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Abstract

It is currently widely accepted, as a result of Bell’s theorem and related experiments,

that quantum mechanics is inconsistent with local realism and there is the so called

quantum non-locality. We show that such a claim can be justified only in a simplified

approach to quantum mechanics when one neglects the fundamental fact that there

exist space and time. Mathematical definitions of local realism in the sense of Bell and

in the sense of Einstein are given. We demonstrate that if we include into the quantum

mechanical formalism the space-time structure in the standard way then quantum

mechanics might be consistent with Einstein’s local realism. It shows that loopholes

are unavoidable in experiments aimed to establish a violation of Bell‘s inequalities.

We show how the space-time structure can be considered from the contextual point of

view. A mathematical framework for the contextual approach is outlined.
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1 Introduction

1.1 Quantum non-locality without space and time?

Einstein, Podolsky and Rosen (EPR) presented an argument to show that there are situa-
tions in which the scheme of quantum theory seems to be incomplete [1]. They proposed a
gedanken experiment involving a system of two particles spatially separated but correlated
in position and momentum and argued that two non-commuting variables (position and
momentum of a particle) can have simultaneous physical reality. They concluded that the
description of physical reality given by quantum mechanics, which, due to the uncertainty
principle, does not permit such a simultaneous reality, is incomplete.

Though the EPR work dealt with continuous position and momentum variables most of
the further activity have concentrated almost exclusively on systems of discrete spin variables
following to the Bohm [2] and Bell [3] works.

Entangled states, i.e. the states of two particles with the wave function which is not a
product of the wave functions of single particles, have been studied in many theoretical and
experimental works starting from works of Einstein, Podolsky and Rosen and Schrodinger.

Bell’s theorem [3] states that there are quantum spin correlation functions that can not
be represented as classical correlation functions of separated random variables. It has been

2



interpreted as incompatibility of the requirement of locality with the statistical predictions
of quantum mechanics [3]. For a recent discussion of Bell’s theorem see, for example [4]
- [18] and references therein. It is now widely accepted, as a result of Bell’s theorem and
related experiments, that ” local realism” must be rejected and there exists the so called
quantum non-locality.

However it was shown in [17, 18, 20] that in the derivation of such a conclusion the
fundamental fact that space-time exists was neglected. Moreover, if we take into account the
spatial dependence of the wave function then the standard formalism of quantum mechanics
might be consistent with local realism.

1.2 Contextual approach

From the other side a general contextual approach to the probabilistic scheme of quantum
theory was proposed in [19]. It is based on the transformation rules induced by context tran-
sitions. Context is a complex of physical conditions used for the preparation of quantum or
classical states. The idea of the contextual dependence of probabilistic results of observa-
tions is a very general one. It can be used and developed in various directions. In particular
it was suggested in [20] to treat boundary conditions for quantum mechanical differential
equations as an appropriate context.

Context describes a measure of idealization which we use to construct a mathematical
model for a physical process. For example in some approximation one can deal with models
of quantum phenomena when the spatial characteristics are neglected as it was done by Bell
in his consideration of the EPR paradox. However if we want to speak about fundamental
properties of quantum theory then the principal role of the space-time picture should not
be overlooked. In axiomatic approach to quantum theory after von Neumann [22] one often
postulates only the formalism of Hilbert space, its statistical interpretation and the abstract
Schrodinger evolution equation but without indication to the spatial properties of quantum
system. The necessity of including into the list of basic axioms of quantum mechanics the
property of covariance of the physical system under the spatial translation and rotation and
moreover under the Galilei or Poincare group was stressed in [21].

