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It is known that gravitational and electromagnetic fields of an electron are described by
the ultra-extreme Kerr-Newman (KN) black hole solution with extremely high spin/mass
ratio. This solution is singular and has a topological defect, the Kerr singular ring, which
may be regularized by introducing the solitonic source based on the Higgs mechanism of
symmetry breaking. The source represents a domain wall bubble interpolating between
the flat region inside the bubble and external KN solution. It was shown recently that
the source represents a supersymmetric bag model, and its structure is unambiguously
determined by Bogomolnyi equations. The Dirac equation is embedded inside the bag
consistently with twistor structure of the Kerr geometry, and acquires the mass from
the Yukawa coupling with Higgs field. The KN bag turns out to be flexible, and for
parameters of an electron, it takes the form of very thin disk with a circular string
placed along sharp boundary of the disk. Excitation of this string by a traveling wave
creates a circulating singular pole, indicating that the bag-like source of KN solution
unifies the dressed and point-like electron in a single bag-string-quark system.
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1. Introduction

This year debating of the source of the Kerr and Kerr-Newman (KN) solution marks

50 years. Reason of the complexity of this problem is the emergence in the Kerr
solution of a ring-like singularity instead of the pointlike singularity of the non-
rotating black hole (BH) solutions. Radius of this ring, a = J/m,a is proportional

to angular momentum J and inverse proportional to mass m of the BH. It leads to

aWe use the dimensionless units c = G = ! = 1 and signature (−+++).

1641002-1



January 18, 2016 10:25 IJMPA S0217751X16410025 page 2

A. Burinskii

a breaking of the wide spread opinion that the effective range of the gravitational

field rg is short and proportional to mass, rg ∼ m. The short distance Kerr-Newman
field is extended as rg ∼ a = J/m, taking the form of a singular string, for which rg
is the more, than the smaller is mass of the BH. So, that for the elementary particles
of very small masses, the effective range of gravity is tremendously expand, taking
the form of the circular-string (or gravitational waveguide1,2) extending on the

Compton zone of the spinning particles. The spin/mass ratio of the elementary
particles turns out to be much more than their mass, a = J/m ≫ m, a/m ∼ 1044,

and the BH horizons disappear. It corresponds to an ultra-extreme KN solution,
for which the Kerr singular ring turns out to be naked, and in accord with the
censorship principle, the singular region should be replaced by some source covering

the naked singularity.
50 years ago, in the appendix to paper by Newman and Janis,3 it was noted

that the simple interpretation of the KN source as a rotating singular ring does
not go, because the Kerr singular ring turns out to be a branch line of space into

two sheets, and the observer, which passed through this ring, r+ → r− = −r+,
turns out to be on a different space with different metric g+µν → g−µν and values
of the electromagnetic vector potential A+

µ → A−

µ . The KN metric turned out to

be two-sheeted and contains the mirror “Aice” world. The second extra important
peculiarity was obtained by B. Carter, who noted4 that the KN solution has the

gyromagnetic ration g = 2 as that of the Dirac electron. Therefore, using the KN
metric with tree parameters e, m, J corresponding to the experimentally observed
parameters of the electron, we automatically obtain the external gravitational and

electromagnetic field of the electron corresponding to the correct value of the its
fourth parameter — the magnetic charge µ.

These features led to intensive study of the problem of source of the KN so-
lution (for review see Refs. 5–7), and the discussions of this problem are still

ongoing.8,9

Importance of this problem is related with known conflict between gravity and
quantum theory. One of the points of this conflict is unacceptance for gravity the

known quantum statement on the point-like and structureless electron. Gravity
requires the soliton-like sources described by a stress-energy tensor. The known

bag models for hadrons10,11 satisfy this requirement, being fully consistent with
quantum theory. The problem of the source of the KN solution is extremely im-

portant because it could answer the question: Which structure of the electron could
be compatible with gravity? and hint the way to solution of the principal problem
of consistency gravity with quantum theory. In the recent works (Refs. 12, 13)

we showed that the regular source of the KN solution has many features of the
bag models, and therefore, the structure of dressed electron may be similar to the

structure of hadrons. The obtained structure of the KN source forms a combined
bag-string-quark system, which answers also the question, why the bare electron
looks as a pointlike structureless particle.
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2. Dressed Electron as a Bag-String-Point Complex

