emitted by the circling
                                            charged photon would be the
                                            Compton wavelength h/mc. So
                                            when the charged photon is
                                            moving more towards (but an
                                            an angle to) the stationary
                                            observer, he would observe a
                                            wave of wavelength h/mc
                                            (which you call c/ny where
                                            ny is the frequency of
                                            charged photon’s orbital
                                            motion) coming towards and
                                            past him. This is not the de
                                            Broglie wavelength (which is
                                            undefined here and is only
                                            defined on the helical axis
                                            of the circulating photon
                                            for a moving electron) but
                                            is the Compton wavelength
                                            h/mc of the circulating
                                            photon of a resting
                                            electron. As the charged
                                            photon moves more away from
                                            the observer, he would
                                            observe a plane wave of
                                            wavelength h/mc moving away
                                            from him in the direction of
                                            the receding charged photon.
                                            But it is more complicated
                                            than this, because the
                                            observer at the side of the
                                            stationary electron
                                            (circulating charged photon)
                                            will also be receiving all
                                            the other plane waves with
                                            different phases emitted at
                                            other angles from the
                                            circulating charged photon
                                            during its whole circular
                                            trajectory. In fact all of
                                            these waves from the charged
                                            photon away from the
                                            circular axis or helical
                                            axis will interfere and may
                                            actually cancel out or
                                            partially cancel out (I
                                            don’t know), leaving a net
                                            result only along the axis
                                            of the electron, which if
                                            the electron is moving,
                                            corresponds to the de
                                            Broglie wavelength along
                                            this axis. This is hard to
                                            visualize in 3-D and this is
                                            why I think a 3-D computer
                                            graphic model of this
                                            plane-wave emitting process
                                            for a moving or stationary
                                            electron would be very
                                            helpful and informative.</div>
                                          <div class=""><br class="">
                                          </div>
                                          <div class="">   <span
                                              class="Apple-converted-space"> </span>You

                                            asked about the electric
                                            charge of the charged photon
                                            and how it affects this
                                            process. Clearly the plane
                                            waves emitted by the
                                            circulating charged photon
                                            have to be different from
                                            the plane waves emitted by
                                            an uncharged photon, because
                                            these plane waves generate
                                            the quantum wave functions
                                            PHI that predict the
                                            probabilities of finding
                                            electrons or photons
                                            respectively in the future
                                            from their PHI*PHI
                                            functions. Plus the charged
                                            photon has to be emitting an
                                            additional electric field
                                            (not emitted by a regular
                                            uncharged photon), for
                                            example caused by virtual
                                            uncharged photons as
                                            described in QED, that
                                            produces the electrostatic
                                            field of a stationary
                                            electron or the
                                            electro-magnetic field
                                            around a moving electron. </div>
                                          <div class=""><br class="">
                                          </div>
                                          <div class="">   <span
                                              class="Apple-converted-space"> </span>I
                                            hope this helps. Thanks
                                            again for your excellent
                                            questions.</div>
                                          <div class=""><br class="">
                                          </div>
                                          <div class="">     <span
                                              class="Apple-converted-space"> </span>with

                                            best regards,</div>
                                          <div class="">         
                                             Richard</div>
                                          <div class=""><br class="">
                                          </div>
                                          <br class="">
                                          <div class="">
                                            <blockquote type="cite"
                                              class="">
                                              <div class="">On Oct 19,
                                                2015, at 8:13 AM, Dr.
                                                Albrecht Giese <<a
                                                  moz-do-not-send="true"
class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de"><a class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de">genmail@a-giese.de</a></a>>