In this paper we combine the spatial approach to problems of quantum non-locality
from [18, 21] with the contextual approach of [19] to investigate problems of quantum non-
locality and local realism. We consider the space-time as a context for a quantum model.
We will present a mathematical formalism for the contextual approach. We will give also
two different definitions of the notions of local realism which we call Bell’s and Einstein’s
local realism. We demonstrate that if we include into the quantum mechanical formalism
the space-time structure in the standard way then quantum mechanics actually is consistent
with local realism. Since detectors of particles are obviously located somewhere in space
it shows that loopholes are unavoidable in experiments aimed to establish a violation of
Bell‘s inequalities. Our main tool will be analysis of correlation functions in quantum and
in classical theory.
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1.3 Bell’s local realism

A mathematical formulation of Bell’s local realism may be given by relation (in more details
it is discussed in the next section)

〈ψ|A(a)B(b)|ψ〉 = Eξ(a)η(b) (1)

Here A(a) and B(b) are self-adjoint operators which commute on a natural domain and a
and b are certain indices. Here E is a mathematical expectation and ξ(a) and η(b) are two
stochastic processes and ψ is a vector from a Hilbert space. Then we say that the triplet

{A(a), B(b), ψ}

satisfies the Bell‘s local realism (BLR) condition.
Bell proved that a two spin quantum correlation function which is equal to just −a · b,

where a and b are two 3-dimensional vectors, can not be represented in the form (1 ),

〈ψspin|σ · a⊗ σ · b|ψspin〉 6= Eξ(a)η(b) (2)

if one has a bound |ξ(a)| ≤ 1, |η(b)| ≤ 1. Here a = (a1, a2, a3) and b = (b1, b2, b3) are two
unit vectors in three-dimensional space R3 and σ = (σ1, σ2, σ3) are the Pauli matrices,

Therefore the correlation function of two spins does not satisfy to the BLR condition (1).
In this sense sometimes one speaks about quantum non-locality.

1.4 Space and time in axioms of quantum mechanics

Note however that in the previous discussion the space-time parameters were not explicitly
involved though one speaks about non-locality. Actually the ”local realism” in the Bell sense
as it was formulated above in Eq. (1) is a notion which has nothing to do with notion of
locality in the ordinary 3 dimensional space. Therefore we define also another notion which
we will call the condition of local realism in the sense of Einstein.

To explain the notion let us first remind that the usual axiomatic approach to quantum
theory involves only the Hilbert space, observable, the density operator ρ and the von Neu-
mann formula for the probability P (B) of the outcome B: P (B) = TrρEB where {EB} is
POVM associated with a measured space (Ω,F), here B belongs to the σ-algebra F . It was
stressed in [21] that in a more realistic axiomatic approach to quantum mechanics one has
to includes an axiom on the existing of space and time. It can be formulated as follows

U(d)EBU(d)∗ = Eαd(B)

Here U(d) is the unitary representation of the group of translations in time and in the
three-dimensional space and αd : F → F is the group of automorphisms..

1.5 Einstein’s local realism

Let in a Hilbert space H be given a family of self-adjoint operators {A(a,O)} and {B(b,O)}
parameterized by the regions O in the Minkowsky space-time. Suppose that one has a
representation

〈ψ|A(a,O1)B(b,O2)|ψ〉 = Eξ(a,O1)η(b,O2) (3)
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for a, b,O1,O2 for which the operators commute. Then we say that the quadruplet

{A(a,O1), B(b,O2), U(d), ψ}

satisfies the Einstein local realism (ELR) condition.

1.6 Local realist representation for quantum spin correlations

Quantum correlation describing the localized measurements of spins in the regions O1 and
O2 includes the projection operators PO1

and PO2
. In contrast to Bell‘s theorem (2 ) now

there exists a local realist representation [18]

〈ψ|σ · aPO1
⊗ σ · bPO2

|ψ〉 = Eξ(O1, a)η(O2, b) (4)

if the distance between the regions O1 and O2 is large enough. Here all classical random
variables are bounded by 1.

Since detectors of particles are obviously located somewhere in space it shows that loop-
holes are unavoidable in experiments aimed to establish a violation of Bell‘s inequalities.
Though there were some reports on experimental derivation of violation of Bell’s inequali-
ties, in fact such violations always were based on additional assumptions besides local realism.
No genuine Bell’s inequalities have been violated since always some loopholes were in the
experiments, for a review see for example [4, 13]. There were many discussions of proposals
for experiments which could avoid the loopholes however up to now a convincing proposal
still did not advanced .

