<html>
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    Hello Richard (and all),<br>
    <br>
    thank you, Richard, for your informations. You find my answers and
    comments in your text.<br>
    <br>
    However I see here two general problems which should be reviewed by
    all. <br>
    <br>
    1.) The fact that the de Broglie wave regarding its definition and
    its use is <i>not </i>Lorentz-invariant. So it is incompatible
    with our physical understanding since 1905.<br>
    <br>
    2.) If the photon is seen as the ingredient of the electron, we need
    a much clearer definition and understanding what the photon is and
    what its effects are in detail (like the wave front emitted).
    Otherwise there are too many insufficiently defined situations as
    visible in the discussion further down. -  And clearly we do not get
    any help from quantum mechanics for this, after Heisenberg has
    stated that it is completely useless to look into an elementary
    particle, and the physical community has accepted this since that
    time.<br>
    <br>
    <div class="moz-cite-prefix">Am 26.10.2015 um 00:29 schrieb Richard
      Gauthier:<br>
    </div>
    <blockquote
      cite="mid:460F80CA-A624-4BB6-B837-D873F2643782@gmail.com"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html;
        charset=windows-1252">
      <meta http-equiv="Content-Type" content="text/html;
        charset=windows-1252">
      <div class="">Hello Albrecht (and all),</div>
      <div class=""><br class="">
      </div>
      <div class="">   Thanks for your further questions. First of all,
        I think your comments on the de Broglie wavelength and the
        double-slit experiment as observed by a moving observer (moving
        with the electron or with another speed), were quite astute. I
        can’t see how an apparently stationary group of electrons, with
        an undefined or near infinite de Broglie wavelength, approached
        with speed v by a double slit apparatus, will form a wavy
        statistical interference pattern of points on the approaching
        screen on the other side of the approaching double slit
        apparatus, equal to the wavy statistical interference pattern
        produced by electrons moving at speed v approaching a stationary
        double-slit apparatus and screen. But apparently the pattern
        will be the same since this transverse wavy pattern should be
        invariant with respect to the longitudinal motion of the
        observer with respect to the double slit experiment (electrons
        plus double-slit and screen apparatus). Perhaps someone else can
        explain how this would work.  The double slit pattern formed by
        PHOTONS of a particular wavelength with respect to the
        double-slit apparatus should not be affected in a similar way by
        the motion of the observer. The same wavy transverse statistical
        pattern of photon spots on the screen behind the double slits
        should also occur independent of the velocity of the observer
        with respect to the photons and double-slit apparatus plus
        screen. Of course, in this case the observer can’t move as fast
        as the approaching photons, which makes a difference between the
        photon and the electron double-slit experiments, in relation to
        a moving observer.  <br>
      </div>
    </blockquote>
    True, for a photon coming in straight, there is no conflict. But I
    have mentioned earlier another view. Look what the circling photon
    does when the electron approaches the double slit. The photon
    performs a scattering at the double slit. The difference to the
    photon coming straight is that the photon approaches the double slit
    at a - maybe - very flat angle. This will change the angle at which
    the light beam leaves the double slit at the other side. So the
    diffraction pattern on the screen will not be on a straight line
    perpendicular
    to the direction of the slits. It will be positioned more or less on
    a circuit. But the structure of the pattern, i.e. the spread of the
    maxima, will be according to photon scattering and not to electron
    scattering. The deflections will be different from the ones of a
    photon moving straight in by a factor, which is between 1 and c/v
    depending on the direction (up/down or right/left). And so different
    from the de Broglie assumption which deviates by a factor of
    (c^2/v^2) from the angular deflection of a photon coming in
    straight.
    <blockquote
      cite="mid:460F80CA-A624-4BB6-B837-D873F2643782@gmail.com"
      type="cite">
      <div class="">However, the problem with the ELECTRON double-slit
        experiment with a moving observer might be resolved by thinking
        of the stationary electrons (as seen by an observer moving with
        them) as composed of circulating charged photons, with each
        electron producing a standing wave composed of Compton waves
        moving in opposite directions, approached by a moving
        double-slit apparatus. </div>
    </blockquote>
    Let's look at a collection of electrons having an opposite rotation
    and so the waves move to different directions. If now an observer
    moves at a moderate speed towards the double slit (so not co-moving
    at the same speed as the electron) he should now see a diffraction
    pattern which is smeared out as both wave contribute in a different
    way. But again this will be different of what an observer at rest
    will see.<br>
    <blockquote
      cite="mid:460F80CA-A624-4BB6-B837-D873F2643782@gmail.com"
      type="cite">
      <div class=""><br class="">
      </div>
      <div class="">   Now to answer your further questions about the
        charged photon model and the proposed quantum wave function
        describing quantum plane waves emitted by the helically
        circulating charged photon.</div>
      <div class=""><br class="">
      </div>
      <div class="">
        <blockquote type="cite" class=""><span class=""
            style="background-color: rgb(255, 255, 255); float: none;
            display: inline !important;">The relation k = (gamma
            mv)/hbar cannot be applicable here, if I understand
            correctly that v is the speed of the electron. If the
            electron is at rest, then v=0 and so</span><br class=""
            style="background-color: rgb(255, 255, 255);">
          <span class="" style="background-color: rgb(255, 255, 255);
            float: none; display: inline !important;"> k=0. But for a
            photon k=0 is not possible. It is in permanent motion and
            has energy, which you describe with  w = (gamma mc^2)/hbar
            . </span></blockquote>
      </div>
      <div class=""><br class="">
      </div>
      <div class="">For the v=0 or near zero resting electron, where
        gamma=1, the k wave number relations  k(electron) =(gamma
        mv)/hbar for the resting electron’s de Broglie wave and
        k(photon)=(gamma mc)/hbar for the circulating photon BOTH apply.
        For the resting electron, v=0 so k=0 since k(electron)
        =2pi/LAMBDAdb and LAMBDAdb goes to infinity for a resting
        electron since LAMBDAdb = h/mv and v -> 0. But for the
        circulating charged photon in a resting electron where gamma =
        1,  k(photon) = (gamma mc)/hbar  -> mc/hbar applies also
        because here for the circulating photon,  k(photon)=
        2pi/LAMBDAphoton = 2pi/ComptonWavelength = 2pi/(h/mc) =  mc/hbar
        . So there is no contradiction here or for any other electron
        speed, which is always less than c even though the circulating
        charged photon’s speed is always c .</div>
    </blockquote>
    For the photon I do not see any problem here. But further down in
    the sequence of your arguments, you explain the de Broglie
    wavelength by the intercept of the wave front of the photon with the
    axis. At this early point of your sequence there is nothing about
    this intercept. So, if you use the de Broglie wavelength of the
    electron
    <i> here </i>as an argument, then you use here something which you
    deduce only later. This is what I meant as circular reasoning.
    <blockquote
      cite="mid:460F80CA-A624-4BB6-B837-D873F2643782@gmail.com"
      type="cite">
      <div class=""><br class="">
      </div>
      <div class="">
        <blockquote type="cite" class=""><span class=""
            style="background-color: rgb(255, 255, 255); display: inline
            !important;">1.) Your intention is to derive the de Broglie
            wave length. But you cannot do this by using the validity of
            the de Broglie wave length as a precondition. That would be
            circular reasoning. </span></blockquote>
      </div>
      <div class=""><br class="">
      </div>
      <div class="">I am not deriving the de Broglie wavelength by
        circular reasoning. Although we already know the electron’s de
        Broglie wavelength formula experimentally, the electron’s de
        Broglie wavelength formula is derived in my model from the
        circulating charged photon’s wavelength LAMBDA(photon) =
        h/(gamma mc)  along its helical trajectory. This photon
        wavelength Lambda(photon) along the helical trajectory is simply
        derived from the proposed charged photon’s energy E= hf = gamma
        mc^2 for the relativistic moving electron.  The z=component of
        the helically circulating charged photon’s wave vector k(photon)
        value along the helical axis is k(axis) =  k(photon ) x
        cos(theta)  which corresponds to the de Broglie wavelength
        h/(gamma mv)  .</div>
    </blockquote>
    Correct, but earlier you use the de Broglie wavelength before you
    derive it. Not true?
    <blockquote
      cite="mid:460F80CA-A624-4BB6-B837-D873F2643782@gmail.com"
      type="cite">
      <div class=""><br class="">
      </div>
      <div class="">
        <blockquote type="cite" class=""><span class=""
            style="background-color: rgb(255, 255, 255); display: inline
            !important;">2.) And anyway, for a photon the de Broglie
            wave length is identical the wave length of the phase wave
            as v=c .</span></blockquote>
      </div>
      <div class=""><br class="">
      </div>
      <div class=""> No, the wavelength h/(gamma mc) of the circulating
        charged photon is not identical to the de Broglie wavelength
        h/(gamma mv) of the phase wave. The speed of the circulating
        charged photon is c, while the speed of the moving electron is v
        (less than c)  and the phase velocity of the de Broglie wave is
        c^2/v  (always greater than c)</div>
    </blockquote>
    I understand your arguments so that you first present the charged
    photon with its properties. Its role in the set up of the electron
    comes later and the de Broglie wavelength is derived later. So at
    this point, where the photon is the subject, we can state that the
    de Broglie wave of the <i>photon </i>is identical with the normal
    phase wave of the <i>photon </i>which is formally given by the
    relation v=c, don't we?
    <blockquote
      cite="mid:460F80CA-A624-4BB6-B837-D873F2643782@gmail.com"
      type="cite">
      <div class=""><br class="">
      </div>
      <div class="">
        <blockquote type="cite" class=""><span class=""
            style="background-color: rgb(255, 255, 255); float: none;
            display: inline !important;">Your Figures 2 and 4 assume
            that the circling photon emits a plane wave. Is that
            possible? It means that the wave which just leaves the
            photon with a certain phase is immediately spread out to all
            sides until infinity. Otherwise it is not a </span><i
            class="" style="background-color: rgb(255, 255, 255);">plane </i><span
            class="" style="background-color: rgb(255, 255, 255); float:
            none; display: inline !important;">wave. But if it does so,
            it means an infinite propagation speed to all directions
            perpendicular to the speed vector of the photon. This is in
            my understanding in strong conflict with relativity. (And it
            means also that for an observer in a system moving relative
            to this system there can be a violation of causality. He can
            observe that a part of the plane may exist at a certain
            phase even before this phase is emitted from the photon.) </span><br
            class="" style="background-color: rgb(255, 255, 255);">
          <br class="" style="background-color: rgb(255, 255, 255);">
          <span class="" style="background-color: rgb(255, 255, 255);
            float: none; display: inline !important;">If you assume such
            kind of plane wave then your considerations about the wave
            on the axis caused by the sequence of intercept points are
            applicable. But again:  a plane wave of this kind violates
            causality. </span></blockquote>
      </div>
      <div class=""><br class="">
      </div>
      <div class="">Mathematical plane waves e^i(k dot r-wt)  are
        generally used in practical physics beam experiments all the
        time to model for example a beam of photons in a laser, a beam
        of electrons in an electron scattering experiment, or a beam of
        other particles in a high energy particle collider experiment.
         Plane wave math is a good approximation when the particles are
        all of the same momentum, moving in same direction (past some
        stationary point in the beam) and are basically independent of
        each other in the beam. This is standard practice for
        calculating scattering probability amplitudes in quantum theory.
        And also in practice the plane waves in a particle beam are
        probably not assumed to extend beyond the beam, where there are
        anyway (by definition) no beam particles to scatter. So no
        infinite propagation speeds for producing plane waves are
        assumed in these practical applications of mathematical plane
        waves. The same would be true in charged-photon modeling in
        electron beam experiments.</div>
    </blockquote>
    You are right that a light beam is understood as having a plane
    front perpendicular to the motion of the photons. And correctly you
    mention that such beam is in experiments built by a huge number of
    photons. By the superposition of the single fields it is very
    plausible to assume this plane front. But careful: if we reduce the
    problem to a mathematical one then we do what the Copenhagen QM does
    all day. And I think that no one in our community wants this way. <br>
    <br>
    But questions:<br>
    <br>
    What is about a single photon? At radar systems I have worked with
    it can be measured that in case of a beam, which is kind of
    collimated by an aperture, if one goes away from that beam by more
    than a wavelength, there is nothing any more (except small
    contributions caused by bending). What is about the circling photon?