                                                wrote:</div>
                                              <br
                                                class="Apple-interchange-newline">
                                              <div class="">
                                                <div bgcolor="#FFFFFF"
                                                  class="">Richard:<br
                                                    class="">
                                                  <br class="">
                                                  I am still busy to
                                                  understand the de
                                                  Broglie wavelength
                                                  from your model. I
                                                  think that I
                                                  understand your
                                                  general idea, but I
                                                  would like to also
                                                  understand the
                                                  details.<span
                                                    class="Apple-converted-space"> </span><br
                                                    class="">
                                                  <br class="">
                                                  If a photon moves
                                                  straight in the free
                                                  space, how does the
                                                  wave look like? You
                                                  say that the photon
                                                  emits a plane wave. If
                                                  the photon is alone
                                                  and moves straight,
                                                  then the wave goes
                                                  with the photon. No
                                                  problem. And the wave
                                                  front is in the
                                                  forward direction.
                                                  Correct? How far to
                                                  the sides is the wave
                                                  extended? That may be
                                                  important in case of
                                                  the photon in the
                                                  electron.<br class="">
                                                  <br class="">
                                                  With the following I
                                                  refer to the figures 1
                                                  and 2 in your paper
                                                  referred in your
                                                  preceding mail.<br
                                                    class="">
                                                  <br class="">
                                                  In the electron, the
                                                  photon moves according
                                                  to your model on a
                                                  circuit. It moves on a
                                                  helix when the
                                                  electron is in motion.
                                                  But let take us first
                                                  the case of the
                                                  electron at rest, so
                                                  that the photon moves
                                                  on this circuit. In
                                                  any moment the plane
                                                  wave accompanied with
                                                  the photon will
                                                  momentarily move in
                                                  the tangential
                                                  direction of the
                                                  circuit. But the
                                                  direction will
                                                  permanently change to
                                                  follow the path of the
                                                  photon on the circuit.
                                                  What is then about the
                                                  motion of the wave?
                                                  The front of the wave
                                                  should follow this
                                                  circuit. Would an
                                                  observer next to the
                                                  electron at rest (but
                                                  not in the plane of
                                                  the internal motion)
                                                  notice the wave? This
                                                  can only happen, I
                                                  think, if the wave
                                                  does not only
                                                  propagate on a
                                                  straight path forward
                                                  but has an extension
                                                  to the sides. Only if
                                                  this is the case,
                                                  there will be a wave
                                                  along the axis of the
                                                  electron. Now an
                                                  observer next to the
                                                  electron will see a
                                                  modulated wave coming
                                                  from the photon, which
                                                  will be modulated with
                                                  the frequency of the
                                                  rotation, because the
                                                  photon will in one
                                                  moment be closer to
                                                  the observer and in
                                                  the next moment be
                                                  farer from him. Which
                                                  wavelength will be
                                                  noticed by the
                                                  observer? It should be
                                                  lambda = c / ny, where
                                                  c is the speed of the
                                                  propagation and ny the
                                                  frequency of the
                                                  orbital motion. But
                                                  this lambda is by my
                                                  understanding not be
                                                  the de Broglie wave
                                                  length.<br class="">
                                                  <br class="">
                                                  For an electron at
                                                  rest your model
                                                  expects a wave with a
                                                  momentarily similar
                                                  phase for all points
                                                  in space. How can this
                                                  orbiting photon cause
                                                  this? And else, if the
                                                  electron is not at
                                                  rest but moves at a
                                                  very small speed, then
                                                  the situation will not
                                                  be very different from
                                                  that of the electron
                                                  at rest.<br class="">
                                                  <br class="">
                                                  Further: What is the
                                                  influence of the
                                                  charge in the photon?
                                                  There should be a
                                                  modulated electric
                                                  field around the
                                                  electron with a
                                                  frequency ny which
                                                  follows also from E =
                                                  h*ny, with E the
                                                  dynamical energy of
                                                  the photon. Does this
                                                  modulated field have
                                                  any influence to how
                                                  the electron interacts
                                                  with others?<span
                                                    class="Apple-converted-space"> </span><br
                                                    class="">
                                                  <br class="">
                                                  Some questions,
                                                  perhaps you can help
                                                  me for a better
                                                  understanding.<br
                                                    class="">
                                                  <br class="">
                                                  With best regards and
                                                  thanks in advance<br
                                                    class="">
                                                  Albrecht<br class="">
                                                  <br class="">
                                                  PS: I shall answer you
                                                  mail from last night
                                                  tomorrow.<br class="">
                                                  <br class="">
                                                  <br class="">
                                                  <div
                                                    class="moz-cite-prefix">Am