One can compare the situation with attempts to measure the position and momentum
of a particle in a single experiment. Also one could speak about some technical difficulties
(similar to the efficiency of detectors loophole) and hope that some could come with a
proposal to make an experiment without loopholes. However we know from the uncertainty
relation for the measurement of momentum and position that it is not possible. Similarly the
formula (4) shows that a loophole free experiment in which a violation of Bell’s inequalities
will be observed is impossible if the distance between detectors is large enough. Therefore
loopholes in Bell’s experiments are irreducible.

1.7 EPR versus Bohm and Bell

The original EPR system involving continuous variables has been considered by Bell in [29].
He has mentioned that if one admits ”measurement” of arbitrary ”observable” at arbitrary
state than it is easy to mimic his work on spin variables (just take a two-dimensional subspace
and define an analogue of spin operators). The problem which he was discussing in [29]
is narrower problem, restricted to measurement of positions only, on two non-interacting
spin-less particles in free space. Bell used the Wigner distribution approach to quantum
mechanics.The original EPR state has a nonnegative Wigner distribution. Bell argues that
it gives a local, classical model of hidden variables and therefore the EPR state should not
violate local realism. He then considers a state with non-positive Wigner distribution and
demonstrates that this state violates local realism.

Bell‘s proof of violation of local realism in phase space has been criticized in [30] because
of the use of an unnormalizable Wigner distribution. Then in [31] it was demonstrated that
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the Wigner function of the EPR state, though positive definite, provides an evidence of the
nonlocal character of this state if one measures a parity operator.

In [32] we have applied to the original EPR problem the method which was used by Bell
in his well known paper [3]. He has shown that the correlation function of two spins cannot
be represented by classical correlations of separated bounded random variables. This Bell‘s
theorem has been interpreted as incompatibility of local realism with quantum mechanics.
It was shown in [32] that, in contrast to Bell‘s theorem for spin correlation functions, the
correlation function of positions (or momenta) of two particles always admits a representation
in the form of classical correlation of separated random variables.The following representation
was proved

〈ψ|q1(α1)q2(α2)|ψ〉 = Eξ1(α1)ξ2(α2) (5)

The explanation of the notations see below. Therefore we obtain a local realistic (in the
sense of Bell and in the sense of Einstein as well) representation for the correlation function
in the original EPR model. This result looks rather surprising since one thinks that the
Bohm-Bell reformulation of the EPR paradox is equivalent to the original one.

2 Correlation functions and local realism

A mathematical formulation of Bell’s local realism may be given as follows. Let, in a Hilbert
space H, be given two families of self-adjoint operators {A(a)} and {B(b)} which commute
[A(a), B(b)] = 0 on a natural domain. Here a and b are elements of two arbitrary sets of
indices. Suppose that one has a representation

〈ψ|A(a)B(b)|ψ〉 = Eξ(a)η(b) (6)

for any a, b where E is a mathematical expectation and ξ(a) and η(b) are two stochastic
processes such that the range of ξ(a) is the spectrum of A(a) and the range of η(b) is the
spectrum of B(b). Here ψ is a vector from H. Then we say that the triplet

{{A(a)}, {B(b)}, ψ}

satisfies the BLR (Bell‘s local realism) condition.
Bell proved that a two spin quantum correlation function which is equal to just −a · b,

where a and b are two 3-dimensional vectors, can not be represented in the form (13 ) if
one has a bound |ξ(a)| ≤ 1, |η(b)| ≤ 1. Therefore the correlation function of two spins does
not satisfy to the BLR condition (6). In this sense sometimes one speaks about quantum
non-locality.

Note however that in the previous discussion the space-time parameters were not explic-
itly involved though one speaks about non-locality. Actually the ”local realism” in the Bell
sense as it was formulated above in Eq. (13) is a very general notion which has nothing to do
with notion of locality in the ordinary three-dimensional space. We will define now another
notion which we will call the condition of local realism in the sense of Einstein. First let us
recall that in quantum field theory the condition of locality (local commutativity) reads:

[F (x), G(y)] = 0 (7)
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if the space-time points x and y are space-like separated. Here F (x) and G(y) are two Bose
field operators (for Fermi fields we have anti-commutator).