There were two lines of the development of the problem of source of KN solution: the
stringlike source started in our works,1,2 and the disk-like model of the KN electron
started by Israel5 and then modified by López in Ref. 14 to the oblate bubble model.
Both lines of development are joined now into the bag-bubble model,12,13 which,
similar to many soliton models and the known MIT and SLAC bag models, is based
on the Higgs mechanism of symmetry breaking.

Structure of the bag-like source is UNIQUELY determined by the requirements:

(R1) Quantum INTERIOR: no Gravity INSIDE the source!
(R2) Gravitating EXTERIOR: classical exact KN solution OUTSIDE!
(R3) A smooth transition between internal and external regions.

The KN metric in the Kerr-Schild form is15

g(KN)
µν = ηµν + 2H(KN)kµkν , (1)

where

H(KN) =
mr − e2/2

r2 + a2 cos2 θ
, (2)

and kµ is the null vector field tangent to the Kerr congruence, see Fig. 1.
Shape of the bubble is uniquely determined by the requirements R1 and R2 as

the surface of “zero gravity potential”

H(KN) = 0 (3)

corresponding to matching of the external KN solution with a flat core of the
source. The corresponding disk-like surface r = R = e2/2m, where r is the Kerr
oblate spheroidal coordinate, is the surface of the zero gravitational potential. For
parameters of an electron, thickness of the disk R = e2/2m corresponds to known
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Fig. 1. The Kerr congruence focuses at the Kerr singular ring forming a branch line of space.
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Fig. 2. Radius of the disk depends on angular momentum J = a/m. Shape of the disk-like bubble
for different ratios a/R.

classical radius of electron, while radius of the disk, which is slightly exceeds the
value a = !/2m, corresponds to its Compton length. So, the ratio R/a = 137−1 is
the fine structure constant. How the classical KN solution knows the basic quantum
parameters? Is it coincidence? The KN disk-like source takes the Compton size, and
thus, we should identify it as a dressed electron.

The em field is concentrated in the equatorial plane, cos θ = 0, at the border
of the disk, r = re, forming a closed relativistic string very close to the regularized
Kerr singular ring. Boundary of the disk-like source R = re = e2/2m plays the role
of a cut off parameter. Vector potential of the KN solution

Aµdx
µ = −Re

[(

e

r + ia cos θ

)]

(dr − dt− a sin2 θdφ) (4)

contains the longitudinal φ component which forms the closed Wilson loop along
boundary of the disk. Interplay of this loop with phase of the Higgs field leads to
quantization of the angular momentum of the KN source.

Shape of the source is compliant to deformations, and a circular string-like
structure is formed of the edge border of the disk, size of which is proportional to
angular momentum (see Fig. 2). There appear the specific features which allow to
identify the KN source as a bag model :12,13

– the source is formed by the Higgs mechanism of symmetry breaking,
– the source is compliant, and its deformations create stringy structure,
– the source admits consistent implementation of the Dirac equation,
– mass of the confined fermion is created by the Higgs field and is variable function
of the space-time distribution of the Higgs condensate.

1641002-4



January 18, 2016 10:25 IJMPA S0217751X16410025 page 5

Source of the Kerr-Newman solution

3. Supersymmetric Domain Wall Phase Transition

The usual non-linear self-interaction of the Higgs field described by the potential
V (r) = λ(|H |2 − η2)2 conflicts with external KN solution, and we shell use the
supersymmetric scheme of phase transition based on the triplet of the chiral fields
Φ(i) = {H,Z,Σ}, where H is taken as the Higgs field. As it was shown in Refs. 12,
16, 17, the corresponding Higgs-Landau-Ginzburg (HLG) Lagrangian with a special
superpotential W (Φ(i)) (suggested by J. Morris18) provides two vacuum states:

(I.VacIn)- a supersymmetric false-vacuum state inside the bubble; the Higgs field
is nonzero |H | = η, and space-time is flat, but the gauge symmetry is broken, and
(II.VacExt)- the external vacuum state with vanishing Higgs field |H | = 0; Z = 0;
Σ = η leading to the unbroken gauge symmetry of the external KN solution.