    What size can be assumed for the photon in the electron? You refer
    to the uncertainty principle. If this causes the photon to be
    smeared out by an amount which is roughly related to the size of the
    orbit (so the size of the electron), how well defined is the
    intercept point where this wave crosses the axis? <br>
    <br>
    I have the impression that we are here on the border between QM (you
    mention Heisenberg) and a classical understanding of this process.
    If we follow quantum mechanics then the electron is a structureless
    point which is surrounded by a cloud of virtual charges. This is
    present understanding of main stream. But I have the impression that
    nobody of us in this round wants to understand particle physics in
    this way.<br>
    <br>
    So, let's stay with the classical understanding. Now the question
    is, what does the wave front if the direction of the photon changes?
    This does normally not happen in experiments, so we don't know it
    from practice. And if the photon continues with speed c, then the
    outer regions of the front have to move with superluminal speed. Is
    this accepted? If in the radar case the beam is redirected by a wave
    guide then the speed is reduced below c, technically reasoned by the
    impedance of the wave guide. <br>
    <blockquote
      cite="mid:460F80CA-A624-4BB6-B837-D873F2643782@gmail.com"
      type="cite">
      <div class=""> The position of a single circulating charged photon
        (i.e. electron with a fixed momentum gamma mv) could not be
        located at all along its helical length, according to
        Heisenberg’s uncertainty principle.  But a long pulse of many
        electrons in a beam of finite width could still be modeled by
        circulating charged photons emanating quantum plane waves at an
        angle theta to the electron beam, where cos(theta)=v/c,  and
        whose projected quantum wave function along the z=axis (beam
        axis) for each electron is the electron's quantum plane wave
        function with the de Broglie wavelength. The superluminal phase
        velocity c^2/v comes in when the wave vector k of these
        charged-photon quantum plane waves at angle theta to the beam,
        intersects the beam direction, generating de Broglie waves along
        the beam direction for each electron, moving with phase velocity
        c^2/v. These phase waves (also as de Broglie described them) are
        not physical waves moving superluminally (which would violate
        relativity). Rather they are (for charged photons) like the
        wave-like motion along a beach when successive parallel waves
        hit a beach at an angle, causing a disturbance that travels up
        the beach at a speed faster than the speed of the waves
        themselves. It is these de Broglie phase waves which predict the
        scattering of the electrons during a collision or scattering
        process.</div>
      <div class=""><br class="">
      </div>
      <div class="">
        <blockquote type="cite" class=""><span class=""
            style="background-color: rgb(255, 255, 255); display: inline
            !important;">You mention further down as a visualization the
            case of a laser moving along the helix. A laser emits indeed
            a sort of a plane wave, however in a limited region given by
            the diameter of the laser's body. This plane wave is the
            result of a superposition of a huge number of photons
            oscillating forth and back in the laser. In contrast to this
            the photon in your model is a point source. If it emits
            waves then those are restricted to the speed of light. So
            they will leave the photon as a cone with a half angle of 45
            degrees. (In acoustics this is called Mach's cone.) If we
            start now to follow this process using this way of
            propagation, we have to look how the cone touches the axis.
            The motion of these intercept points on the axis seems to be
            non-linear, and as further phases follow, there will be an
            overlay of such phases. - Do you think it is worth to follow
            this? I would like to first check whether we find an
            agreement at this point. </span></blockquote>
        <br class="">
      </div>
      <div class="">See above about the limited-width electron beam as
        corresponding to a limited width laser beam.The charged photon's
        quantum plane wave cone half-angle would be 45 degrees only if v
        = c/sqrt(2) and so cos (theta) = 1/sqrt(2) =  0.707 so that
        theta = 45 degrees). The angle theta (your half-angle) in the
        charged photon model can vary between near 90 degrees (very slow
        electrons) and near 0 degrees (for highly relativistic
        electrons).</div>
    </blockquote>
    This is misunderstanding. At this point I do not mean the angle
    built by the relation of v and c, but the cone in which the wave
    front leaves the photon if we have a classical understanding.
    <blockquote
      cite="mid:460F80CA-A624-4BB6-B837-D873F2643782@gmail.com"
      type="cite">
      <div class=""> In the laser (as I understand it) the many coherent
        photons can also be considered as point sources each generating
        plane waves (because the laser intensity can be drastically
        reduced or filtered to one photon at a time without changing
        photon scattering results). The charged photon plane waves will
        be emitted from the circulating charged photon in a cone whose
        circulating k wave vector makes a half angle of theta . This
        cone-sweep at 1/2 angle theta and the intersection of these
        corresponding emitted light-speed plane waves with the
        longitudinal z-axis will generate waves moving superluminally
        along the z=axis which will be the de Broglie waves. I think it
        would be great to have a 3D animation of this, for different
        values of v (and therefore different values of theta).</div>
    </blockquote>
    I do not believe that a laser beam can be reduced so far that only
    one photon is moving inside. This photon has to stimulate the next
    radiation of an atom in the gas, and this is a process of low
    probability in the single case. So I expect that a laser which is
    too much reduced will stop its radiation. And the coherence of the
    radiation is anyway only possible if there is a sufficient density
    of photons. If the laser beam is filtered on the other hand so that
    only single photons are in the beam, these photons are also assumed
    to build an interference pattern at a double slit. My understanding
    to explain this is that a photon is extended in a similar way as the
    electron is extended. Then the tip of the cone which I mentioned
    would not be a sharp peak but a bit flat, and that could be
    sufficient to explain the scattering observed as a bit like a plane.
    <br>
    <br>
    But as I said before: we need a much better understanding of how the
    photon is built in order to use it in your model. At present I have
    even the impression that the photon which we need for this model is
    more complex than the electron which it is supposed to explain.<br>
    <br>
    Best regards<br>
    Albrecht<br>
    <br>
    <blockquote
      cite="mid:460F80CA-A624-4BB6-B837-D873F2643782@gmail.com"
      type="cite">
      <div class=""><br class="">
      </div>
      <div class="">
        <blockquote type="cite" class=""><span class=""
            style="background-color: rgb(255, 255, 255); display: inline
            !important;">I understand that these considerations follow
            again the assumption of a "plane" wave which I do not
            believe to be possible as explained above. So I shall wait
            for your response to that.</span></blockquote>
        <br class="">
      </div>
      <div class="">See the plane-wave reply above for real beams.</div>
      <div class=""><br class="">
      </div>
      <div class="">with best regards,</div>
      <div class="">        Richard</div>
      <div class=""><br class="">
      </div>
      <div class=""><br class="">
      </div>
      <div class=""><br class="">
      </div>
      <div class=""><br class="">
      </div>
      <br class="">
      <div class="">
        <blockquote type="cite" class="">
          <div class="">On Oct 25, 2015, at 6:21 AM, Dr. Albrecht Giese
            <<a moz-do-not-send="true"
              href="mailto:genmail@a-giese.de" class="">genmail@a-giese.de</a>>
            wrote:</div>
          <br class="Apple-interchange-newline">
          <div class=""><span style="font-family: Helvetica; font-size:
              12px; font-style: normal; font-variant: normal;
              font-weight: normal; letter-spacing: normal; line-height:
              normal; orphans: auto; text-align: start; text-indent:
              0px; text-transform: none; white-space: normal; widows:
              auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">Hello Richard,</span><br
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <br style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">thanks for your
              detailed explanation. I think that it becomes more and
              more visible, how difficult it is to visualize such a
              3-dimensional process.<span class="Apple-converted-space"> </span></span><br
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <br style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">I have added some
              further comments below in your text.</span><br
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <br style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <div class="moz-cite-prefix" style="font-family: Helvetica;
              font-size: 12px; font-style: normal; font-variant: normal;
              font-weight: normal; letter-spacing: normal; line-height:
              normal; orphans: auto; text-align: start; text-indent:
              0px; text-transform: none; white-space: normal; widows:
              auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);">Am 23.10.2015 um
              22:41 schrieb Richard Gauthier:<br class="">
            </div>
            <blockquote
              cite="mid:F1DF4916-2B0C-4571-8246-07F9B59977D3@gmail.com"
              type="cite" style="font-family: Helvetica; font-size:
              12px; font-style: normal; font-variant: normal;
              font-weight: normal; letter-spacing: normal; line-height:
              normal; orphans: auto; text-align: start; text-indent:
              0px; text-transform: none; white-space: normal; widows:
              auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
              <div class="">Hello Albrecht (and others)</div>
              <div class=""><br class="">
              </div>
              <div class=""> <span class="Apple-converted-space"> </span>Thank
                for your further comments. You arguments are correct,
                according to how I previously explained the plane waves
                emitted by the charged photon along its helical axis. I
                realized that I misinterpreted and therefore poorly
                explained my own proposed quantum plane wave function
                describing quantum waves coming from the circulating
                charged photon. The left side of Figure 2 is NOT merely
                the mathematically unwrapped helical trajectory of the
                charged photon. It is instead (or in addition) one of
                many “rays” of quantum plane waves emitted continuously
                from the circulating charged photon. </div>
              <div class=""><br class="">
              </div>
              <div class=""> <span class="Apple-converted-space"> </span>The
                circulating charged photon’s proposed quantum plane wave
                function Ae^i(k dot r - wt)  , where k = (gamma mv)/hbar
                and w = (gamma mc^2)/hbar  are the wave vector and the
                angular frequency of the circulating charged photon,
                describes quantum plane waves emitted from the
                circulating charged photon in the direction that the
                charged photon is moving at any point in time.<span
                  class="Apple-converted-space"> </span></div>
            </blockquote>
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">The relation k =
              (gamma mv)/hbar cannot be applicable here, if I understand
              correctly that v is the speed of the electron. If the
              electron is at rest, then v=0 and so</span><br
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class=""> k=0. But for a
              photon k=0 is not possible. It is in permanent motion and
              has energy, which you describe with  w = (gamma mc^2)/hbar
              .<span class="Apple-converted-space"> </span></span><br
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
          </div>
        </blockquote>
        <div class=""><br class="">
        </div>
        <blockquote type="cite" class=""><span class=""
            style="background-color: rgb(255, 255, 255); display: inline
            !important;">1.) Your intention is to derive the de Broglie
            wave length. But you cannot do this by using the validity of
            the de Broglie wave length as a precondition. That would be
            circular reasoning. </span></blockquote>
        <blockquote type="cite" class="">
          <div class=""><br style="font-family: Helvetica; font-size:
              12px; font-style: normal; font-variant: normal;
              font-weight: normal; letter-spacing: normal; line-height:
              normal; orphans: auto; text-align: start; text-indent:
              0px; text-transform: none; white-space: normal; widows:
              auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">Here you try to
              apply the de Broglie wave length to the circling photon
              which you cannot do by two reasons:</span><br
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">1.) Your intention
              is to derive the de Broglie wave length. But you cannot do
              this by using the validity of the de Broglie wave length
              as a precondition. That would be circular reasoning.<span
                class="Apple-converted-space"> </span></span><br
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">2.) And anyway, for
              a photon the de Broglie wave length is identical the wave
              length of the phase wave as v=c .</span>
            <blockquote
              cite="mid:F1DF4916-2B0C-4571-8246-07F9B59977D3@gmail.com"
              type="cite" style="font-family: Helvetica; font-size:
              12px; font-style: normal; font-variant: normal;
              font-weight: normal; letter-spacing: normal; line-height:
              normal; orphans: auto; text-align: start; text-indent:
              0px; text-transform: none; white-space: normal; widows:
              auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
              <div class="">While emitting these quantum plane waves,
                the charged photon curves away on its helical
                trajectory, continuing to emit newer quantum plane waves
                at its own frequency and wavelength. But the quantum
                plane waves previously emitted by the charged photon
                continue in a straight line direction tangent to the
                helical trajectory at the point along the trajectory
                where they were emitted.  Those quantum plane waves
                emitted from the circulating charged photon at one
                location move out into space at light-speed away from
                the charged photon, as indicated by the left side of the
                big triangle in my Figure 2, and in the recently posted
                figure showing 4 wave fronts. Their quantum plane wave
                fronts DO intersect the charged photon’s helical axis
                further along the axis to the right, as shown in the two
                figures, creating de Broglie wavelengths along the
                helical axis.  And these de Broglie wavelengths DO
                travel away to the right along the helical axis at the
                phase velocity c^2/v because their speed is (from the
                geometry shown in Figure 2) Vphase = speed of charged