Let in the Hilbert space H there is a unitary representation U of the inhomogeneous
Lorentz group and let be given a family of self-adjoint operators {A(a,O)} parameterized
by the regions O in Minkowsky space-time where a is an arbitrary index. Let us suppose
that the unitary operator translations act as

U(d)A(a,O)U(d)∗ = A(a,O(d)) (8)

where d is a four dimensional vector and O(d)) is a shift of O at d. Let be given also a family
of operators {B(b,O)} with similar properties. Suppose that one has a representation

〈ψ|A(a,O1)B(b,O2)|ψ〉 = Eξ(a,O1)η(b,O2) (9)

for a, b,O1,O2 for which the operators commute

[A(a,O1), B(b,O2)] = 0

The correlation function (9) describes the results of a simultaneous measurement. Moreover
we suppose that the range of ξ(a,O1) is the spectrum of A(a,O1) and the range of η(b,O2)
is the spectrum of B(b,O2). Then we say that the quadruplet

{{A(a,O1)}, {B(b,O2)}, U, ψ}

satisfies the ELR (Einstein local realism) condition.
For Fermi fields which anti-commute we assume the same relation (9) but the random

fields ξ and η should be now anti-commutative random fields (superanalysis and probability
with anticommutative variables are considered in [33, 34]).

One can write an analogue of the presented notions in the case when the region O shrinks
to a point (in such a case we have an operator A(a, x)) and also for n-point correlation
functions

〈ψ|A1(a1, x1)...An(an, xn)|ψ〉 = Eξ1(a1, x1)...ξn(an, xn) (10)

A non-commutative spectral theory related with such representations is considered in [20].

3 Contextual classical and quantum probability

The contextual probabilistic approach is nothing than probabilistic formalization of Bohr’s
idea that the whole experimental arrangement must be taken into account. The basic pos-
tulate of the contextual probabilistic approach to general statistical measurements is that
probability distributions for physical variables depend on complexes of experi-

mental physical conditions. Such complexes are called (experimental) contexts. Math-
ematically contextualism means the impossibility to operate with an abstract (e.g. Kol-
mogorov) probability P indending of a context. Thus, in the opposite to traditions in prob-
ability theory, we could not work with e.g. a single Kolmogorov probability space (Ω,F ,P)
that was fixed once and for ever. If we choose the measure theoretical approach to prob-
ability (Kolmogorov, 1933), then in the contextualist probabilistic framework we should to
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work with families of Kolmogorov probability spaces. Here mathematically every context is
represented by its own probability space, compare to the camelion approach of L. Accardi
[35] and the theory of probability manifolds of S. Gudder [36] .

Moreover, Kolmogorov’s measure-theoretical probability theory [37] is not so natural as
the mathematical base for the contextual probabilistic approach to statistical measurements.
The main contribution of A. N. Kolmogorov into axiomatisation of probability theory was
consideration of abstract probability measures. The great advantage of the Kolmogorov prob-
ability theory was the possibility to perform general probabilistic derivations, i.e., derivations
for abstract probabilities without to take into account contextual dependence of probabilities.

But in the contextual probabilistic framework it would be more natural to start not
with an abstract probability, but directly with a context and then consider a sequence of
experimental trails in this context. As the result, we get a sequence of physical characteristics
of systems under consideration. Then we can define the probability distribution (if it exists
at all) of those characteristics by using the principle of statistical stabilization of relative
frequencies. Mathematical formalization of this approach (frequency probability theory) was
proposed by R. von Mises [38] on the basis of theory of collectives (random sequences). Thus
if we use the frequency probability theory, then we can identify a context with a collective.
Our fundamental thesis “first context – then probability distribution” is closely related to von
Mises’ fundamental thesis: “first collective – then probability distribution”.

The authors of the paper are well aware that the original von Mises definition of collective
was not mathematically rigorous, see e.g. on the details. This problem induced extended
investigations on the notion of randomness, see e.g. [39], [40]. In particular, those investi-
gations induced the theory of recursive functions and Kolmogorov’s algorithmic complexity.
We recall that, in particular, if we restrict the class of von Mises place selections to recur-
sive functions, then we get mathematically well defined theory of collectives. However, the
present paper is far away all those problems with the notion of randomness. All our con-
siderations are related only to the statistical stabilization of relative frequencies. We do not
take care on randomness. We belief that all sequence induced by e.g. quantum statistical
experiments are random.