                                                    14.10.2015 um 22:32
                                                    schrieb Richard
                                                    Gauthier:<br
                                                      class="">
                                                  </div>
                                                  <blockquote
                                                    type="cite" class="">
                                                    <div class="">Hello
                                                      Albrecht,</div>
                                                    <div class=""><br
                                                        class="">
                                                    </div>
                                                    <div class="">   <span
class="Apple-converted-space"> </span>I second David’s question. The
                                                      last I heard
                                                      authoritatively,
                                                      from cosmologist
                                                      Sean Carroll -
                                                      "The Particle at
                                                      the End of the
                                                      Universe” (2012),
                                                      is that fermions
                                                      are not affected
                                                      by the strong
                                                      nuclear force. If
                                                      they were, I think
                                                      it would be common
                                                      scientific
                                                      knowledge by now. </div>
                                                    <div class=""><br
                                                        class="">
                                                    </div>
                                                    <div class="">You
                                                      wrote: "<span
                                                        class=""
                                                        style="font-size:
                                                        16px;
                                                        background-color:
                                                        rgb(255, 255,
                                                        255);">I see it
                                                        as a valuable
                                                        goal for the
                                                        further
                                                        development to
                                                        find an answer
                                                        (a</span><span
                                                        class=""
                                                        style="font-size:
                                                        16px;
                                                        background-color:
                                                        rgb(255, 255,
                                                        255);"> </span><i
                                                        class=""
                                                        style="font-size:
                                                        16px;">physical </i><span
                                                        class=""
                                                        style="font-size:
                                                        16px;
                                                        background-color:
                                                        rgb(255, 255,
                                                        255);">answer!)
                                                        to the question
                                                        of the de
                                                        Broglie
                                                        wavelength."</span></div>
                                                    <div class=""> <span
class="Apple-converted-space"> </span>My spin 1/2 charged photon model
                                                      DOES give a simple
                                                      physical
                                                      explanation for
                                                      the origin of the
                                                      de Broglie
                                                      wavelength. The
                                                      helically-circulating
                                                      charged photon is
                                                      proposed to emit a
                                                      plane wave
                                                      directed along its
                                                      helical path based
                                                      on its
                                                      relativistic
                                                      wavelength lambda
                                                      = h/(gamma mc) and
                                                      relativistic
                                                      frequency f=(gamma
                                                      mc^2)/h. The wave
                                                      fronts of this
                                                      plane wave
                                                      intersect the axis
                                                      of the charged
                                                      photon’s helical
                                                      trajectory, which
                                                      is the path of the
                                                      electron being
                                                      modeled by the
                                                      charged photon,
                                                      creating a de
                                                      Broglie wave
                                                      pattern of
                                                      wavelength
                                                      h/(gamma mv) which
                                                      travels along the
                                                      charged photon’s
                                                      helical axis at
                                                      speed c^2/v. For a
                                                      moving electron,
                                                      the wave fronts
                                                      emitted by the
                                                      charged photon do
                                                      not intersect the
                                                      helical axis
                                                      perpendicularly
                                                      but at an angle
                                                      (see Figure 2 of
                                                      my SPIE paper at <a
moz-do-not-send="true" class="moz-txt-link-freetext"
href="https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength"><a class="moz-txt-link-freetext" href="https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength">https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength</a></a> )

                                                      that is simply
                                                      related to the
                                                      speed of the
                                                      electron being
                                                      modeled.  This
                                                      physical origin of
                                                      the electron’s de
                                                      Broglie wave is
                                                      similar to when a
                                                      series of parallel
                                                      and evenly-spaced
                                                      ocean waves hits a
                                                      straight beach at
                                                      an angle greater
                                                      than zero degrees
                                                      to the beach — a
                                                      wave pattern is
                                                      produced at the
                                                      beach that travels
                                                      in one direction
                                                      along the beach at
                                                      a speed faster
                                                      than the speed of
                                                      the waves coming
                                                      in from the ocean.
                                                      But that beach
                                                      wave pattern can't
                                                      transmit
                                                      “information”
                                                      along the beach
                                                      faster than the
                                                      speed of the ocean
                                                      waves, just as the
                                                      de Broglie
                                                      matter-wave can’t
                                                      (according to
                                                      special
                                                      relativity)
                                                      transmit
                                                      information faster
                                                      than light, as de
                                                      Broglie
                                                      recognized.  As
                                                      far as I know this
                                                      geometric
                                                      interpretation for
                                                      the generation of
                                                      the relativistic
                                                      electron's de
                                                      Broglie
                                                      wavelength, phase
                                                      velocity, and
                                                      matter-wave
                                                      equation is
                                                      unique.</div>
                                                    <div class=""><br
                                                        class="">
                                                    </div>
                                                    <div class=""> <span
class="Apple-converted-space"> </span>For a resting (v=0) electron, the
                                                      de Broglie
                                                      wavelength lambda
                                                      = h/(gamma mv) is
                                                      not defined since
                                                      one can’t divide
                                                      by zero. It
                                                      corresponds to the
                                                      ocean wave fronts
                                                      in the above
                                                      example hitting
                                                      the beach at a
                                                      zero degree angle,
                                                      where no velocity
                                                      of the wave
                                                      pattern along the
                                                      beach can be
                                                      defined.</div>
                                                    <div class=""><br
                                                        class="">
                                                    </div>
                                                    <div class="">  <span
                                                        class=""
                                                        style="color:
                                                        rgb(37, 37, 37);
                                                        line-height:
                                                        22px;
                                                        background-color:
                                                        rgb(255, 255,
                                                        255);">Schrödinger</span> took