                photon / cos(theta)  =    c/cos(theta) = c/(v/c) = c^2/v
                .</div>
            </blockquote>
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">Your Figures 2 and 4
              assume that the circling photon emits a plane wave. Is
              that possible? It means that the wave which just leaves
              the photon with a certain phase is immediately spread out
              to all sides until infinity. Otherwise it is not a<span
                class="Apple-converted-space"> </span></span><i
              style="font-family: Helvetica; font-size: 12px;
              font-variant: normal; font-weight: normal; letter-spacing:
              normal; line-height: normal; orphans: auto; text-align:
              start; text-indent: 0px; text-transform: none;
              white-space: normal; widows: auto; word-spacing: 0px;
              -webkit-text-stroke-width: 0px; background-color: rgb(255,
              255, 255);" class="">plane<span
                class="Apple-converted-space"> </span></i><span
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">wave. But if it does
              so, it means an infinite propagation speed to all
              directions perpendicular to the speed vector of the
              photon. This is in my understanding in strong conflict
              with relativity. (And it means also that for an observer
              in a system moving relative to this system there can be a
              violation of causality. He can observe that a part of the
              plane may exist at a certain phase even before this phase
              is emitted from the photon.)<span
                class="Apple-converted-space"> </span></span><br
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <br style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">If you assume such
              kind of plane wave then your considerations about the wave
              on the axis caused by the sequence of intercept points are
              applicable. But again:  a plane wave of this kind violates
              causality.<span class="Apple-converted-space"> </span></span><br
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <br style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">You mention further
              down as a visualization the case of a laser moving along
              the helix. A laser emits indeed a sort of a plane wave,
              however in a limited region given by the diameter of the
              laser's body. This plane wave is the result of a
              superposition of a huge number of photons oscillating
              forth and back in the laser. In contrast to this the
              photon in your model is a point source. If it emits waves
              then those are restricted to the speed of light. So they
              will leave the photon as a cone with a half angle of 45
              degrees. (In acoustics this is called Mach's cone.) If we
              start now to follow this process using this way of
              propagation, we have to look how the cone touches the
              axis. The motion of these intercept points on the axis
              seems to be non-linear, and as further phases follow,
              there will be an overlay of such phases. - Do you think it
              is worth to follow this? I would like to first check
              whether we find an agreement at this point.<span
                class="Apple-converted-space"> </span></span><br
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <blockquote
              cite="mid:F1DF4916-2B0C-4571-8246-07F9B59977D3@gmail.com"
              type="cite" style="font-family: Helvetica; font-size:
              12px; font-style: normal; font-variant: normal;
              font-weight: normal; letter-spacing: normal; line-height:
              normal; orphans: auto; text-align: start; text-indent:
              0px; text-transform: none; white-space: normal; widows:
              auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
              <div class=""><br class="">
              </div>
              <div class=""> <span class="Apple-converted-space"> </span>All
                these emitted quantum plane waves from the charged
                photon, described above by Ae^i(k dot r - wt) ,
                intersect the helical axis, as described by the derived
                relativistic de Broglie matter-wave function A^i(Kdb z
                -wt)  where Kdb is the wave number corresponding to the
                de Broglie wavelength Ldb = h/(gamma mv). So Kdb =2pi
                /Ldb = (gamma mv)/hbar , and w =(gamma mc^2)/hbar  the
                angular frequency of the charged photon, corresponding
                to f=(gamma mc^2)/h  as before.</div>
            </blockquote>
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">I understand that
              these considerations follow again the assumption of a
              "plane" wave which I do not believe to be possible as
              explained above. So I shall wait for your response to
              that.</span>
            <blockquote
              cite="mid:F1DF4916-2B0C-4571-8246-07F9B59977D3@gmail.com"
              type="cite" style="font-family: Helvetica; font-size:
              12px; font-style: normal; font-variant: normal;
              font-weight: normal; letter-spacing: normal; line-height:
              normal; orphans: auto; text-align: start; text-indent:
              0px; text-transform: none; white-space: normal; widows:
              auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
              <div class=""><br class="">
              </div>
              <div class=""> <span class="Apple-converted-space"> </span>This
                process can roughly be compared to a broad plane-wave
                beam emitted from a laser while the laser moves along a
                helical trajectory, directing its beam in new directions
                as the laser moves along its helical path. The parallel
                waves fronts from the laser intersect the axis and
                generate one de Broglie-like wavelength along the axis
                for each photon wavelength coming from the laser.<span
                  class="Apple-converted-space"> </span><br class="">
              </div>
            </blockquote>
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">For the laser
              example please see above.</span><br style="font-family:
              Helvetica; font-size: 12px; font-style: normal;
              font-variant: normal; font-weight: normal; letter-spacing:
              normal; line-height: normal; orphans: auto; text-align:
              start; text-indent: 0px; text-transform: none;
              white-space: normal; widows: auto; word-spacing: 0px;
              -webkit-text-stroke-width: 0px; background-color: rgb(255,
              255, 255);" class="">
            <br style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">Best regards</span><br
              style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <span style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255); float: none;
              display: inline !important;" class="">Albrecht</span>
            <blockquote
              cite="mid:F1DF4916-2B0C-4571-8246-07F9B59977D3@gmail.com"
              type="cite" style="font-family: Helvetica; font-size:
              12px; font-style: normal; font-variant: normal;
              font-weight: normal; letter-spacing: normal; line-height:
              normal; orphans: auto; text-align: start; text-indent:
              0px; text-transform: none; white-space: normal; widows:
              auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
              <div class=""><br class="">
              </div>
              <div class="">   Does this new explanation answer your
                fundamental objection?</div>
              <div class=""><br class="">
              </div>
              <div class="">with best regards,</div>
              <div class="">     <span class="Apple-converted-space"> </span>Richard</div>
              .<br class="">
              <div class="">
                <blockquote type="cite" class="">
                  <div class="">On Oct 22, 2015, at 10:18 AM, Dr.
                    Albrecht Giese <<a moz-do-not-send="true"
                      href="mailto:genmail@a-giese.de" class="">genmail@a-giese.de</a>>
                    wrote:</div>
                  <br class="Apple-interchange-newline">
                  <div class="">
                    <div text="#000000" bgcolor="#FFFFFF" class="">Hello
                      Richard,<br class="">
                      <br class="">
                      thank you and see my comments below.<br class="">
                      <br class="">
                      <div class="moz-cite-prefix">Am 22.10.2015 um
                        00:32 schrieb Richard Gauthier:<br class="">
                      </div>
                      <blockquote
                        cite="mid:3BF40319-FF10-493F-8966-13FF1FC5FFCE@gmail.com"
                        type="cite" class="">
                        <div class="">Hello Albert (and all),</div>
                        <div class=""><br class="">
                        </div>
                        <div class=""> I think your fundamental
                          objection that you mentioned earlier can be
                          answered below.</div>
                        <div class=""><br class="">
                        </div>
                        <div class=""> The left side of the big triangle
                          in Figure 2 in my article is a purely
                          mathematical unfolding of the path of the
                          helical trajectory, to hopefully show more
                          clearly the generation of de Broglie
                          wavelengths from plane waves emitted by the
                          actual charged photon moving along the helical
                          trajectory. Nothing is actually moving off
                          into space along this line.</div>
                        <div class=""><br class="">
                        </div>
                        <div class=""> Consider an electron moving with
                          velocity v horizontally along the helical
                          axis. Since in Figure 2 in my article, cos
                          (theta) = v/c , the corresponding velocity of
                          the charged photon along the helical path is
                          v/ cos(theta) = c , the speed of the charged
                          photon, which we knew already because the
                          helical trajectory was defined so that this is
                          the case. In a short time T, the electron has
                          moved a distance Delectron = vT horizontally
                          and the photon has moved a distance Dphoton =
                          Delectron/cos(theta) =vT/cos(theta) = cT along
                          its helical trajectory.</div>
                      </blockquote>
                      I agree.
                      <blockquote
                        cite="mid:3BF40319-FF10-493F-8966-13FF1FC5FFCE@gmail.com"
                        type="cite" class="">
                        <div class="">A plane wave front emitted from
                          the photon at the distance Dphoton = cT along
                          the photon’s helical path will intersect the
                          base of the big triangle (the helical axis) at
                          the distance along the base given by
                          Dwavefront = Dphoton / cos(theta) = cT/ (v/c)
                          = T *  (c^2)/v  which means the intersection
                          point of the plane wave with the helical axis
                          is moving with a speed c^2/v which is the de
                          Broglie wave’s phase velocity.<span
                            class="Apple-converted-space"> </span></div>
                      </blockquote>
                      Here I disagree. If we assume the wave front as an
                      extended layer through the photon and with an
                      orientation perpendicular to the actual direction
                      of the photon, then the intersect point of this
                      layer with the axis has the same z coordinate as
                      the z-component of the photon's position. This is
                      essential. (I have built myself a little 3-d model
                      to see this.)<br class="">
                      <br class="">
                      When now, say at time T<sub class="">0</sub>, a
                      phase maximum of the wave front leaves the photon,
                      then the same phase maximum passes the intersect
                      point on the axis with the same z coordinate.
                      After a while (i.e. after the time T<sub class="">p</sub>=1/frequency)
                      the next phase maximum will exit from the photon
                      and simultaneously the next phase maximum will
                      cross the axis. The new z-value (of the photon and
                      of the intersect point) is now displaced from the
                      old one by the amount delta_z = v * T<sub class="">p</sub>.
                      During this time the photon will have moved by c *
                      T<sub class="">p</sub><span
                        class="Apple-converted-space"> </span>on its
                      helical path.<br class="">
                      <br class="">
                      Now the spacial distance between these two phase
                      maxima, which is the wavelength, is: lambda<sub
                        class="">photon</sub><span
                        class="Apple-converted-space"> </span>= c * T<sub
                        class="">p</sub>, and lambda<sub class="">electron</sub><span
                        class="Apple-converted-space"> </span>= v * T<sub
                        class="">p</sub>.<span
                        class="Apple-converted-space"> </span><br
                        class="">
                      <br class="">
                      This is my result. Or what (which detail) is
                      wrong?<br class="">
                      <br class="">
                      best wishes<br class="">
                      Albrecht<br class="">
                      <br class="">
                      <br class="">
                      <blockquote
                        cite="mid:3BF40319-FF10-493F-8966-13FF1FC5FFCE@gmail.com"
                        type="cite" class="">
                        <div class="">The length of the de Broglie wave
                          itself as shown previously from Figure 2 is
                          Ldb =  Lambda-photon / cos(theta) = h/(gamma
                          mc) / (v/c) = h/(gamma mv). So as the electron
                          moves with velocity v along the z-axis, de
                          Broglie waves of length h/(gamma mv) produced
                          along the z-axis are moving with velocity
                          c^2/v along the z-axis. The de Broglie waves
                          created by the circulating charged photon will
                          speed away from the electron (but more will be
                          produced) to take their place, one de Broglie
                          wave during each period of the circulating
                          charged photon (corresponding to the moving
                          electron). As mentioned previously, the period
                          of the circulating charged photon is 1/f =
                          1/(gamma mc^2/h) = h/(gamma mc^2/). As the
                          electron speeds up (v and gamma increase) the
                          de Broglie wavelengths h/(gamma mv) are
                          shorter and move more slowly, following the
                          speed formula c^2/v .</div>
                        <div class=""><br class="">
                        </div>
                        <br class="">
                        <fieldset class="mimeAttachmentHeader"></fieldset>
                        <br class="">
                        <div class="">Unpublished graphic showing the
                          generation of de Broglie waves from a moving
                          charged photon along its helical trajectory.
