<div dir="ltr"><div><div>Dear Albrecht,<br><br></div>I apologize for projecting my interpretations on your model. Thank you for clarifying things.<br><br></div>comments below:<br>_ _ _ <br><div><div><div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Apr 18, 2016 at 2:11 AM, Albrecht Giese <span dir="ltr"><<a href="mailto:genmail@a-giese.de" target="_blank">genmail@a-giese.de</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
  
    
  
  <div text="#000000" bgcolor="#FFFFFF">
    Dear Andrew,<br>
    <br>
    again my comments in the text.<span class=""><br>
    <br>
    <div>Am 16.04.2016 um 12:31 schrieb Andrew
      Meulenberg:<br>
    </div>
    <blockquote type="cite">
      <div dir="ltr">
        <div>Dear Albrecht,<br>
          <br>
        </div>
        <div>You mentioned an article that seems to counter, rather than
          support, your model of the binary electron. You state: "On the
          other hand there was a kind of indication for two constituents
          described by the article of Frank Wilczek about the electron
          in Nature in summer 2013." (attached)."<br>
          <br>
        </div>
        <div>Some statements from the article:<br>
        </div>
        <div><br>
          <div style="margin-left:40px">"The electron is effectively a
            spinning ball of charge, and elementary electromagnetism
            tells us that this generates<br>
            a magnetic dipole field." <br>
            <br>
            "An electric dipole, should it exist, would generate broadly
            similar corrections. But no such field has been detected."<br>
            <br>
            "So far there is only an upper bound for the electric dipole
            moment. This is an extraordinary 17 orders of magnitude
            smaller than one might expect — naively, given the
            electron’s effective size."<span style="color:rgb(255,0,0)">
              [.... estimated to be roughly 2.4 × 10^–12 metres]</span>.
            <br>
          </div>
        </div>
      </div>
    </blockquote></span>
    According to my model there cannot be an (electrical) dipole moment
    in the electron. So these statements do not weaken my model.<span class=""><br></span></div></blockquote><div><br></div><div>Good. Should we expect to see a quadrupole moment? <br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div text="#000000" bgcolor="#FFFFFF"><span class="">
    <blockquote type="cite">
      <div dir="ltr">
        <div>
          <div style="margin-left:40px"><br>
          </div>
          Despite the lack of measured dipole, he states:<br>
        </div>
        <div>
          <div style="margin-left:40px">"So a non-zero electric dipole
            moment for electrons is a theoretical possibility."<br>
          </div>
          This seems to be the only support for your model from that
          angle.<br>
        </div>
      </div>
    </blockquote></span>
    Why? I do not see this as a support of the model.<span class=""><br></span></div></blockquote><div><br></div><div>OK, from above <br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div text="#000000" bgcolor="#FFFFFF"><span class="">
    <blockquote type="cite">
      <div dir="ltr">
        <div><br>
        </div>
        <div>On the other hand, you are not expecting your twin
          particles to be attracted by electrostatic forces (you suggest
          something like strong nuclear forces). Therefore, an electric
          dipole would not be expected; some other form of dipole would
          be. But, if no electric dipole, what causes the EM fields?<br>
        </div>
      </div>
    </blockquote></span>
    In my model, the elementary electrical charge is split into two
    portions, one at each sub-particle. There is of course no attraction
    between both, but a repulsion. But the force of this repulsion is
    only 1/1000 of the binding force in the particle. It causes the
    electron to be by 1/1000 larger than without an electrical charge
    and so it causes a corresponding increase of its magnetic field.
    This explains quite precisely the Landé factor.<br>
    <br>
    The EM field emitted by the electron in case of an acceleration is
    caused by the following process. If an electron is accelerated then
    its shape is relativistically distorted.<span style="color:rgb(255,0,0)"> [agreed]</span> As a consequence, one
    sub-charge is subject to a changing electrical field of the other
    sub-charge. This causes an EM radiation. - This, by the way, is the
    only cause of radiation in physics, the situation that one charge is