The field model of regularization in zone (I.VacIn) coincides with the well known
Nielsen-Olesen field models for the vortex string in superconducting media. Interac-
tion of Higgs field H(x) = |H |eiχ(x) with the KN vector potential inside the bubble
is determined by the equation

∇ν∇νAµ = Iµ =
1

2
e|H |2(χ,µ +eAµ) . (5)

As a consequence of the rhs of (5), the gradient of the phase of the Higgs field χ,µ
compensates potential Aµ and the current Iµ is expelled from interior of the bubble
to its boundary. The EM field is regularized, indicating superconducting nature of
the internal vacuum state. As was shown in Refs. 16 and 12, Eq. (5) leads to two
important peculiarities of this solitonic source:

(i) spin of the source is quantized – the flux of the vector potential in
φ-direction forms a quantum Wilson loop

∮

eAφdφ = −4πma, leading to relation
J = ma = n!/2, n = 1, 2, 3...

(ii) the source has an oscillon structure – the Higgs condensate forms a
coherent vacuum state oscillating with the frequency ω = 2m.

The consequent treatment in Ref. 13 showed that the bag-bubble represents
a supersymmetric, BPS-saturated soliton formed by the supersymmetric domain
wall (DW) phase transition. We should note that the supersymmetric chiral field
models where earlier considered mainly for the case of planar domain walls, and the
corresponding reduction of the Hamiltonian to Bogomolnyi form was performed by
using an artificial “trick” (see for example Refs. 19 and 20) connected with intro-
duction of the constant phase factors, physical meaning which was very uncertain.
In the case of DW for the KN source, this transformation turns out to be still more
complicated, because the DW forms a bubble with a very curved profile (see Fig. 3)
and the Bogomolnyi equations related to twisted coordinate system of the Kerr
geometry.

Reduction of the chiral DW equations to Bogomolnyi form, performed in Ref. 13
for the curved Kerr DW source, showed important peculiarity that one of the phases,
that have been considered in previous models as constant, in the Kerr DW model
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Fig. 3. Profile of the axial section of the spheroidal domain wall phase transition.

turned out to be related with the phase of the Higgs field, and therefore, it became
dependent on the angular coordinate and time. Therefore, the transformation to
Bogomolnyi form, which previously looked rather artificial, acquired in the Kerr
geometry the clear physical meaning, by showing how the obscure constant phases
should work at full capacity.

It was obtained that the mass-energy of the supersymmetric interior of the
bubble, together with its DW boundary, is determined by the incursion of the
superpotential crossing the DW boundary ∆W = W (R + δ)−W (R − δ) = −µη2.
Integration over the Kerr radial coordinate r on the positive sheet of Kerr geometry,
r ∈ [0, R], yields

Mch = 4π(R2 +
1

3
a2)∆W . (6)

However, as it was recently obtained (unpublished), the total contribution should
vanish, because integration over r may analytically be extended to negative sheet,
r ∈ [−R, 0], where∆W gives opposite contribution. Therefore, the KN source forms
a type of “breather”, the bubble-antibubble analog of the 2D kink-antikink solution.
As a result, the total mass of the source is determined only by the surface currents
and by the external EM field.