Mathematical formalization of the notion of context in general case is a problem of large
complexity. In this paper we propose the following definition of quantum conmtext.

Definition. Every family A = {A1, A2, ...} (finite or infinite) of self-adjoint commutative
operators is said to be a quantum context.

Example 1. ( Space-time context). Let A = {A1, A2, A3, A4} be the system of genera-
tors of the unitary group of translations. Then A is said to be the space-time context.

Example 2. (Internal symmetry). Let G by a compact Lie group if internal symmetries
(for example, the gauge group U(1) which describes the electric charge ). Then generators
of the unitary representation of the group defines the internal symmetry context.

4 Bell‘s Theorem and Stochastic Processes

In the presentation of Bell’s theorem we will follow [17] where one can find also more
references. Bell’s theorem, as it is formulated in [17], reads:

(a, b) 6= Eξ(a)η(b) (11)
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were a = (a1, a2, a3) and b = (b1, b2, b3) are two unit vectors in three-dimensional space R3.
Here ξ(a) = ξ(a, λ) and η(b) = η(b, λ) are random fields on the sphere, λ is an element from
the probability space (Λ,F , dρ(λ)). Here Λ is a set, F is a sigma-algebra of subsets and
dρ(λ) is a probability measure, i.e. dρ(λ) ≥ 0,

∫

dρ(λ) = 1. The expectation is

Ef =
∫

Λ
f(λ)dρ(λ)

The random fields satisfy the bound

|ξ(a, λ)| ≤ 1, |η(b, λ)| ≤ 1 (12)

The theorem says that there exists no probability space and a pair of stochastic processes
with indicated properties such that their expectation is equal to the scalar product of the
vectors a and b. The form (11) is convenient for various generalizations. o

Let us discuss now a physical interpretation of this result. In the Bohm formulation of
the EPR argument one considers a pair of spin one-half particles formed in the singlet spin
state and moving freely towards two detectors. If one neglects the space part of the wave
function then one has the Hilbert space C2 ⊗C2 and the quantum mechanical correlation of
two spins in the singlet state ψspin ∈ C2 ⊗ C2 is

Dspin(a, b) = 〈ψspin|σ · a⊗ σ · b|ψspin〉 = −a · b (13)

Here a = (a1, a2, a3) and b = (b1, b2, b3) are two unit vectors in three-dimensional space R3,
σ = (σ1, σ2, σ3) are the Pauli matrices, σ · a =

∑3
i=1 σiai and

ψspin =
1√
2

((

0
1

)

⊗
(

1
0

)

−
(

1
0

)

⊗
(

0
1

))

.

The proof of the theorem is based on Bell‘s or the Clauser-Horn-Shimony-Holt (CHSH)
inequalities. Let us stress that the main point in the mathematical proof is actually not
the discretness of the classical or quantum spin variables and even not a nonlocality but the
bound (12) for classical random fields.

4.1 Classical model of spin correlation

To explain the last point we present here a simple local in the sense of Bell classical prob-
abilistic model which reproduces the quantum mechanical correlation of two spins. Let us
take as a probability space Λ just 3 points: Λ = {1, 2, 3} and the expectation

Ef =
1

3

3
∑

λ=1

f(λ)

Let the random fields be

ξ(a, λ) = η(a, λ) =
√

3aλ, λ = 1, 2, 3

Then one has the relation:
(a, b) = Eξ(a)ξ(b)

9



The Bell‘s theorem (11) does not valid in this case because we do not have the bound (12).
Instead we have

|ξ(a, λ)| ≤
√

3

This model shows that the bound (12) plays the crucial role in the proof of Bell‘s theorem.
Actually to reproduce (a, b) we can use even a deterministic model: simply the first experi-
mentalist will report about the measurement of the components of the vector (a1, a2, a3) and
the second about the measurement of the components of the vector (b1, b2, b3).