                          The corresponding moving electron is the red
                          dot moving to the right on the red line. The
                          charged photon is the blue dot moving at light
                          speed along the helix.The blue dot has moves a
                          distance of one charged photon wavelength
                          h/(gamma mc) along the helix from the left
                          corner of the diagram On the left diagonal
                          line (representing the mathematically unrolled
                          helix), the blue dots correspond to
                          separations of 1 charged photon h/(gamma mc)
                          wavelength along the helical axis. In this
                          graphic, v/c = 0.5 so cos(theta)= 0.5 and
                          theta= 60 degrees. The group velocity is c^2/v
                          = c^2/0.5c = 2 c, the speed of the de Broglie
                          waves along the horizontal axis . The
                          distances between the intersection points on
                          the horizontal line each correspond to 1 de
                          Broglie wavelength, which in this example
                          where v=0.5 c  is h(gamma mv) = 2 x charged
                          photon wavelength h/(gamma mc).</div>
                        <div class=""><br class="">
                        </div>
                        <div class=""> <span
                            class="Apple-converted-space"> </span>It is
                          true that when the electron is at rest, the
                          wave fronts emitted by the circulating charged
                          photon all pass through the center of the
                          circular path of the charged photon and do not
                          intersect any helical axis, because no helical
                          axis is defined for a resting electron, i.e.
                          the pitch of the helix of the circulating
                          charged photon is zero. For a very slowly
                          moving electron, the pitch of the helix of the
                          circulating charged photon is very small but
                          non-zero, but the de Broglie wavelength is
                          very large, much larger than the helical
                          pitch. Perhaps you are confusing these two
                          lengths — the helical pitch of the circulating
                          charged photon and the de Broglie wavelength
                          generated by the wave fronts emitted by the
                          circulating charged photon. The pitch of the
                          helix starts at zero (for v=0 of the electron)
                          and reaches a maximum when the speed of the
                          electron is c/sqrt(2) and theta = 45 degrees
                          (see my charged photon paper) and then the
                          helical pitch decreases towards zero as the
                          speed of the electron further increases
                          towards the speed of light. But the de Broglie
                          wavelength Ldb starts very large (when the
                          electron is moving very slowly) and decreases
                          uniformly towards zero as the speed of the
                          electron increases, as given by Ldb = h/gamma
                          mv. It is the de Broglie wavelength generated
                          by the charged photon that has predictive
                          physical significance in diffraction and
                          double-slit experiments while the helical
                          pitch of the charged photon’s helical
                          trajectory has no current predictive physical
                          significance (though if experimental
                          predictions based on the helical pitch could
                          be made, this could be a test of the charged
                          photon model).</div>
                        <div class=""><br class="">
                        </div>
                        <div class="">   I don’t have any comments yet
                          on your concerns about the de Broglie
                          wavelength that you just expressed to John W
                          (below).</div>
                        <div class=""><br class="">
                        </div>
                        <div class="">       <span
                            class="Apple-converted-space"> </span>all
                          the best,</div>
                        <div class="">           <span
                            class="Apple-converted-space"> </span>Richard</div>
                        <br class="">
                        <div class="">
                          <blockquote type="cite" class="">
                            <div class="">On Oct 21, 2015, at 12:42 PM,
                              Dr. Albrecht Giese <<a
                                moz-do-not-send="true"
                                href="mailto:genmail@a-giese.de"
                                class=""><a class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de">genmail@a-giese.de</a></a>>
                              wrote:</div>
                            <br class="Apple-interchange-newline">
                            <div class=""><small class=""
                                style="font-family: Helvetica;
                                font-style: normal; font-variant:
                                normal; font-weight: normal;
                                letter-spacing: normal; line-height:
                                normal; orphans: auto; text-align:
                                start; text-indent: 0px; text-transform:
                                none; white-space: normal; widows: auto;
                                word-spacing: 0px;
                                -webkit-text-stroke-width: 0px;
                                background-color: rgb(255, 255, 255);">Dear
                                John W and all,<br class="">
                                <br class="">
                                about the<span
                                  class="Apple-converted-space"> </span><u
                                  class="">de Broglie wave</u>:<br
                                  class="">
                                <br class="">
                                There are a lot of elegant derivations
                                for the de Broglie wave length, that is
                                true. Mathematical deductions. What is
                                about the physics behind it?<br class="">
                                <br class="">
                                De Broglie derived this wave in his
                                first paper in the intention to explain,
                                why the internal frequency in a moving
                                electron is dilated, but this frequency
                                on the other hand has to be increased
                                for an external observer to reflect the
                                increase of energy. To get a result, he
                                invented a "fictitious wave" which has
                                the phase speed c/v, where v is the
                                speed of the electron. And he takes care
                                to synchronize this wave with the
                                internal frequency of the electron. That
                                works and can be used to describe the
                                scattering of the electron at the double
                                slit.  -  But is this physical
                                understanding? De Broglie himself stated
                                that this solution does not fulfil the
                                expectation in a "complete theory". Are
                                we any better today?<br class="">
                                <br class="">
                                Let us envision the following situation.
                                An electron moves at moderate speed, say
                                0.1*c (=> gamma=1.02) . An observer
                                moves parallel to the electron. What
                                will the observer see or measure?<span
                                  class="Apple-converted-space"> </span><br
                                  class="">
                                The internal frequency of the electron
                                will be observed by him as frequency = m<sub
                                  class="">0</sub>*c<sup class="">2</sup>/h
                                , because in the observer's system the
                                electron is at rest. The wave length of
                                the wave leaving the electron (e.g. in
                                the model of a circling photon) is now
                                not exactly  lambda<sub class="">1</sub><span
                                  class="Apple-converted-space"> </span>=
                                c/frequency , but a little bit larger as
                                the rulers of the observer are a little
                                bit contracted (by gamma = 1.02), so
                                this is a small effect. What is now
                                about the phase speed of the de Broglie
                                wave? For an observer at rest it must be
                                quite large as it is extended by the
                                factor c/v  which is 10. For the
                                co-moving observer it is mathematically
                                infinite (in fact he will see a constant
                                phase). This is not explained by the
                                time dilation (=2%), so not compatible.
                                And what about the de Broglie wave
                                length? For the co-moving observer, who
                                is at rest in relation to the electron,
                                it is lambda<sub class="">dB</sub><span
                                  class="Apple-converted-space"> </span>=
                                h/(1*m*0), which is again infinite or at
                                least extremely large.  For the observer
                                at rest there is lambda<sub class="">dB</sub><span
                                  class="Apple-converted-space"> </span>=
                                h/(1.02*m*0.1c) . Also not comparable to
                                the co-moving observer.<br class="">
                                <br class="">
                                To summarize: these differences are not
                                explained by the normal SR effects. So,
                                how to explain these incompatible
                                results?<br class="">
                                <br class="">
                                Now let's assume, that the electron
                                closes in to the double slit. Seen from
                                the co-moving observer, the double slit
                                arrangement moves towards him and the
                                electron. What are now the parameters
                                which will determine the scattering? The
                                (infinite) de Broglie wave length? The
                                phase speed which is 10*c ? Remember:
                                For the co-moving observer the electron
                                does not move. Only the double slit
                                moves and the screen behind the double
                                slit will be ca. 2% closer than in the
                                standard case. But will that be a real
                                change?<br class="">
                                <br class="">
                                I do not feel that this is a situation
                                which in physically understood.<br
                                  class="">
                                <br class="">
                                Regards<br class="">
                                Albrecht<br class="">
                              </small><br class="" style="font-family:
                                Helvetica; font-size: 12px; font-style:
                                normal; font-variant: normal;
                                font-weight: normal; letter-spacing:
                                normal; line-height: normal; orphans:
                                auto; text-align: start; text-indent:
                                0px; text-transform: none; white-space:
                                normal; widows: auto; word-spacing: 0px;
                                -webkit-text-stroke-width: 0px;
                                background-color: rgb(255, 255, 255);">
                              <br class="" style="font-family:
                                Helvetica; font-size: 12px; font-style:
                                normal; font-variant: normal;
                                font-weight: normal; letter-spacing:
                                normal; line-height: normal; orphans:
                                auto; text-align: start; text-indent:
                                0px; text-transform: none; white-space:
                                normal; widows: auto; word-spacing: 0px;
                                -webkit-text-stroke-width: 0px;
                                background-color: rgb(255, 255, 255);">
                              <div class="moz-cite-prefix"
                                style="font-family: Helvetica;
                                font-size: 12px; font-style: normal;
                                font-variant: normal; font-weight:
                                normal; letter-spacing: normal;
                                line-height: normal; orphans: auto;
                                text-align: start; text-indent: 0px;
                                text-transform: none; white-space:
                                normal; widows: auto; word-spacing: 0px;
                                -webkit-text-stroke-width: 0px;
                                background-color: rgb(255, 255, 255);">Am
                                21.10.2015 um 16:34 schrieb John
                                Williamson:<br class="">
                              </div>
                              <blockquote
cite="mid:7DC02B7BFEAA614DA666120C8A0260C914714222@CMS08-01.campus.gla.ac.uk"
                                type="cite" class="" style="font-family:
                                Helvetica; font-size: 12px; font-style:
                                normal; font-variant: normal;
                                font-weight: normal; letter-spacing:
                                normal; line-height: normal; orphans:
                                auto; text-align: start; text-indent:
                                0px; text-transform: none; white-space:
                                normal; widows: auto; word-spacing: 0px;
                                -webkit-text-stroke-width: 0px;
                                background-color: rgb(255, 255, 255);">
                                <div class="" style="direction: ltr;
                                  font-family: Tahoma; font-size: 10pt;">Dear
                                  all,<br class="">
                                  <br class="">
                                  The de Broglie wavelength is best
                                  understood, in my view, in one of two
                                  ways. Either read de Broglies thesis
                                  for his derivation (if you do not read
                                  french, Al has translated it and it is
                                  available online). Alternatively
                                  derive it yourself. All you need to do
                                  is consider the interference between a
                                  standing wave in one (proper frame) as
                                  it transforms to other relativistic
                                  frames. That is standing-wave
                                  light-in-a-box. This has been done by
                                  may folk, many times. Martin did it
                                  back in 1991. It is in our 1997 paper.
                                  One of the nicest illustrations I have
                                  seen is that of John M - circulated to
                                  all of you earlier in this series.<br
                                    class="">
                                  <br class="">
                                  It is real, and quite simple.<br
                                    class="">
                                  <br class="">
                                  Regards, John.<br class="">
                                  <div class="" style="font-family:
                                    'Times New Roman'; font-size: 16px;">
                                    <hr tabindex="-1" class="">
                                    <div id="divRpF555421" class=""
                                      style="direction: ltr;"><font
                                        class="" size="2" face="Tahoma"><b
                                          class="">From:</b><span
                                          class="Apple-converted-space"> </span>General
                                        [<a moz-do-not-send="true"
                                          class="moz-txt-link-abbreviated"
href="mailto:general-bounces+john.williamson=glasgow.ac.uk@lists.natureoflightandparticles.org">general-bounces+john.williamson=glasgow.ac.uk@lists.natureoflightandparticles.org</a>]
                                        on behalf of Dr. Albrecht Giese
                                        [<a moz-do-not-send="true"
                                          class="moz-txt-link-abbreviated"
href="mailto:genmail@a-giese.de">genmail@a-giese.de</a>]<br class="">
                                        <b class="">Sent:</b><span
                                          class="Apple-converted-space"> </span>Wednesday,
                                        October 21, 2015 3:14 PM<br
                                          class="">
                                        <b class="">To:</b><span
                                          class="Apple-converted-space"> </span>Richard
                                        Gauthier<br class="">
                                        <b class="">Cc:</b><span
                                          class="Apple-converted-space"> </span>Nature
                                        of Light and Particles - General
                                        Discussion; David Mathes<br
                                          class="">
                                        <b class="">Subject:</b><span
                                          class="Apple-converted-space"> </span>Re:
                                        [General] research papers<br
                                          class="">
                                      </font><br class="">
                                    </div>
                                    <div class="">Hello Richard,<br
                                        class="">
                                      <br class="">
                                      thanks for your detailed
                                      explanation. But I have a
                                      fundamental objection.<br class="">
                                      <br class="">
                                      Your figure 2 is unfortunately
                                      (but unavoidably) 2-dimensional,
                                      and that makes a difference to the
                                      reality as I understand it.<span
                                        class="Apple-converted-space"> </span><br
                                        class="">
                                      <br class="">
                                      In your model the charged electron
                                      moves on a helix around the axis
                                      of the electron (or equivalently
                                      the axis of the helix). That means
                                      that the electron has a constant
                                      distance to this axis. Correct?