4. Embedding of the Dirac Equation in the KN Bag Model

The massive quark-fermion, described by the Dirac equation, is confined inside the
bag, trying to get energetically advantageous position with minimum mass. Thus, in
the bag models mass is variable function determined by vev of the Higgs condensate.
In the KN bag, the Higgs condensate is enclosed inside the badb (I.VacIn), and

bNote, that in the MIT bag situation is opposite that is unacceptable for KN gravity.
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Fig. 4. Spinors φα and χ̄α̇ are placed on different sheets controlled by the Kerr theorem. Inside
the bag the Weyl spinors are joined into the Dirac field, acquiring mass via Yukawa coupling.

the Dirac equation acquire mass inside the bag, while outside it is massless, and the
splits into two equations for the massless Weyl spinors. The Weyl spinors have to be
collinear to the Kerr congruence.c The later is determined by the Kerr Theorem
in terms of the projective twistor coordinates12,15,17

T a = {Y, ζ − Y v, u+ Y ζ̄} . (7)

We note that the first projective twistor coordinate Y = φ1/φ0, represents in fact
the Weyl spinor φα, and thus, this Twistor/Spinor correspondence provides consis-
tency of the Dirac field with KN gravity.

The two Weyl spinor solutions, φα and χ̄α̇, generated by the Kerr theorem
are consistent with KN solution. However, they are not equivalent, since they are
collinear to two different Kerr congruences and turn out to be related to different
sheets of the Kerr geometry. Only one of them is “retarded” and compatible with
the external KN solution. Another one is “advanced” and should live on another
(unphysical) sheet of the Kerr geometry, see Fig. 4. Inside the bag the space-time
is flat, and the both spinors turns out to be consistent with metric. They are joined
into a Dirac bispinor, satisfying the Dirac equation

(γµ∂µ +m)Ψ(x) = 0 , (8)

which acquires the mass from the Higgs condensate H(x). Similarly to the other
bag models, the mass turns out to be a variable function m(x) ≡ gH(x) depending
on the concentration of the Higgs field.

The mentioned non-equivalence of the “left” and “right” Weyl spinors is con-
sistent with basic conceptions of the electroweak sector of the Standard Model.

cIt requires the algebraically special structure of the Kerr geometry.
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5. Stringy Deformations of the KN Bag

Taking the bag model conception, we should also accept the dynamical point of
view that the bags are to be soft and deformed acquiring excitations, similar to
excitations of the dual string models. By deformations the bags may form stringy
structures with radial and rotational excitations, forming the open strings or flux-
tubes.11

The bag-like source of the KN solution without rotation, a = 0, has the classical
electron radius R = re = e2/2m, and is similar to the suggested by Dirac21 the
spherical “extensible” electron model.d The KN rotating disk-like bag, may be
considered as the spherical bag stretched by rotation to the disk of the Compton
radius, a = !/2mc.

It has been obtained long ago that the Kerr geometry is related with the dual
string models. The Kerr singular ring was associated in Refs. 1, 2, 22, 23 with a
closed ring-string which may carry traveling waves like a waveguide. In the soliton-
bag model the Kerr singularity disappears, but its role is played by the sharp
border of the disk-like bag. Like the Kerr singular ring, it serves as a carrier of
the traveling waves. It was shown in Ref. 24 that field structure of this string is
similar to the structure of the fundamental string, obtained by Sen as a solitonic
string-like solution to low energy string theory. The EM and spinor excitations of
the KN solution are concentrated near the Kerr ring, forming the stringy traveling
waves.1,2,22 For the stationary KN solution the EM field forms a frozen wave, located
along the border of the disk-like source. Locally, this frozen string is the typical
plane-fronted EM wave propagating along the Kerr singular ring. In the regularized
KN solution, the Kerr singular ring is regularized by the cut-off parameter R = re,
which is constant because of the axial symmetry of the stationary KN solution, as
shown in Fig. 5A. The Kerr circular ring is formed as the focus line of the Kerr null
congruence, and represents a closed light-like curve. The corresponding closed KN
string, positioned along border of the bag, turns out to be relativistically rotating,
and any external observer will see it reduced by Lorentz contraction.25 The simple
cinematic relations allow estimate the Lorentz factor, γ−1 =

√
1− v2 ≈ α = 137−1,

and therefore, the observable radius of the closed string in the source of stationary
KN solution is reduced by Lorentz contraction to the classical size re.