                                                      de Broglie’s
                                                      matter-wave and
                                                      used  it
                                                      non-relativistically
                                                      with a potential V
                                                       to generate the <span
                                                        class=""
                                                        style="color:
                                                        rgb(37, 37, 37);
                                                        line-height:
                                                        22px;
                                                        background-color:
                                                        rgb(255, 255,
                                                        255);">Schrödinger</span> equation

                                                      and wave
                                                      mechanics, which
                                                      is mathematically
                                                      identical in its
                                                      predictions to
                                                      Heisenberg’s
                                                      matrix mechanics.
                                                      Born interpreted
                                                      Psi*Psi of the <span
                                                        class=""
                                                        style="color:
                                                        rgb(37, 37, 37);
                                                        line-height:
                                                        22px;
                                                        background-color:
                                                        rgb(255, 255,
                                                        255);">Schrödinger</span> equation

                                                      as the probability
                                                      density for the
                                                      result of an
                                                      experimental
                                                      measurement and
                                                      this worked well
                                                      for statistical
                                                      predictions.
                                                      Quantum mechanics
                                                      was built on this
                                                      de Broglie wave
                                                      foundation and
                                                      Born's
                                                      probabilistic
                                                      interpretation
                                                      (using Hilbert
                                                      space math.)</div>
                                                    <div class=""><br
                                                        class="">
                                                    </div>
                                                    <div class=""> <span
class="Apple-converted-space"> </span>The charged photon model of the
                                                      electron might be
                                                      used to derive
                                                      the <span class=""
                                                        style="color:
                                                        rgb(37, 37, 37);
                                                        line-height:
                                                        22px;
                                                        background-color:
                                                        rgb(255, 255,
                                                        255);">Schrödinger</span> equation,

                                                      considering the
                                                      electron to be a
                                                      circulating
                                                      charged photon
                                                      that generates the
                                                      electron’s
                                                      matter-wave, which
                                                      depends on the
                                                      electron’s
                                                      variable kinetic
                                                      energy in a
                                                      potential field.
                                                      This needs to be
                                                      explored further,
                                                      which I began in <a
moz-do-not-send="true" class="moz-txt-link-freetext"
href="https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schr%C3%B6dinger_Equation"><a class="moz-txt-link-freetext" href="https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schrödinger_Equation">https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schrödinger_Equation</a></a> .