4.2 CHSH Inequality

The proof of Bell’s theorem is based on the following theorem which is a slightly generalized
the Clauser-Horn-Shimony-Holt (CHSH) result.

Theorem 2. Let f1, f2, g1 and g2 be random variables (i.e. measured functions) on the
probability space (Λ,F , dρ(λ)) such that

|fi(λ)gj(λ)| ≤ 1, i, j = 1, 2. (14)

Denote
Pij = Efigj, i, j = 1, 2.

Then
|P11 − P12| + |P21 + P22| ≤ 2 (15)

The last inequality is called the CHSH inequality.

5 Correlation functions in EPR model

Now let us apply similar approach to the original EPR case [32]. The Hilbert space of
two one-dimensional particles is L2(R)⊗L2(R) and canonical coordinates and momenta are
q1, q2, p1, p2 which obey the commutation relations

[qm, pn] = iδmn, [qm, qn] = 0, [pm, pn] = 0, m, n = 1, 2 (16)

The EPR paradox can be described as follows. There is such a state of two particles
that by measuring p1 or q1 of the first particle, we can predict with certainty and without
interacting with the second particle, either the value of p2 or the value of q2 of the second
particle. In the first case p2 is an element of physical reality, in the second q2 is. Then, these
realities must exist in the second particle before any measurement on the first particle since
it is assumed that the particle are separated by a space-like interval. However the realities
can not be described by quantum mechanics because they are incompatible – coordinate and
momenta do not commute. So that EPR conclude that quantum mechanics is not complete.
Note that the EPR state actually is not a normalized state since it is represented by the
delta-function, ψ = δ(x1 − x2 − a).

An important point in the EPR consideration is that one can choose what we measure –
either the value of p1 or the value of q1.

10



For a mathematical formulation of a free choice we introduce canonical transformations
of our variables:

qn(α) = qn cosα− pn sinα, pn(α) = qn sinα + pn cosα; n = 1, 2 (17)

Then one gets
[qm(α), pn(α)] = iδmn; n = 1, 2 (18)

In particular one has qn(0) = qn, qn(3π/2) = pn, n = 1, 2.
Now let us consider the correlation function

D(α1, α2) = 〈ψ|q1(α1) ⊗ q2(α2)|ψ〉 (19)

The correlation function D(α1, α2) (19) is an analogue of the Bell correlation function
Dspin(a, b) (13). Bell in [29] has suggested to consider the correlation function of just the
free evolutions of the particles at different times (see below).

We are interested in the question whether the quantum mechanical correlation function
(19) can be represented in the form

〈ψ|q1(α1) ⊗ q2(α2)|ψ〉 = Eξ1(α1)ξ2(α2) (20)

Here ξn(αn) = ξn(αn, λ), n = 1, 2 are two real random processes, possibly unbounded The
parameters λ are interpreted as hidden variables in a realist theory.

Theorem. For an arbitrary state ψ ∈ L2(R) ⊗ L2(R) on which products of operators
q1, q2, p1, p2 are defined there exist random processes ξn(αn, λ) such that the relation (20) is
valid.

Proof. We rewrite the correlation function D(α1, α2) (19) in the form

〈ψ|q1(α1) ⊗ q2(α2)|ψ〉 =< q1q2 > cosα1 cosα2− < p1q2 > sinα1 cosα2 (21)

− < q1p2 > cosα1 sinα2+ < p1p2 > sinα1 sinα2

Here we use the notations as
< q1q2 >= 〈ψ|q1q2|ψ〉

Now let us set
ξ1(α1, λ) = f1(λ) cosα1 − g1(λ) sinα1,

ξ2(α2, λ) = f2(λ) cosα2 − g2(λ) sinα2

Here real functions fn(λ), gn(λ), n = 1, 2 are such that

Ef1f2 =< q1q2 >, Eg1f2 =< p1q2 >, Ef1g2 =< q1p2 >, Eg1g2 =< p1p2 > (22)

We use for the expectation the notations as Ef1f2 =
∫

f1(λ)f2, (λ)dρ(λ). To solve the system
of equations (22) we take

fn(λ) =
2
∑

µ=1

Fnµηµ(λ), gn(λ) =
2
∑

µ=1

Gnµηµ(λ) (23)
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where Fnµ, Gnµ are constants and Eηµην = δµν . We denote

< q1q2 >= A, < p1q2 >= B, < q1p2 >= C, < p1p2 >= D.