                                      But in the view of your figure 2
                                      the photon seems to start on the
                                      axis and moves away from it
                                      forever. In this latter case the
                                      wave front would behave as you
                                      write it.<span
                                        class="Apple-converted-space"> </span><br
                                        class="">
                                      <br class="">
                                      Now, in the case of a constant
                                      distance, the wave front as well
                                      intersects the axis, that is true.
                                      But this intersection point moves
                                      along the axis at the projected
                                      speed of the photon to this axis.
                                      - You can consider this also in
                                      another way. If the electron moves
                                      during a time, say T1, in the
                                      direction of the axis, then the
                                      photon will during this time T1
                                      move a longer distance, as the
                                      length of the helical path (call
                                      it L)  is of course longer than
                                      the length of the path of the
                                      electron during this time (call it
                                      Z). Now you will during the time
                                      T1 have a number of waves (call
                                      this N) on the helical path L. On
                                      the other hand, the number of
                                      waves on the length Z has also to
                                      be N. Because otherwise after an
                                      arbitrary time the whole situation
                                      would diverge. As now Z is smaller
                                      than L, the waves on the axis have
                                      to be shorter. So, not the de
                                      Broglie wave length. That is my
                                      understanding.<span
                                        class="Apple-converted-space"> </span><br
                                        class="">
                                      <br class="">
                                      In my present view, the de Broglie
                                      wave length has no immediate
                                      correspondence in the physical
                                      reality. I guess that the success
                                      of de Broglie in using this wave
                                      length may be understandable if we
                                      understand in more detail, what
                                      happens in the process of
                                      scattering of an electron at the
                                      double (or multiple) slits.<br
                                        class="">
                                      <br class="">
                                      Best wishes<br class="">
                                      Albrecht<br class="">
                                      <br class="">
                                      <br class="">
                                      <div class="moz-cite-prefix">Am
                                        21.10.2015 um 06:28 schrieb<span
                                          class="Apple-converted-space"> </span><br
                                          class="">
                                        Richard Gauthier:<br class="">
                                      </div>
                                      <blockquote type="cite" class="">
                                        <div class="">Hello Albrecht,</div>
                                        <div class=""><br class="">
                                        </div>
                                        <div class="">   Thank you for
                                          your effort to understand the
                                          physical process described
                                          geometrically in my Figure 2.
                                          You have indeed misunderstood
                                          the Figure as you suspected.
                                          The LEFT upper side of the big
                                          90-degree triangle is one
                                          wavelength h/(gamma mc) of the
                                          charged photon, mathematically
                                          unrolled from its two-turned
                                          helical shape (because of the
                                          double-loop model of the
                                          electron) so that its full
                                          length h/(gamma mc) along the
                                          helical trajectory can be
                                          easily visualized. The emitted
                                          wave fronts described in my
                                          article are perpendicular to
                                          this mathematically unrolled
                                          upper LEFT side of the
                                          triangle (because the plane
                                          waves emitted by the charged
                                          photon are directed along the
                                          direction of the helix when it
                                          is coiled (or mathematically
                                          uncoiled), and the plane wave
                                          fronts are perpendicular to
                                          this direction). The upper
                                          RIGHT side of the big
                                          90-degree triangle corresponds
                                          to one of the plane wave
                                          fronts (of constant phase
                                          along the wave front) emitted
                                          at one wavelength lambda =
                                          h/(gamma mc) of the helically
                                          circulating charged photon.
                                          The length of the horizontal
                                          base of the big 90-degree
                                          triangle, defined by where
                                          this upper RIGHT side of the
                                          triangle (the generated plane
                                          wave front from the charged
                                          photon) intersects the
                                          horizontal axis of the
                                          helically-moving charged
                                          photon, is the de Broglie
                                          wavelength h/(gamma mv) of the
                                          electron model (labeled in the
                                          diagram). By geometry the
                                          length (the de Broglie
                                          wavelength) of this horizontal
                                          base of the big right triangle
                                          in the Figure is equal to the
                                          top left side of the triangle
                                          (the photon wavelength
                                          h/(gamma mc) divided (not
                                          multiplied) by cos(theta) =
                                          v/c because we are calculating
                                          the hypotenuse of the big
                                          right triangle starting from
                                          the upper LEFT side of this
                                          big right triangle, which is
                                          the adjacent side of the big
                                          right triangle making an angle
                                          theta with the hypotenuse. </div>
                                        <div class=""><br class="">
                                        </div>
                                        <div class="">   What you called
                                          the projection of the charged
                                          photon’s wavelength h/(gamma
                                          mc) onto the horizontal axis
                                          is actually just the distance
                                          D that the electron has moved
                                          with velocity v along the
                                          x-axis in one period T of the
                                          circulating charged photon.
                                          That period T equals 1/f =
                                          1/(gamma mc^2/h) = h/(gamma
                                          mc^2). By the geometry in the
                                          Figure, that distance D is the
                                          adjacent side of the smaller
                                          90-degree triangle in the left
                                          side of the Figure, making an
                                          angle theta with cT,  the
                                          hypotenuse of that smaller
                                          triangle, and so D = cT cos
                                          (theta) = cT x v/c = vT , the
                                          distance the electron has
                                          moved to the right with
                                          velocity v in the time T. In
                                          that same time T one de
                                          Broglie wavelength has been
                                          generated along the horizontal
                                          axis of the circulating
                                          charged photon. </div>
                                        <div class=""><br class="">
                                        </div>
                                        <div class="">   I will answer
                                          your question about the double
                                          slit in a separate e-mail.</div>
                                        <div class=""><br class="">
                                        </div>
                                        <div class="">       <span
                                            class="Apple-converted-space"> </span>all
                                          the best,</div>
                                        <div class="">           <span
                                            class="Apple-converted-space"> </span>Richard</div>
                                        <br class="">
                                        <div class="">
                                          <blockquote type="cite"
                                            class="">
                                            <div class="">On Oct 20,
                                              2015, at 10:06 AM, Dr.
                                              Albrecht Giese <<a
                                                moz-do-not-send="true"
                                                class="moz-txt-link-abbreviated"
href="mailto:genmail@a-giese.de"><a class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de">genmail@a-giese.de</a></a>> wrote:</div>
                                            <br
                                              class="Apple-interchange-newline">
                                            <div class="">
                                              <div bgcolor="#FFFFFF"
                                                class="">Hello Richard,<br
                                                  class="">
                                                <br class="">
                                                thank you for your
                                                explanations. I would
                                                like to ask further
                                                questions and will place
                                                them into the text
                                                below.<br class="">
                                                <br class="">
                                                <div
                                                  class="moz-cite-prefix">Am
                                                  19.10.2015 um 20:08
                                                  schrieb Richard
                                                  Gauthier:<br class="">
                                                </div>
                                                <blockquote type="cite"
                                                  class="">
                                                  <div class="">Hello
                                                    Albrecht,</div>
                                                  <div class=""><br
                                                      class="">
                                                  </div>
                                                  <div class="">   <span
class="Apple-converted-space"> </span>Thank your for your detailed
                                                    questions about my
                                                    electron model,
                                                    which I will answer
                                                    as best as I can. </div>
                                                  <div class=""><br
                                                      class="">
                                                  </div>
                                                  <div class="">     My
                                                    approach of using
                                                    the formula
                                                    e^i(k*r-wt)    =
                                                     e^i (k dot r minus
                                                    omega t)  for a
                                                    plane wave emitted
                                                    by charged photons
                                                    is also used for
                                                    example in the
                                                    analysis of x-ray
                                                    diffraction from
                                                    crystals when you
                                                    have many incoming
                                                    parallel photons in
                                                    free space moving in
                                                    phase in a plane
                                                    wave. Please see for
                                                    example <font
                                                      class="" size="2"><a
moz-do-not-send="true" class="moz-txt-link-freetext"
                                                        href="http://www.pa.uky.edu/%7Ekwng/phy525/lec/lecture_2.pdf"><a class="moz-txt-link-freetext" href="http://www.pa.uky.edu/~kwng/phy525/lec/lecture_2.pdf">http://www.pa.uky.edu/~kwng/phy525/lec/lecture_2.pdf</a></a></font> .
                                                    When Max Born
                                                    studied electron
                                                    scattering using
                                                    quantum mechanics
                                                    (where he used
                                                    PHI*PHI of the
                                                    quantum wave
                                                    functions to predict
                                                    the electron
                                                    scattering
                                                    amplitudes), he also
                                                    described the
                                                    incoming electrons
                                                    as a plane wave
                                                    moving forward with
                                                    the de Broglie
                                                    wavelength towards
                                                    the target. I think
                                                    this is the general
                                                    analytical procedure
                                                    used in scattering
                                                    experiments.  In my
                                                    charged photon model
                                                    the helically
                                                    circulating charged
                                                    photon,
                                                    corresponding to a
                                                    moving electron, is
                                                    emitting a plane
                                                    wave of wavelength
                                                    lambda = h/(gamma
                                                    mc) and frequency
                                                    f=(gamma mc^2)/h
                                                     along the direction
                                                    of its helical
                                                    trajectory, which
                                                    makes a forward
                                                    angle theta with the
                                                    helical axis given
                                                    by cos (theta)=v/c.
                                                    Planes of constant
                                                    phase emitted from
                                                    the charged photon
                                                    in this way
                                                    intersect the
                                                    helical axis of the
                                                    charged photon. When
                                                    a charged photon has
                                                    traveled one
                                                    relativistic
                                                    wavelength lambda =
                                                    h/(gamma mc) along
                                                    the helical axis,
                                                    the intersection
                                                    point of this wave
                                                    front with the
                                                    helical axis has
                                                    traveled (as seen
                                                    from the geometry of
                                                    Figure 2 in my
                                                    charged photon
                                                    article) a distance
                                                    lambda/cos(theta) =
                                                     lambda / (v/c) =
                                                    h/(gamma mv)  i.e
                                                    the relativistic de
                                                    Broglie wavelength
                                                    along the helical
                                                    axis.</div>
                                                </blockquote>
                                                Here I have a question
                                                with respect to your
                                                Figure 2. The circling
                                                charged photon is
                                                accompanied by a wave
                                                which moves at any
                                                moment in the direction
                                                of the photon on its
                                                helical path. This wave
                                                has its normal
                                                wavelength in the
                                                direction along this
                                                helical path. But if now
                                                this wave is projected
                                                onto the axis of the
                                                helix, which is the axis
                                                of the moving electron,
                                                then the projected wave
                                                will be shorter than the
                                                original one. So the
                                                equation will not be 
                                                lambda<sub class="">deBroglie</sub><span
class="Apple-converted-space"> </span>= lambda<sub class="">photon</sub><span
class="Apple-converted-space"> </span>/ cos theta , but: lambda<sub
                                                  class="">deBroglie</sub><span
class="Apple-converted-space"> </span>= lambda<sub class="">photon</sub><span
class="Apple-converted-space"> </span>* cos theta . The result will not
                                                be the (extended) de
                                                Broglie wave but a
                                                shortened wave. Or do I
                                                completely misunderstand
                                                the situation here?<br
                                                  class="">
                                                <br class="">
                                                Or let's use another
                                                view to the process.