                                                      Of course, to
                                                      treat the electron
                                                      relativistically
                                                      requires the Dirac
                                                      equation. But the
                                                      spin 1/2 charged
                                                      photon model of
                                                      the relativistic
                                                      electron has a
                                                      number of features
                                                      of the Dirac
                                                      electron, by
                                                      design.</div>
                                                    <div class=""><br
                                                        class="">
                                                    </div>
                                                    <div class=""> <span
class="Apple-converted-space"> </span>As to why the charged photon
                                                      circulates
                                                      helically rather
                                                      than moving in a
                                                      straight line (in
                                                      the absence of
                                                      diffraction, etc)
                                                      like an uncharged
                                                      photon, this could
                                                      be the effect of
                                                      the charged photon
                                                      moving in the
                                                      Higgs field, which
                                                      turns a
                                                      speed-of-light
                                                      particle with
                                                      electric charge
                                                      into a
                                                      less-than-speed-of-light
                                                      particle with a
                                                      rest mass, which
                                                      in this case is
                                                      the electron’s
                                                      rest mass 0.511
                                                      MeV/c^2 (this
                                                      value is not
                                                      predicted by the
                                                      Higgs field theory
                                                      however.) So the
                                                      electron’s inertia
                                                      may also be caused
                                                      by the Higgs
                                                      field. I would not
                                                      say that an
                                                      unconfined photon
                                                      has inertia,
                                                      although it has
                                                      energy and
                                                      momentum but no
                                                      rest mass, but
                                                      opinions differ on
                                                      this point.
                                                      “Inertia” is a
                                                      vague term and
                                                      perhaps should be
                                                      dropped— it
                                                      literally means
                                                      "inactive,
                                                      unskilled”.</div>
                                                    <div class=""><br
                                                        class="">
                                                    </div>
                                                    <div class=""> <span
class="Apple-converted-space"> </span>You said that a faster-than-light
                                                      phase wave can
                                                      only be caused by
                                                      a superposition of
                                                      waves. I’m not
                                                      sure this is
                                                      correct, since in
                                                      my charged photon
                                                      model a single
                                                      plane wave pattern
                                                      emitted by the
                                                      circulating
                                                      charged photon
                                                      generates the
                                                      electron’s
                                                      faster-than-light
                                                      phase wave of
                                                      speed c^2/v . A
                                                      group velocity of
                                                      an electron model
                                                      may be generated
                                                      by a superposition
                                                      of waves to
                                                      produce a wave
                                                      packet whose group
                                                      velocity equals
                                                      the
                                                      slower-than-light
                                                      speed of an
                                                      electron modeled
                                                      by such an
                                                      wave-packet
                                                      approach.</div>
                                                    <div class=""><br
                                                        class="">
                                                    </div>
                                                    <div class="">with
                                                      best regards,</div>
                                                    <div class="">     
                                                       Richard</div>
                                                    <br class="">
                                                  </blockquote>
                                                </div>
                                              </div>
                                            </blockquote>
                                          </div>
                                        </blockquote>
                                      </div>
                                    </div>
                                  </blockquote>
                                </div>
                              </blockquote>
                              <br class="">
                              <br class="">
                              <br class="">
                              <hr style="border: none; color: rgb(144,
                                144, 144); background-color: rgb(176,
                                176, 176); height: 1px; width:
                                808.828125px;" class="">
                              <table style="border-collapse: collapse;
                                border: none;" class="">
                                <tbody class="">
                                  <tr class="">
                                    <td style="border: none; padding:
                                      0px 15px 0px 8px;" class=""><a
                                        moz-do-not-send="true"
                                        href="https://www.avast.com/antivirus"