A solution of Eqs (22) may be given for example by

f1 = Aη1, f2 = η1,

g1 = Bη1 + (D − BC

A
)η2, g2 =

C

A
η1 + η2

Hence the representation of the quantum correlation function in terms of the separated
classical random processes (20) is proved.

Remark 1. We were able to solve the system of equations (22) because there are no
bounds to the random variables f1, f2, g1, g2. In the case of the Bohm spin model one has the
bound (14) which leads to the CSHS inequality (15) and as a result an analogue of equations
(22) in the Bohm model has no solution.

Remark 2. The condition of reality of the functions ξn(αn, λ) is important. It means
that the range of ξn(αn, λ) is the set of eigenvalues of the operator qn(αn). If we relax this
condition then one can get a hidden variable representation just by using an expansion of
unity:

〈ψ|q1(α1)q2(α2)|ψ〉 =
∑

λ

〈ψ|q1(α1)|λ〉 〈λ|q2(α2)|ψ〉

For a discussion of this point in the context of a noncommutative spectral theory see [18].
Similarly one can prove a representation

〈ψ|q1(t1) ⊗ q2(t2)|ψ〉 =
∫

ξ1(t1, λ)ξ2(t2, λ)dρ(λ) (24)

where qn(t) = qn + pnt, n = 1, 2 is a free quantum evolution of the particles. It is enough to
take

ξ1(t1, λ) = f1(λ) + g1(λ)t1, ξ2(t2, λ) = f2(λ) + g2(λ)t2.

Remark 3. In fact we can prove a more general theorem. If f(s, t) is a function of two
variables then it can be represented as the expectation of two stochastic processes: f(s, t) =
Eξ(s)η(t). Indeed, if f(s, t) =

∑

n gn(s)hn(t) then we can take

ξ(s, ω) =
∑

n

gn(s)xn(ω), η(t, ω) =
∑

n

hn(s)xn(ω)

where Exnxm = δnm.

6 Space-time dependence of correlation functions and

disentanglement

6.1 Modified Bell‘s equation

In the previous sections the space part of the wave function of the particles was neglected.
However exactly the space part is relevant to the discussion of locality. The Hilbert space
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assigned to one particle with spin 1/2 is C2 ⊗L2(R3) and the Hilbert space of two particles
is C2 ⊗ L2(R3) ⊗ C2 ⊗ L2(R3). The complete wave function is ψ = (ψij(r1, r2, t)) where i
and j are spinor indices, t is time and r1 and r2 are vectors in three-dimensional space.

We suppose that there are two detectors (A and B) which are located in space R3 within
the two localized regions O1 and O2 respectively, well separated from one another. If one
makes a local observation in the region O1 then this means that one measures not only the
spin observable σi but also some another observable which describes the localization of the
particle like the energy density or the projection operator PO to the region O. Normally in
experiments there are polarizers and detectors. We will consider here correlation functions
which includes the projection operators PO.

Quantum correlation describing the localized measurements of spins in the regions O1

and O2 is

ω(σ · aPO1
⊗ σ · bPO2

) = 〈ψ|σ · aPO1
⊗ σ · bPO2

|ψ〉 (25)

Let us consider the simplest case when the wave function has the form of the product
of the spin function and the spacial function ψ = ψspinφ(r1, r2). Here φ(r1, r2) is a complex
valued function. Then one has

ω(σ · aPO1
⊗ σ · bPO2

) == g(O1,O2)Dspin(a, b) (26)

where the function
g(O1,O2) =

∫

O1×O2

|φ(r1, r2)|2dr1dr2 (27)

describes correlation of particles in space. It is the probability to find one particle in the
region O1 and another particle in the region O2.

One has
0 ≤ g(O1,O2) ≤ 1 (28)

6.2 Disentanglement

If O1 is a bounded region and O1(l) is a translation of O1 to the 3-vector l then one can
prove

lim
|l|→∞

g(O1(l),O2) = 0 (29)

Since
〈ψspin|σ · a⊗ I|ψspin〉 = 0

we have
ω(σ · aPO1

⊗ I) = 0.