                                                Lets imagine a
                                                scattering process of
                                                the electron at a double
                                                slit. This was the
                                                experiment where the de
                                                Broglie wavelength
                                                turned out to be
                                                helpful.<span
                                                  class="Apple-converted-space"> </span><br
                                                  class="">
                                                So, when now the
                                                electron, and that means
                                                the cycling photon,
                                                approaches the slits, it
                                                will approach at a slant
                                                angle theta at the layer
                                                which has the slits. Now
                                                assume the momentary
                                                phase such that the wave
                                                front reaches two slits
                                                at the same time (which
                                                means that the photon at
                                                this moment moves
                                                downwards or upwards,
                                                but else straight with
                                                respect to the azimuth).
                                                This situation is
                                                similar to the front
                                                wave of a<span
                                                  class="Apple-converted-space"> </span><i
                                                  class="">single</i><span
class="Apple-converted-space"> </span>normal photon which moves upwards
                                                or downwards by an angle
                                                theta. There is now no
                                                phase difference between
                                                the right and the left
                                                slit. Now the question
                                                is whether this
                                                coming-down (or -up)
                                                will change the temporal
                                                sequence of the phases
                                                (say: of the maxima of
                                                the wave). This distance
                                                (by time or by length)
                                                determines at which
                                                angle the next
                                                interference maxima to
                                                the right or to the left
                                                will occur behind the
                                                slits.<span
                                                  class="Apple-converted-space"> </span><br
                                                  class="">
                                                <br class="">
                                                To my understanding the
                                                temporal distance will
                                                be the same distance as
                                                of wave maxima on the
                                                helical path of the
                                                photon, where the latter
                                                is  lambda<sub class="">1</sub><span
class="Apple-converted-space"> </span>= c / frequency; frequency =
                                                (gamma*mc<sup class="">2</sup>)
                                                / h. So, the geometric
                                                distance of the wave
                                                maxima passing the slits
                                                is   lambda<sub class="">1</sub><span
class="Apple-converted-space"> </span>= c*h / (gamma*mc<sup class="">2</sup>).
                                                Also here the result is
                                                a shortened wavelength
                                                rather than an extended
                                                one, so not the de
                                                Broglie wavelength.<br
                                                  class="">
                                                <br class="">
                                                Again my question: What
                                                do I misunderstand?<br
                                                  class="">
                                                <br class="">
                                                For the other topics of
                                                your answer I
                                                essentially agree, so I
                                                shall stop here.<br
                                                  class="">
                                                <br class="">
                                                Best regards<br class="">
                                                Albrecht<br class="">
                                                <br class="">
                                                <blockquote type="cite"
                                                  class="">
                                                  <div class=""><br
                                                      class="">
                                                  </div>
                                                  <div class="">     Now
                                                    as seen from this
                                                    geometry, the slower
                                                    the electron’s
                                                    velocity v, the
                                                    longer is the
                                                    electron’s de
                                                    Broglie wavelength —
                                                    also as seen from
                                                    the relativistic de
                                                    Broglie wavelength
                                                    formula Ldb =
                                                     h/(gamma mv). For a
                                                    resting electron
                                                    (v=0) the de Broglie
                                                    wavelength is
                                                    undefined in this
                                                    formula as also in
                                                    my model for v = 0.
                                                    Here, for stationary
                                                    electron, the
                                                    charged photon’s
                                                    emitted wave fronts
                                                    (for waves of
                                                    wavelength equal to
                                                    the Compton
                                                    wavelength h/mc)
                                                     intersect the axis
                                                    of the circulating
                                                    photon along its
                                                    whole length rather
                                                    than at a single
                                                    point along the
                                                    helical axis. This
                                                    condition
                                                    corresponds to the
                                                    condition where de
                                                    Broglie said
                                                    (something like)
                                                    that the electron
                                                    oscillates with the
                                                    frequency given by f
                                                    = mc^2/h for the
                                                    stationary electron,
                                                    and that the phase
                                                    of the wave of this
                                                    oscillating electron
                                                    is the same at all
                                                    points in space. But
                                                    when the electron is
                                                    moving slowly, long
                                                    de Broglie waves are
                                                    formed along the
                                                    axis of the moving
                                                    electron.</div>
                                                  <div class=""><br
                                                      class="">
                                                  </div>
                                                  <div class="">     In
                                                    this basic plane
                                                    wave model there is
                                                    no limitation on how
                                                    far to the sides of
                                                    the charged photon
                                                    the plane wave
                                                    fronts extend. In a
                                                    more detailed model
                                                    a finite
                                                    side-spreading of
                                                    the plane wave would
                                                    correspond to a
                                                    pulse of many
                                                    forward moving
                                                    electrons that is
                                                    limited in both
                                                    longitudinal and
                                                    lateral extent (here
                                                    a Fourier
                                                    description of the
                                                    wave front for a
                                                    pulse of electrons
                                                    of a particular
                                                    spatial extent would
                                                    probably come into
                                                    play), which is
                                                    beyond the present
                                                    description.</div>
                                                  <div class=""><br
                                                      class="">
                                                  </div>
                                                  <div class="">     You
                                                    asked what an
                                                    observer standing
                                                    beside the resting
                                                    electron, but not in
                                                    the plane of the
                                                    charged photon's
                                                    internal circular
                                                    motion) would
                                                    observe as the
                                                    circulating charged
                                                    photon emits a plane
                                                    wave long its
                                                    trajectory. The
                                                    plane wave’s
                                                    wavelength emitted
                                                    by the circling
                                                    charged photon would
                                                    be the Compton
                                                    wavelength h/mc. So
                                                    when the charged
                                                    photon is moving
                                                    more towards (but an
                                                    an angle to) the
                                                    stationary observer,
                                                    he would observe a
                                                    wave of wavelength
                                                    h/mc (which you call
                                                    c/ny where ny is the
                                                    frequency of charged
                                                    photon’s orbital
                                                    motion) coming
                                                    towards and past
                                                    him. This is not the
                                                    de Broglie
                                                    wavelength (which is
                                                    undefined here and
                                                    is only defined on
                                                    the helical axis of
                                                    the circulating
                                                    photon for a moving
                                                    electron) but is the
                                                    Compton wavelength
                                                    h/mc of the
                                                    circulating photon
                                                    of a resting
                                                    electron. As the
                                                    charged photon moves
                                                    more away from the
                                                    observer, he would
                                                    observe a plane wave
                                                    of wavelength h/mc
                                                    moving away from him
                                                    in the direction of
                                                    the receding charged
                                                    photon. But it is
                                                    more complicated
                                                    than this, because
                                                    the observer at the
                                                    side of the
                                                    stationary electron
                                                    (circulating charged
                                                    photon) will also be
                                                    receiving all the
                                                    other plane waves
                                                    with different
                                                    phases emitted at
                                                    other angles from
                                                    the circulating
                                                    charged photon
                                                    during its whole
                                                    circular trajectory.
                                                    In fact all of these
                                                    waves from the
                                                    charged photon away
                                                    from the circular
                                                    axis or helical axis
                                                    will interfere and
                                                    may actually cancel
                                                    out or partially
                                                    cancel out (I don’t
                                                    know), leaving a net
                                                    result only along
                                                    the axis of the
                                                    electron, which if
                                                    the electron is
                                                    moving, corresponds
                                                    to the de Broglie
                                                    wavelength along
                                                    this axis. This is
                                                    hard to visualize in
                                                    3-D and this is why
                                                    I think a 3-D
                                                    computer graphic
                                                    model of this
                                                    plane-wave emitting
                                                    process for a moving
                                                    or stationary
                                                    electron would be
                                                    very helpful and
                                                    informative.</div>
                                                  <div class=""><br
                                                      class="">
                                                  </div>
                                                  <div class="">   <span
class="Apple-converted-space"> </span>You asked about the electric
                                                    charge of the
                                                    charged photon and
                                                    how it affects this
                                                    process. Clearly the
                                                    plane waves emitted
                                                    by the circulating
                                                    charged photon have
                                                    to be different from
                                                    the plane waves
                                                    emitted by an
                                                    uncharged photon,
                                                    because these plane
                                                    waves generate the
                                                    quantum wave
                                                    functions PHI that
                                                    predict the
                                                    probabilities of
                                                    finding electrons or
                                                    photons respectively
                                                    in the future from
                                                    their PHI*PHI
                                                    functions. Plus the
                                                    charged photon has
                                                    to be emitting an
                                                    additional electric
                                                    field (not emitted
                                                    by a regular
                                                    uncharged photon),
                                                    for example caused
                                                    by virtual uncharged
                                                    photons as described
                                                    in QED, that
                                                    produces the
                                                    electrostatic field
                                                    of a stationary
                                                    electron or the
                                                    electro-magnetic
                                                    field around a
                                                    moving electron. </div>
                                                  <div class=""><br
                                                      class="">
                                                  </div>
                                                  <div class="">   <span
class="Apple-converted-space"> </span>I hope this helps. Thanks again
                                                    for your excellent
                                                    questions.</div>
                                                  <div class=""><br
                                                      class="">
                                                  </div>
                                                  <div class="">     <span
class="Apple-converted-space"> </span>with best regards,</div>
                                                  <div class="">       
                                                       Richard</div>
                                                  <div class=""><br
                                                      class="">
                                                  </div>
                                                  <br class="">
                                                  <div class="">
                                                    <blockquote
                                                      type="cite"
                                                      class="">
                                                      <div class="">On
                                                        Oct 19, 2015, at
                                                        8:13 AM, Dr.
                                                        Albrecht Giese
                                                        <<a
                                                          moz-do-not-send="true"
class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de"><a class="moz-txt-link-abbreviated" href="mailto:genmail@a-giese.de">genmail@a-giese.de</a></a>>
                                                        wrote:</div>
                                                      <br
                                                        class="Apple-interchange-newline">
                                                      <div class="">
                                                        <div
                                                          bgcolor="#FFFFFF"
                                                          class="">Richard:<br
                                                          class="">
                                                          <br class="">
                                                          I am still
                                                          busy to
                                                          understand the
                                                          de Broglie
                                                          wavelength
                                                          from your
                                                          model. I think
                                                          that I
                                                          understand
                                                          your general
                                                          idea, but I
                                                          would like to
                                                          also
                                                          understand the
                                                          details.<span
class="Apple-converted-space"> </span><br class="">
                                                          <br class="">
                                                          If a photon
                                                          moves straight
                                                          in the free
                                                          space, how
                                                          does the wave
                                                          look like? You
                                                          say that the
                                                          photon emits a
                                                          plane wave. If
                                                          the photon is
                                                          alone and
                                                          moves
                                                          straight, then
                                                          the wave goes
                                                          with the
                                                          photon. No
                                                          problem. And
                                                          the wave front
                                                          is in the
                                                          forward
                                                          direction.
                                                          Correct? How
                                                          far to the
                                                          sides is the
                                                          wave extended?
                                                          That may be
                                                          important in
                                                          case of the
                                                          photon in the
                                                          electron.<br
                                                          class="">
                                                          <br class="">
                                                          With the
                                                          following I
                                                          refer to the
                                                          figures 1 and
                                                          2 in your
                                                          paper referred
                                                          in your
                                                          preceding
                                                          mail.<br
                                                          class="">
                                                          <br class="">
                                                          In the
                                                          electron, the
                                                          photon moves
                                                          according to
                                                          your model on
                                                          a circuit. It
                                                          moves on a
                                                          helix when the
                                                          electron is in
                                                          motion. But
                                                          let take us
                                                          first the case
                                                          of the
                                                          electron at
                                                          rest, so that
                                                          the photon
                                                          moves on this
                                                          circuit. In
                                                          any moment the
                                                          plane wave
                                                          accompanied
                                                          with the
                                                          photon will
                                                          momentarily
                                                          move in the
                                                          tangential
                                                          direction of
                                                          the circuit.