    subject to a changing field. There is no other cause of radiation in
    physics. Or do you know one?<span class=""><br></span></div></blockquote><div><br></div><div>You raise an interesting point. In an atomic decay of H, would your model predict the radiation to come from the electron or the proton? <br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div text="#000000" bgcolor="#FFFFFF"><span class="">
    <blockquote type="cite">
      <div dir="ltr">
        <div><br>
        </div>
        <div>While I find most of Wilczek's statements to be 'correct'
          and useful, I consider some to be just wrong. Nevertheless, it
          is a useful reference. It is not as authoritative as his
          “Origins of Mass,” arXiv:1206.7114v2 22 Aug 2012.  However, it
          took me many hours of work to derive real benefit from this
          latter paper.<span> But now I have a new
            'tool'. <br>
          </span></div>
      </div>
    </blockquote></span>
    My reference to the paper of Wilczek refers to the following
    statement at the end of his paper:<br>
    <br>
    "By combining fragmentation with superconductivity, we can get
    half-electrons that are their own antiparticles. Such ‘Majorana
    modes’ have now been observed experimentally and promise to have
    exotic properties."<br>
    <br>
    This fact that half-electrons can be seen is in my understanding one
    important point of his saying. "The enigmatic electron". I see it in
    quite good agreement with my model but in strong conflict with all
    other electron models discussed here.<span class=""><br></span></div></blockquote><div><br></div><div>Thank you for the clarification. If one can accept Quark triplets being bound, then one should be able to accept hemi-electrons as being bound. While I am fond of Occam's razor, I am not addicted to it. I'll have to reconsider your model based on your explanations.<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div text="#000000" bgcolor="#FFFFFF"><span class="">
    <blockquote type="cite">
      <div dir="ltr">
        <div><span><br>
            I did not find his "enigmatic electron" to be as useful. I
            have attached a preprint to a paper that I will submit this
            week that references both of Wilczek's papers. I hope that
            it will be published and might open the way for new thinking
            in the photon to lepton transition.<br>
          </span></div>
      </div>
    </blockquote></span>
    My feeling for electron-positron creation or photon creation is that
    photons and leptons are built in a similar way, by similar
    sub-particles. But as you write:<span lang="EN-US">"there are still
      pieces of the puzzle missing"</span>   Do considerations about
    symmetry and symmetry breaking really help us to understand physical
    processes? I doubt that.</div></blockquote><div><br></div><div> I think that it may help some people accept a process. Like you, I prefer looking at the possible physical process first. However, I am hoping to get this paper published as an introduction to a more physical model. Can I recommend you as a reviewer?<br><br><div><span>Best regards,<br>
            <br>
          </span></div>
        <span>Andrew</span><font size="1"><br></font></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div text="#000000" bgcolor="#FFFFFF"><font size="1"><span lang="EN-US"></span>
    
    
    
    
    
    
    
    
    
    </font><blockquote type="cite">
      <div dir="ltr">
        <div><font size="1"><span><br>
          </span></font></div>
        <div><font size="1"><span>Best regards,<br>
            <br>
          </span></font></div>
        <div><font size="1"><span>Andrew<br>
          </span></font></div>
      </div>
    </blockquote><font size="1">
    Best regards<br>
    Albrecht</font><br>
    <blockquote type="cite">
      <div dir="ltr">
        <div><br>
        </div>
      </div>
      <br>
      <fieldset></fieldset>
      <br></blockquote>
  <br> <table style="border-top:1px solid rgb(170,171,182)">
        <tbody><tr>
      <td style="width:55px;padding-top:18px"><br></td>
                <td style="width:470px;padding-top:20px;color:rgb(65,66,78);font-size:13px;font-family:Arial,Helvetica,sans-serif;line-height:18px">Virenfrei. <a href="https://www.avast.com/sig-email?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient" style="color:rgb(68,83,234)" target="_blank">www.avast.com</a>           </td>
        </tr>
</tbody></table>
</div><br></blockquote></div></div></div></div></div></div>