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GRAVITATING LEPTON BAG MODELA. Burinskii *Nulear Safety Institute, Russian Aademy of Sienes115191, Mosow, RussiaReeived January 19, 2015The Kerr�Newman (KN) blak hole (BH) solution exhibits the external gravitational and eletromagneti �eldorresponding to that of the Dira eletron. For the large spin/mass ratio, a� m, the BH loses horizons andobtains a naked singular ring reating two-sheeted topology. This spae is regularized by the Higgs mehanism ofsymmetry breaking, leading to an extended partile that has a regular spinning ore ompatible with the externalKN solution. We show that this ore has muh in ommon with the known MIT and SLAC bag models, but hasthe important advantage of being in aordane with the external gravitational and eletromagneti �elds of theKN solution. A peuliar two-sheeted struture of Kerr's gravity provides a framework for the implementationof the Higgs mehanism of symmetry breaking in on�guration spae in aordane with the onept of theeletroweak setor of the Standard Model. Similar to other bag models, the KN bag is �exible and pliant todeformations. For parameters of a spinning eletron, the bag takes the shape of a thin rotating disk of theCompton radius, with a ring-string struture and a quark-like singular pole formed at the sharp edge of thisdisk, indiating that the onsidered lepton bag forms a single bag�string�quark system.DOI: 10.7868/S00444510150800391. INTRODUCTION AND OVERVIEWIt has been disussed for a long time that blak holes(BH) are to be related to elementary partiles [1℄. TheKerr�Newman (KN) rotating BH solution was of espe-ial interest in this respet beause, as was shown byCarter [2℄, its gyromagneti ratio g = 2 orresponds tothe Dira eletron, and therefore the four measurableparameters of the eletron (spin J , mass m, harge e,and magneti moment �) indiate that gravitationaland eletromagneti �elds of the eletron should bedesribed by the KN solution. In reent paper [3℄,Dokuhaev and Eroshenko onsidered a solution of theDira equation under BH horizon, and suggested thatthis model may represent a � : : : partile-like hargedsolutions in general relativity : : : �. On the other hand,we note that the model of a Dira partile on�ned un-der a BH horizon an also be onsidered a type of grav-itating bag model, and it aquires speial interest be-ause this bag is to be gravitating, leading to a progressbeyond the known MIT and SLAC bag models [4, 5℄.However, the spin and harge of elementary partilesare very high with respet to their masses, whih pre-*E-mail: burinskii�mail.ru

vents formation of the BH horizons. In partiular, theKN solution with parameters of the eletron (hargee, mass m, and spin parameter a = J=m) exeeds thethreshold value e2 + a2 � m2 for the existene of thehorizons by about 21 orders. Similar ratios for otherelementary partiles show that besides the Higgs bo-son, whih has neither spin nor harge, none of the ele-mentary partiles may be assoiated with a true blakhole, and they should rather be assoiated with theover-rotating Kerr geometry, with jaj � m.The orresponding over-rotating KN spae has atopologial defet, the naked Kerr singular ring, whihforms a branh line of spae into two sheets desribedby di�erent metris: the sheet of advaned and sheetof retarded �elds. The Kerr singular and related two-sheeted struture reated the problem of a mysterioussoure of the Kerr and KN solutions, whih has re-eived onsiderable attention during more than fourdeades [6�14℄. For the story of this investigation, werefer the reader, e. g., to [15℄. Long-term attempts toresolve the puzzle of the soure of Kerr geometry led�rst to the model of the vauum bubble � a rotatingdisk-like shell [8; 9℄. The vauum state inside the bub-ble turned later into a superonduting bulk formed ofa false-vauum ondensate of the Higgs �eld [13, 14℄.The struture of the soure aquired typial features of228
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Fig. 1. Spherial bag with zero rotation, a=R = 0(A), and the rotating disk-like bags for di�erent ratiosa=R = 3 (B), 7 (C), 10 (D)the soliton and Q-ball models, beoming similar to theknown bag models [4, 5℄.Reent analysis of the Dira equation inside the KNsoliton soure [16℄ on�rmed that the regularized KNsolution shares muh in ommon with the known MITand SLAC bag models. However, the gravitating bagformed by the KN bubble soure should have spei�features assoiated with the need to preserve the exter-nal KN �eld.On the other hand, the semilassial theory of thebag models [5℄ inludes elements of quantum theorythat are based on a �at spae�time without gravity,and we are faed with the known on�it between grav-ity and quantum theory. Our solution to this problemin [13, 14℄ is based on two requirements.I. The spae�time should be �at inside the bag.II. The spae�time outside the bag should be theexat KN solution.Thus, the quantum�gravity on�it is resolved by sep-aration of their regions of in�uene. Remarkably, theserequirements determine features of the KN bag unam-biguously. First of all, they uniquely determine theborder of the KN bag, showing expliitly that, in a-ordane with the general onept of bag models [5, 17℄,the KN bag has to be �exible and its shape depends onthe rotation parameter a = J=m and on the loal in-tensity of the eletromagneti (EM) �eld.As a result, for parameters of an eletron, the rotat-ing bag takes the shape of a thin disk of ellipsoidal form(see Fig. 1). Its thikness R turns out to be equal to thelassial radius of the eletron re = e2=2m, while theradius of the disk orresponds to the Compton wave-