                                                          But the
                                                          direction will
                                                          permanently
                                                          change to
                                                          follow the
                                                          path of the
                                                          photon on the
                                                          circuit. What
                                                          is then about
                                                          the motion of
                                                          the wave? The
                                                          front of the
                                                          wave should
                                                          follow this
                                                          circuit. Would
                                                          an observer
                                                          next to the
                                                          electron at
                                                          rest (but not
                                                          in the plane
                                                          of the
                                                          internal
                                                          motion) notice
                                                          the wave? This
                                                          can only
                                                          happen, I
                                                          think, if the
                                                          wave does not
                                                          only propagate
                                                          on a straight
                                                          path forward
                                                          but has an
                                                          extension to
                                                          the sides.
                                                          Only if this
                                                          is the case,
                                                          there will be
                                                          a wave along
                                                          the axis of
                                                          the electron.
                                                          Now an
                                                          observer next
                                                          to the
                                                          electron will
                                                          see a
                                                          modulated wave
                                                          coming from
                                                          the photon,
                                                          which will be
                                                          modulated with
                                                          the frequency
                                                          of the
                                                          rotation,
                                                          because the
                                                          photon will in
                                                          one moment be
                                                          closer to the
                                                          observer and
                                                          in the next
                                                          moment be
                                                          farer from
                                                          him. Which
                                                          wavelength
                                                          will be
                                                          noticed by the
                                                          observer? It
                                                          should be
                                                          lambda = c /
                                                          ny, where c is
                                                          the speed of
                                                          the
                                                          propagation
                                                          and ny the
                                                          frequency of
                                                          the orbital
                                                          motion. But
                                                          this lambda is
                                                          by my
                                                          understanding
                                                          not be the de
                                                          Broglie wave
                                                          length.<br
                                                          class="">
                                                          <br class="">
                                                          For an
                                                          electron at
                                                          rest your
                                                          model expects
                                                          a wave with a
                                                          momentarily
                                                          similar phase
                                                          for all points
                                                          in space. How
                                                          can this
                                                          orbiting
                                                          photon cause
                                                          this? And
                                                          else, if the
                                                          electron is
                                                          not at rest
                                                          but moves at a
                                                          very small
                                                          speed, then
                                                          the situation
                                                          will not be
                                                          very different
                                                          from that of
                                                          the electron
                                                          at rest.<br
                                                          class="">
                                                          <br class="">
                                                          Further: What
                                                          is the
                                                          influence of
                                                          the charge in
                                                          the photon?
                                                          There should
                                                          be a modulated
                                                          electric field
                                                          around the
                                                          electron with
                                                          a frequency ny
                                                          which follows
                                                          also from E =
                                                          h*ny, with E
                                                          the dynamical
                                                          energy of the
                                                          photon. Does
                                                          this modulated
                                                          field have any
                                                          influence to
                                                          how the
                                                          electron
                                                          interacts with
                                                          others?<span
                                                          class="Apple-converted-space"> </span><br
                                                          class="">
                                                          <br class="">
                                                          Some
                                                          questions,
                                                          perhaps you
                                                          can help me
                                                          for a better
                                                          understanding.<br
                                                          class="">
                                                          <br class="">
                                                          With best
                                                          regards and
                                                          thanks in
                                                          advance<br
                                                          class="">
                                                          Albrecht<br
                                                          class="">
                                                          <br class="">
                                                          PS: I shall
                                                          answer you
                                                          mail from last
                                                          night
                                                          tomorrow.<br
                                                          class="">
                                                          <br class="">
                                                          <br class="">
                                                          <div
                                                          class="moz-cite-prefix">Am
                                                          14.10.2015 um
                                                          22:32 schrieb
                                                          Richard
                                                          Gauthier:<br
                                                          class="">
                                                          </div>
                                                          <blockquote
                                                          type="cite"
                                                          class="">
                                                          <div class="">Hello
                                                          Albrecht,</div>
                                                          <div class=""><br
                                                          class="">
                                                          </div>
                                                          <div class=""> 
                                                           <span
                                                          class="Apple-converted-space"> </span>I
                                                          second David’s
                                                          question. The
                                                          last I heard
                                                          authoritatively,
                                                          from
                                                          cosmologist
                                                          Sean Carroll -
                                                          "The Particle
                                                          at the End of
                                                          the Universe”
                                                          (2012), is
                                                          that fermions
                                                          are not
                                                          affected by
                                                          the strong
                                                          nuclear force.
                                                          If they were,
                                                          I think it
                                                          would be
                                                          common
                                                          scientific
                                                          knowledge by
                                                          now. </div>
                                                          <div class=""><br
                                                          class="">
                                                          </div>
                                                          <div class="">You
                                                          wrote: "<span
                                                          class=""
                                                          style="font-size:
                                                          16px;
                                                          background-color:
                                                          rgb(255, 255,
                                                          255);">I see
                                                          it as a
                                                          valuable goal
                                                          for the
                                                          further
                                                          development to
                                                          find an answer
                                                          (a</span><span
                                                          class=""
                                                          style="font-size:
                                                          16px;
                                                          background-color:
                                                          rgb(255, 255,
                                                          255);"> </span><i
                                                          class=""
                                                          style="font-size:
                                                          16px;">physical </i><span
                                                          class=""
                                                          style="font-size:
                                                          16px;
                                                          background-color:
                                                          rgb(255, 255,
                                                          255);">answer!)
                                                          to the
                                                          question of
                                                          the de Broglie
                                                          wavelength."</span></div>
                                                          <div class=""> <span
class="Apple-converted-space"> </span>My spin 1/2 charged photon model
                                                          DOES give a
                                                          simple
                                                          physical
                                                          explanation
                                                          for the origin
                                                          of the de
                                                          Broglie
                                                          wavelength.
                                                          The
                                                          helically-circulating
                                                          charged photon
                                                          is proposed to
                                                          emit a plane
                                                          wave directed
                                                          along its
                                                          helical path
                                                          based on its
                                                          relativistic
                                                          wavelength
                                                          lambda =
                                                          h/(gamma mc)
                                                          and
                                                          relativistic
                                                          frequency
                                                          f=(gamma
                                                          mc^2)/h. The
                                                          wave fronts of
                                                          this plane
                                                          wave intersect
                                                          the axis of
                                                          the charged
                                                          photon’s
                                                          helical
                                                          trajectory,
                                                          which is the
                                                          path of the
                                                          electron being
                                                          modeled by the
                                                          charged
                                                          photon,
                                                          creating a de
                                                          Broglie wave
                                                          pattern of
                                                          wavelength
                                                          h/(gamma mv)
                                                          which travels
                                                          along the
                                                          charged
                                                          photon’s
                                                          helical axis
                                                          at speed
                                                          c^2/v. For a
                                                          moving
                                                          electron, the
                                                          wave fronts
                                                          emitted by the
                                                          charged photon
                                                          do not
                                                          intersect the
                                                          helical axis
                                                          perpendicularly
                                                          but at an
                                                          angle (see
                                                          Figure 2 of my
                                                          SPIE paper at <a
moz-do-not-send="true" class="moz-txt-link-freetext"
href="https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength"><a class="moz-txt-link-freetext" href="https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength">https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength</a></a> )
                                                          that is simply
                                                          related to the
                                                          speed of the
                                                          electron being
                                                          modeled.  This
                                                          physical
                                                          origin of the
                                                          electron’s de
                                                          Broglie wave
                                                          is similar to
                                                          when a series
                                                          of parallel
                                                          and
                                                          evenly-spaced
                                                          ocean waves
                                                          hits a
                                                          straight beach
                                                          at an angle
                                                          greater than
                                                          zero degrees
                                                          to the beach —
                                                          a wave pattern
                                                          is produced at
                                                          the beach that
                                                          travels in one
                                                          direction
                                                          along the
                                                          beach at a
                                                          speed faster
                                                          than the speed
                                                          of the waves
                                                          coming in from
                                                          the ocean. But
                                                          that beach
                                                          wave pattern
                                                          can't transmit
                                                          “information”
                                                          along the
                                                          beach faster
                                                          than the speed
                                                          of the ocean
                                                          waves, just as
                                                          the de Broglie
                                                          matter-wave
                                                          can’t
                                                          (according to
                                                          special
                                                          relativity)
                                                          transmit
                                                          information
                                                          faster than
                                                          light, as de
                                                          Broglie
                                                          recognized.
                                                           As far as I
                                                          know this
                                                          geometric
                                                          interpretation
                                                          for the
                                                          generation of
                                                          the
                                                          relativistic
                                                          electron's de
                                                          Broglie
                                                          wavelength,
                                                          phase
                                                          velocity, and
                                                          matter-wave
                                                          equation is
                                                          unique.</div>
                                                          <div class=""><br
                                                          class="">
                                                          </div>
                                                          <div class=""> <span
class="Apple-converted-space"> </span>For a resting (v=0) electron, the
                                                          de Broglie
                                                          wavelength
                                                          lambda =
                                                          h/(gamma mv)
                                                          is not defined
                                                          since one
                                                          can’t divide
                                                          by zero. It
                                                          corresponds to
                                                          the ocean wave
                                                          fronts in the
                                                          above example
                                                          hitting the
                                                          beach at a
                                                          zero degree
                                                          angle, where
                                                          no velocity of
                                                          the wave
                                                          pattern along
                                                          the beach can
                                                          be defined.</div>
                                                          <div class=""><br
                                                          class="">
                                                          </div>
                                                          <div class="">  <span
                                                          class=""
                                                          style="color:
                                                          rgb(37, 37,
                                                          37);
                                                          line-height:
                                                          22px;
                                                          background-color:
                                                          rgb(255, 255,
                                                          255);">Schrödinger</span> took
                                                          de Broglie’s
                                                          matter-wave
                                                          and used  it
                                                          non-relativistically
                                                          with a
                                                          potential V
                                                           to generate
                                                          the <span
                                                          class=""
                                                          style="color:
                                                          rgb(37, 37,
                                                          37);
                                                          line-height:
                                                          22px;
                                                          background-color:
                                                          rgb(255, 255,
                                                          255);">Schrödinger</span> equation
                                                          and wave
                                                          mechanics,
                                                          which is
                                                          mathematically
                                                          identical in
                                                          its
                                                          predictions to
                                                          Heisenberg’s
                                                          matrix
                                                          mechanics.
                                                          Born
                                                          interpreted
                                                          Psi*Psi of
                                                          the <span
                                                          class=""
                                                          style="color:
                                                          rgb(37, 37,
                                                          37);
                                                          line-height:
                                                          22px;
                                                          background-color:
                                                          rgb(255, 255,
                                                          255);">Schrödinger</span> equation
                                                          as the
                                                          probability
                                                          density for
                                                          the result of
                                                          an
                                                          experimental
                                                          measurement
                                                          and this
                                                          worked well
                                                          for
                                                          statistical
                                                          predictions.
                                                          Quantum
                                                          mechanics was
                                                          built on this
                                                          de Broglie
                                                          wave
                                                          foundation and
                                                          Born's
                                                          probabilistic
                                                          interpretation
                                                          (using Hilbert
                                                          space math.)</div>
                                                          <div class=""><br
                                                          class="">
                                                          </div>
                                                          <div class=""> <span
class="Apple-converted-space"> </span>The charged photon model of the
                                                          electron might
                                                          be used to
                                                          derive the <span
                                                          class=""
                                                          style="color:
                                                          rgb(37, 37,
                                                          37);
                                                          line-height:
                                                          22px;
                                                          background-color:
                                                          rgb(255, 255,
                                                          255);">Schrödinger</span> equation,
                                                          considering
                                                          the electron
                                                          to be a
                                                          circulating
                                                          charged photon
                                                          that generates
                                                          the electron’s
                                                          matter-wave,
                                                          which depends
                                                          on the
                                                          electron’s
                                                          variable
                                                          kinetic energy
                                                          in a potential
                                                          field. This
                                                          needs to be
                                                          explored
                                                          further, which
                                                          I began in <a
moz-do-not-send="true" class="moz-txt-link-freetext"
href="https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schr%C3%B6dinger_Equation"><a class="moz-txt-link-freetext" href="https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schrödinger_Equation">https://www.academia.edu/10235164/The_Charged-Photon_Model_of_the_Electron_Fits_the_Schrödinger_Equation</a></a> .