                                        target="_blank" class=""><img
                                          moz-do-not-send="true"
                                          src="http://static.avast.com/emails/avast-mail-stamp.png"
                                          alt="Avast logo" class=""
                                          border="0"></a></td>
                                    <td class="">
                                      <div style="margin-top: 0px;
                                        margin-bottom: 0px; color:
                                        rgb(61, 77, 90); font-family:
                                        Calibri, Verdana, Arial,
                                        Helvetica; font-size: 12pt;"
                                        class="">Diese E-Mail wurde von
                                        Avast Antivirus-Software auf
                                        Viren geprüft.<span
                                          class="Apple-converted-space"> </span><br
                                          class="">
                                        <a moz-do-not-send="true"
                                          href="https://www.avast.com/antivirus"
                                          target="_blank" class="">www.avast.com</a></div>
                                    </td>
                                  </tr>
                                </tbody>
                              </table>
                              <br class="">
                            </div>
                          </div>
                        </div>
                      </blockquote>
                      <br style="font-family: Helvetica; font-size:
                        12px; font-style: normal; font-variant: normal;
                        font-weight: normal; letter-spacing: normal;
                        line-height: normal; orphans: auto; text-align:
                        start; text-indent: 0px; text-transform: none;
                        white-space: normal; widows: auto; word-spacing:
                        0px; -webkit-text-stroke-width: 0px;
                        background-color: rgb(255, 255, 255);" class="">
                      <br style="font-family: Helvetica; font-size:
                        12px; font-style: normal; font-variant: normal;
                        font-weight: normal; letter-spacing: normal;
                        line-height: normal; orphans: auto; text-align:
                        start; text-indent: 0px; text-transform: none;
                        white-space: normal; widows: auto; word-spacing:
                        0px; -webkit-text-stroke-width: 0px;
                        background-color: rgb(255, 255, 255);" class="">
                      <br style="font-family: Helvetica; font-size:
                        12px; font-style: normal; font-variant: normal;
                        font-weight: normal; letter-spacing: normal;
                        line-height: normal; orphans: auto; text-align:
                        start; text-indent: 0px; text-transform: none;
                        white-space: normal; widows: auto; word-spacing:
                        0px; -webkit-text-stroke-width: 0px;
                        background-color: rgb(255, 255, 255);" class="">
                      <hr style="font-family: Helvetica; font-size:
                        12px; font-style: normal; font-variant: normal;
                        font-weight: normal; letter-spacing: normal;
                        line-height: normal; orphans: auto; text-align:
                        start; text-indent: 0px; text-transform: none;
                        white-space: normal; widows: auto; word-spacing:
                        0px; -webkit-text-stroke-width: 0px; border:
                        none; color: rgb(144, 144, 144);
                        background-color: rgb(176, 176, 176); height:
                        1px; width: 818.71875px;" class="">
                      <table style="font-family: Helvetica;
                        letter-spacing: normal; orphans: auto;
                        text-indent: 0px; text-transform: none; widows:
                        auto; word-spacing: 0px;
                        -webkit-text-stroke-width: 0px;
                        background-color: rgb(255, 255, 255);
                        border-collapse: collapse; border: none;"
                        class="">
                        <tbody class="">
                          <tr class="">
                            <td style="border: none; padding: 0px 15px
                              0px 8px;" class=""><a
                                moz-do-not-send="true"
                                href="https://www.avast.com/antivirus"
                                class=""><img moz-do-not-send="true"
                                  src="http://static.avast.com/emails/avast-mail-stamp.png"
                                  alt="Avast logo" class="" border="0"></a></td>
                            <td class="">
                              <div style="margin-top: 0px;
                                margin-bottom: 0px; color: rgb(61, 77,
                                90); font-family: Calibri, Verdana,
                                Arial, Helvetica; font-size: 12pt;"
                                class="">Diese E-Mail wurde von Avast
                                Antivirus-Software auf Viren geprüft.<span
                                  class="Apple-converted-space"> </span><br
                                  class="">
                                <a moz-do-not-send="true"
                                  href="https://www.avast.com/antivirus"
                                  class="">www.avast.com</a></div>
                            </td>
                          </tr>
                        </tbody>
                      </table>
                      <br style="font-family: Helvetica; font-size:
                        12px; font-style: normal; font-variant: normal;
                        font-weight: normal; letter-spacing: normal;
                        line-height: normal; orphans: auto; text-align:
                        start; text-indent: 0px; text-transform: none;
                        white-space: normal; widows: auto; word-spacing:
                        0px; -webkit-text-stroke-width: 0px;
                        background-color: rgb(255, 255, 255);" class="">
                      <br class="Apple-interchange-newline">
                    </div>
                  </blockquote>
                </div>
                <br class="">
              </blockquote>
              <br class="">
              <br class="">
              <br class="">
              <hr style="border:none; color:#909090;
                background-color:#B0B0B0; height: 1px; width: 99%;"
                class="">
              <table style="border-collapse:collapse;border:none;"
                class="">
                <tbody class="">
                  <tr class="">
                    <td style="border:none;padding:0px 15px 0px 8px"
                      class=""> <a moz-do-not-send="true"
                        href="https://www.avast.com/antivirus" class="">
                        <img moz-do-not-send="true"
                          src="http://static.avast.com/emails/avast-mail-stamp.png"
                          alt="Avast logo" class="" border="0"> </a> </td>
                    <td class="">
                      <p style="color:#3d4d5a;
                        font-family:"Calibri","Verdana","Arial","Helvetica";
                        font-size:12pt;" class=""> Diese E-Mail wurde
                        von Avast Antivirus-Software auf Viren geprüft.
                        <br class="">
                        <a moz-do-not-send="true"
                          href="https://www.avast.com/antivirus"
                          class="">www.avast.com</a> </p>
                    </td>
                  </tr>
                </tbody>
              </table>
              <br class="">
            </div>
          </div>
        </blockquote>
      </div>
      <br class="">
    </blockquote>
    <br>
  
<br /><br />
<hr style='border:none; color:#909090; background-color:#B0B0B0; height: 1px; width: 99%;' />
<table style='border-collapse:collapse;border:none;'>
        <tr>
                <td style='border:none;padding:0px 15px 0px 8px'>
                        <a href="https://www.avast.com/antivirus">
                                <img border=0 src="http://static.avast.com/emails/avast-mail-stamp.png" alt="Avast logo" />
                        </a>
                </td>
                <td>
                        <p style='color:#3d4d5a; font-family:"Calibri","Verdana","Arial","Helvetica"; font-size:12pt;'>
                                Diese E-Mail wurde von Avast Antivirus-Software auf Viren geprüft.
                                <br><a href="https://www.avast.com/antivirus">www.avast.com</a>
                        </p>
                </td>
        </tr>
</table>
<br />
</body>
</html>