A new effect appears when the “frozen” EM excitation of the stationary KN
solution is completed by the lowest excitation of the traveling wave. All the exact
solutions for the EM field on the Kerr background were obtained in Ref. 15, and
they are defined by analytic function A = ψ(Y, τ)/P 2 where Y = eiφ tan θ

2 is a
complex projective angular variable, τ = t− r− ia cos θ is a complex retarded-time
parameter and P = 2−1/2(1 + Y Ȳ ) for the Kerr geometry at rest. Vector potential

dIn fact it was a prototype of the bag model, which had in rest the classical radius, but radial
excitations turned it into muon.
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Fig. 5. Regularization of the KN EM field. Section of the disk-like bag in equatorial plane.
Distance from positions of the boundary of the bag from position of the (former) singular ring
acts as a cut-off parameter R. (A) Axially symmetric KN solution gives a constant cut-off R = re.
(B) The boundary of the bag is deformed by a traveling wave, creating a circulating singular point
of tangency (zitterbewegung).

is determined by function ψ as follows15

Aµdx
µ = −Re

[(

ψ

r + ia cos θ

)

e3 + χdȲ

]

, χ = 2

∫

(1 + Y Ȳ )−2ψdY . (9)

The simplest function ψ = −e corresponds to the frozen EM field of the stationary
KN solution leading to the function (2). The lowest excitation is given by combi-
nation

ψ = e

(

1 +
1

Y
eiωτ

)

. (10)

The EM traveling waves will deform the bag surface, and it is easy to find a back-
reaction of this excitation. Like the stationary KN solution, function ψ acts on the
metric through the function H , which has in general case the form

H =
mr − |ψ|2/2
r2 + a2 cos2 θ

. (11)

Boundary of the disk is very close to position of the Kerr singular ring, and regular-
ization by the constant cut-off parameter R = re, is replaced now by the boundary
of the deformed bag, which again can be determined from the condition H = 0,
which yields the cut-off parameter for EM field R = |ψ|2/2m. The corresponding
deformations of the bag boundary are shown in Fig. 5B. One sees that solution (10)
takes in equatorial plane (cos θ = 0) the form ψ = e(1 + e−i(φ−ωt)), and the cut-off
parameter R = |ψ|2/2m = e2

m (1 + cos(φ − ωt) depends on φ − ωt. Vanishing R at
φ = ωt creates singular pole which circulates along the ring-string together with
traveling wave of the string excitation, reproducing the known zitterbewegung of the
Dirac electron. This pole may be interpreted as a point-like bare electron forming
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a single end point of the light-like circular string, or as a light-like quark associated
with fermionic sector. This model unites the dressed and point-like electron in a
single bag-string-quark structure.

6. Conclusion

Supersymmetry determines the structure of source of the KN solution almost
uniquely, leading to Bogomolnyi equations which determine its stability.13 Any
deviation of the domain wall boundary from the surface of “zero gravity potential”,
determined by the equation (3), will break supersymmetry, adding gravitating terms
to the supersymmetric vacuum states and breaking the Bogomolnyi bound for the
domain wall phase transition. This works for any value of the gravitational constant,
contrary to the weakness of the gravitational interaction.

Answering the question: which structure of the electron would be consistent
with gravity, the Kerr-Newman gravity shows striking awareness of the many basic
features of the quantum theory, such as the values of the classical and Compton pa-
rameters of the electron, and its gyromagnetic ratio, leading to a geometric meaning
to the fine-structure constant α = R/a, as the degree of oblateness of the disk-like
source of the KN solution. The obtained bag-like structure of the source of the KN
solution shows its relationships with string theory, and leads us to the gravitating
bag model, suggesting that electron structure should not be far from the structure
of hadrons. The gravitating bag model of the source of KN solution unifies quantum
theory with gravity, indicating that gravity plays fundamental role in the structure
of elementary particles.
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