Therefore we have proved the following proposition which says that the state ψ = ψspinφ(r1, r2)
becomes disentangled (factorized) at large distances.

Proposition. One has the following property of the asymptotic factorization (disentan-
glement) at large distances:

lim
|l|→∞

[ω(σ · aPO1(l) ⊗ σ · bPO2
) − ω(σ · aPO1(l) ⊗ I)ω(I ⊗ σ · bPO2

)] = 0 (30)
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or
lim
|l|→∞

ω(σ · aPO1(l) ⊗ σ · bPO2
) = 0.

Now one inquires whether one can write a representation

ω(σ · aPO1
⊗ σ · bPO2

) =
∫

ξ1(a,O1, λ)ξ2(b,O2, λ)dρ(λ) (31)

where |ξ1(a,O1, λ)| ≤ 1, |ξ2(b,O2, λ)| ≤ 1.
Remark. A local modified equation reads

|φ(r1, r2, t)|2(a, b) = Eξ(a, r1, t)η(b, r2, t).

If we are interested in the conditional probability of finding the projection of spin along
vector a for the particle 1 in the region O1 and the projection of spin along the vector b for
the particle 2 in the region O2 then we have to divide both sides of Eq. (31) by g(O1,O2).

Note that here the classical random variable ξ1 = ξ1(a,O1, λ) is not only separated in
the sense of Bell (i.e. it depends only on a) but it is also local in the 3 dim space since it
depends only on the region O1. The classical random variable ξ2 is also local in 3 dim space
since it depends only on O2. Note also that since the eigenvalues of the projector PO are 0
or 1 then one should have |ξn(a,On)| ≤ 1, n = 1, 2.

Due to the property of the asymptotic factorization and the vanishing of the quantum
correlation for large |l| there exists a trivial asymptotic classical representation of the form
(31) with ξ = η = 0.

We can do even better and find a classical representation which will be valid uniformly
for large |l|.

Let us take now the wave function φ of the form φ = ψ1(r1)ψ2(r2) where

∫

R3

|ψ1(r1)|2dr1 = 1,
∫

R3

|ψ2(r2)|2dr2 = 1

In this case
g(O1(l),O2) =

∫

O1(l)
|ψ1(r1)|2dr1 ·

∫

O2

|ψ2(r2)|2dr2

There exists such L > 0 that
∫

BL

|ψ1(r1)|2dr1 = ǫ < 1/2,

where BL = {r ∈ R3 : |r| ≥ L}.
We have the following
Theorem 4. Under the above assumptions and for large enough |l| there exists the

following representation of the quantum correlation function

ω(σ · aPO1(l) ⊗ σ · bPO2
) = Eξ(O1(l), a)ξ(O2, b)

where all classical random variables are bounded by 1.
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7 Conclusions

Mathematical definitions of local realism in the sense of Bell and in the sense of Einstein
are given in the paper. We show how the space-time structure can be considered from the
contextual point of view. A mathematical framework for the contextual approach is outlined.
We demonstrate that if we include into the quantum mechanical formalism the space-time
structure in the standard way then quantum mechanics might be consistent with Einstein’s
local realism. It shows that loopholes are unavoidable in experiments aimed to establish a
violation of Bell‘s inequalities.

It is shown also that, in contrast to the Bell‘s theorem for the spin or polarization vari-
ables, for the original EPR correlation functions which deal with positions and momenta one
can get a local realistic representation in terms of separated random processes. The repre-
sentation is obtained for any state including entangled states. Therefore the original EPR
model does not lead to quantum nonlocality in the sense of Bell even for entangled states.
One can get quantum nonlocality in the EPR situation only if we rather artificially restrict
ourself in the measurements with a two dimensional subspace of the infinite dimensional
Hilbert space corresponding to the position or momentum observables. An interrelation of
the roles of entangled states and the bounded observables in considerations of local realism
and quantum nonlocality deserves a further study.

It is important to develop further the mathematical theory of context in classical and in
quantum theory.
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