                                                          Of course, to
                                                          treat the
                                                          electron
                                                          relativistically
                                                          requires the
                                                          Dirac
                                                          equation. But
                                                          the spin 1/2
                                                          charged photon
                                                          model of the
                                                          relativistic
                                                          electron has a
                                                          number of
                                                          features of
                                                          the Dirac
                                                          electron, by
                                                          design.</div>
                                                          <div class=""><br
                                                          class="">
                                                          </div>
                                                          <div class=""> <span
class="Apple-converted-space"> </span>As to why the charged photon
                                                          circulates
                                                          helically
                                                          rather than
                                                          moving in a
                                                          straight line
                                                          (in the
                                                          absence of
                                                          diffraction,
                                                          etc) like an
                                                          uncharged
                                                          photon, this
                                                          could be the
                                                          effect of the
                                                          charged photon
                                                          moving in the
                                                          Higgs field,
                                                          which turns a
                                                          speed-of-light
                                                          particle with
                                                          electric
                                                          charge into a
                                                          less-than-speed-of-light
                                                          particle with
                                                          a rest mass,
                                                          which in this
                                                          case is the
                                                          electron’s
                                                          rest mass
                                                          0.511 MeV/c^2
                                                          (this value is
                                                          not predicted
                                                          by the Higgs
                                                          field theory
                                                          however.) So
                                                          the electron’s
                                                          inertia may
                                                          also be caused
                                                          by the Higgs
                                                          field. I would
                                                          not say that
                                                          an unconfined
                                                          photon has
                                                          inertia,
                                                          although it
                                                          has energy and
                                                          momentum but
                                                          no rest mass,
                                                          but opinions
                                                          differ on this
                                                          point.
                                                          “Inertia” is a
                                                          vague term and
                                                          perhaps should
                                                          be dropped— it
                                                          literally
                                                          means
                                                          "inactive,
                                                          unskilled”.</div>
                                                          <div class=""><br
                                                          class="">
                                                          </div>
                                                          <div class=""> <span
class="Apple-converted-space"> </span>You said that a faster-than-light
                                                          phase wave can
                                                          only be caused
                                                          by a
                                                          superposition
                                                          of waves. I’m
                                                          not sure this
                                                          is correct,
                                                          since in my
                                                          charged photon
                                                          model a single
                                                          plane wave
                                                          pattern
                                                          emitted by the
                                                          circulating
                                                          charged photon
                                                          generates the
                                                          electron’s
                                                          faster-than-light
                                                          phase wave of
                                                          speed c^2/v .
                                                          A group
                                                          velocity of an
                                                          electron model
                                                          may be
                                                          generated by a
                                                          superposition
                                                          of waves to
                                                          produce a wave
                                                          packet whose
                                                          group velocity
                                                          equals the
                                                          slower-than-light
                                                          speed of an
                                                          electron
                                                          modeled by
                                                          such an
                                                          wave-packet
                                                          approach.</div>
                                                          <div class=""><br
                                                          class="">
                                                          </div>
                                                          <div class="">with
                                                          best regards,</div>
                                                          <div class=""> 
                                                               Richard</div>
                                                          <br class="">
                                                          </blockquote>
                                                        </div>
                                                      </div>
                                                    </blockquote>
                                                  </div>
                                                </blockquote>
                                              </div>
                                            </div>
                                          </blockquote>
                                        </div>
                                      </blockquote>
                                      <br class="">
                                      <br class="">
                                      <br class="">
                                      <hr class="" style="border: none;
                                        color: rgb(144, 144, 144);
                                        background-color: rgb(176, 176,
                                        176); height: 1px; width:
                                        808.828125px;">
                                      <table class=""
                                        style="border-collapse:
                                        collapse; border: none;">
                                        <tbody class="">
                                          <tr class="">
                                            <td class="" style="border:
                                              none; padding: 0px 15px
                                              0px 8px;"><a
                                                moz-do-not-send="true"
                                                href="https://www.avast.com/antivirus"
                                                target="_blank" class=""><img
                                                  moz-do-not-send="true"
src="http://static.avast.com/emails/avast-mail-stamp.png" alt="Avast
                                                  logo" class=""
                                                  border="0"></a></td>
                                            <td class="">
                                              <div class=""
                                                style="margin-top: 0px;
                                                margin-bottom: 0px;
                                                color: rgb(61, 77, 90);
                                                font-family: Calibri,
                                                Verdana, Arial,
                                                Helvetica; font-size:
                                                12pt;">Diese E-Mail
                                                wurde von Avast
                                                Antivirus-Software auf
                                                Viren geprüft.<span
                                                  class="Apple-converted-space"> </span><br
                                                  class="">
                                                <a
                                                  moz-do-not-send="true"
href="https://www.avast.com/antivirus" target="_blank" class=""><a class="moz-txt-link-abbreviated" href="http://www.avast.com">www.avast.com</a></a></div>
                                            </td>
                                          </tr>
                                        </tbody>
                                      </table>
                                      <br class="">
                                    </div>
                                  </div>
                                </div>
                              </blockquote>
                              <br class="" style="font-family:
                                Helvetica; font-size: 12px; font-style:
                                normal; font-variant: normal;
                                font-weight: normal; letter-spacing:
                                normal; line-height: normal; orphans:
                                auto; text-align: start; text-indent:
                                0px; text-transform: none; white-space:
                                normal; widows: auto; word-spacing: 0px;
                                -webkit-text-stroke-width: 0px;
                                background-color: rgb(255, 255, 255);">
                              <br class="" style="font-family:
                                Helvetica; font-size: 12px; font-style:
                                normal; font-variant: normal;
                                font-weight: normal; letter-spacing:
                                normal; line-height: normal; orphans:
                                auto; text-align: start; text-indent:
                                0px; text-transform: none; white-space:
                                normal; widows: auto; word-spacing: 0px;
                                -webkit-text-stroke-width: 0px;
                                background-color: rgb(255, 255, 255);">
                              <br class="" style="font-family:
                                Helvetica; font-size: 12px; font-style:
                                normal; font-variant: normal;
                                font-weight: normal; letter-spacing:
                                normal; line-height: normal; orphans:
                                auto; text-align: start; text-indent:
                                0px; text-transform: none; white-space:
                                normal; widows: auto; word-spacing: 0px;
                                -webkit-text-stroke-width: 0px;
                                background-color: rgb(255, 255, 255);">
                              <hr class="" style="font-family:
                                Helvetica; font-size: 12px; font-style:
                                normal; font-variant: normal;
                                font-weight: normal; letter-spacing:
                                normal; line-height: normal; orphans:
                                auto; text-align: start; text-indent:
                                0px; text-transform: none; white-space:
                                normal; widows: auto; word-spacing: 0px;
                                -webkit-text-stroke-width: 0px; border:
                                none; color: rgb(144, 144, 144);
                                background-color: rgb(176, 176, 176);
                                height: 1px; width: 818.71875px;">
                              <table class="" style="font-family:
                                Helvetica; letter-spacing: normal;
                                orphans: auto; text-indent: 0px;
                                text-transform: none; widows: auto;
                                word-spacing: 0px;
                                -webkit-text-stroke-width: 0px;
                                background-color: rgb(255, 255, 255);
                                border-collapse: collapse; border:
                                none;">
                                <tbody class="">
                                  <tr class="">
                                    <td class="" style="border: none;
                                      padding: 0px 15px 0px 8px;"><a
                                        moz-do-not-send="true"
                                        href="https://www.avast.com/antivirus"
                                        class=""><img
                                          moz-do-not-send="true"
                                          src="http://static.avast.com/emails/avast-mail-stamp.png"
                                          alt="Avast logo" class=""
                                          border="0"></a></td>
                                    <td class="">
                                      <div class="" style="margin-top:
                                        0px; margin-bottom: 0px; color:
                                        rgb(61, 77, 90); font-family:
                                        Calibri, Verdana, Arial,
                                        Helvetica; font-size: 12pt;">Diese
                                        E-Mail wurde von Avast
                                        Antivirus-Software auf Viren
                                        geprüft.<span
                                          class="Apple-converted-space"> </span><br
                                          class="">
                                        <a moz-do-not-send="true"
                                          href="https://www.avast.com/antivirus"
                                          class="">www.avast.com</a></div>
                                    </td>
                                  </tr>
                                </tbody>
                              </table>
                              <br class="" style="font-family:
                                Helvetica; font-size: 12px; font-style:
                                normal; font-variant: normal;
                                font-weight: normal; letter-spacing:
                                normal; line-height: normal; orphans:
                                auto; text-align: start; text-indent:
                                0px; text-transform: none; white-space:
                                normal; widows: auto; word-spacing: 0px;
                                -webkit-text-stroke-width: 0px;
                                background-color: rgb(255, 255, 255);">
                              <br class="Apple-interchange-newline">
                            </div>
                          </blockquote>
                        </div>
                        <br class="">
                      </blockquote>
                      <br class="">
                      <br class="">
                      <br class="">
                      <hr class="" style="border: none; color: rgb(144,
                        144, 144); background-color: rgb(176, 176, 176);
                        height: 1px; width: 829.609375px;">
                      <table class="" style="border-collapse: collapse;
                        border: none;">
                        <tbody class="">
                          <tr class="">
                            <td class="" style="border: none; padding:
                              0px 15px 0px 8px;"><a
                                moz-do-not-send="true"
                                href="https://www.avast.com/antivirus"
                                class=""><img moz-do-not-send="true"
                                  src="http://static.avast.com/emails/avast-mail-stamp.png"
                                  alt="Avast logo" class="" border="0"></a></td>
                            <td class="">
                              <p class="" style="color: rgb(61, 77, 90);
                                font-family: Calibri, Verdana, Arial,
                                Helvetica; font-size: 12pt;">Diese
                                E-Mail wurde von Avast
                                Antivirus-Software auf Viren geprüft.<span
                                  class="Apple-converted-space"> </span><br
                                  class="">
                                <a moz-do-not-send="true"
                                  href="https://www.avast.com/antivirus"
                                  class="">www.avast.com</a></p>
                            </td>
                          </tr>
                        </tbody>
                      </table>
                      <br class="">
                    </div>
                  </div>
                </blockquote>
              </div>
              <br class="">
            </blockquote>
            <br style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <br style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <br style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <hr style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px; border:
              none; color: rgb(144, 144, 144); background-color:
              rgb(176, 176, 176); height: 1px; width: 849.40625px;"
              class="">
            <table style="font-family: Helvetica; letter-spacing:
              normal; orphans: auto; text-indent: 0px; text-transform:
              none; widows: auto; word-spacing: 0px;
              -webkit-text-stroke-width: 0px; background-color: rgb(255,
              255, 255); border-collapse: collapse; border: none;"
              class="">
              <tbody class="">
                <tr class="">
                  <td style="border: none; padding: 0px 15px 0px 8px;"
                    class=""><a moz-do-not-send="true"
                      href="https://www.avast.com/antivirus" class=""><img
                        moz-do-not-send="true"
                        src="http://static.avast.com/emails/avast-mail-stamp.png"
                        alt="Avast logo" class="" border="0"></a></td>
                  <td class="">
                    <p style="color: rgb(61, 77, 90); font-family:
                      Calibri, Verdana, Arial, Helvetica; font-size:
                      12pt;" class="">Diese E-Mail wurde von Avast
                      Antivirus-Software auf Viren geprüft.<span
                        class="Apple-converted-space"> </span><br
                        class="">
                      <a moz-do-not-send="true"
                        href="https://www.avast.com/antivirus" class="">www.avast.com</a></p>
                  </td>
                </tr>
              </tbody>
            </table>
            <br style="font-family: Helvetica; font-size: 12px;
              font-style: normal; font-variant: normal; font-weight:
              normal; letter-spacing: normal; line-height: normal;
              orphans: auto; text-align: start; text-indent: 0px;
              text-transform: none; white-space: normal; widows: auto;
              word-spacing: 0px; -webkit-text-stroke-width: 0px;
              background-color: rgb(255, 255, 255);" class="">
            <br class="Apple-interchange-newline">
          </div>
        </blockquote>
      </div>
      <br class="">
    </blockquote>
    <br>
  </body>
</html>