length of the disk1), whih allows identifying it with adressed eletron.The degree of oblateness of this disk is a=R == ��1 = 137, and the �ne struture onstant � thusaquires a geometrial interpretation.The next very important onsequene of these re-quirements is the emergene of a ring-string strutureon the bag border, and further the emergene of a sin-gular pole assoiated with traveling-wave exitations ofthe string [18; 19℄. This pole an be assoiated with asingle quark, and the KN bag �nally takes the form ofa oherent �bag�string�quark� system.Finally, these requirements determine that theHiggs ondensate should be enlosed inside the bag,ontrary to the standard treatments of the bag as a av-ity in the Higgs ondensate, [4℄. This requirement an-not be realized with the usual quarti self-interationpotential of the Higgs �ield [4, 5℄, and requires a moreompliated �eld model, based on a few hiral �elds anda supersymmetri sheme of the phase transition [20℄.At this point, we have to mention the importantrole of the Kerr theorem, whih determines the nullvetor �eld k�(x), the Kerr prinipal ongruene thatforms a vortex polarization of Kerr�Shild (KS) metrig�� = ��� + 2Hk�k� : (1)The Kerr theorem gives two solutions for this ongru-ene k�� , whih determine two sheets of the KN solutionorresponding to two di�erent metris g��� . Solutionsof the Dira equation on the KN bakground shouldbe onsistent with the metri orresponding to one ofthese ongruenes.We show that two solutions of the Kerr theoremgenerate two massless Weyl spinor �elds that are ou-pled into a Dira �eld onsistent with the Kerr geom-etry. However, the null spinor �elds of the Kerr on-gruenes are massless, and there appears the questionof the origin of the mass term. The answer omes fromthe theory of bag models [5℄, where the Dira mass isa variable depending on the loal vauum expetationvalue (vev) of the Higgs ondensate.This gives a diret hint to a onsistent embeddingof the Dira equation into the regularized KN bak-ground, indiating that both sheets of the KN solutionare neessary as arriers of the initially massless lep-tons. This is in agreement with the basi onepts ofthe Glashow�Salam�Weinberg model [21℄, in whih thelepton masses are generated by the Higgs mehanismof symmetry breaking.1) This was determined by López [9℄.229



A. Burinskii ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015As a result, we onlude that two-sheeted Kerr'sstruture is an essential element for the spae�time real-ization of the eletroweak setor of the Standard Modelonsistent with gravity.2. OVER-ROTATING KERR GEOMETRY:TWO-SHEETED STRUCTURE ANDREGULAR SOURCEThe KN solution in the KS form [22℄ has the metrig�� = ��� + 2Hk�k� ; (2)where ��� is metri of auxiliary Minkowski spae, x� == (t; x; y; z) 2M4 2), andH = mr � e2=2r2 + a2 os2 � : (3)The vetor �eld k� is null, k�k� = 0, and deter-mined by the di�erential formk = k�dx� = dr � dt� a sin2 � d�; (4)where t; r; �; �, are the Kerr oblate spheroidal oordi-nates:x+iy = (r+ia)ei� sin �; z = r os �; t = ��r: (5)The �eld k�(x) forms a prinipal null ongruene(PNC) K [23℄, whih determines polarization of theKerr spae�time. The PNC is foussed at the Kerrsingular ring, r = 0, os � = 0, whih is the branh lineof the Kerr spae into two sheets r > 0 and r < 03).Extending the Kerr ongruene to the negativesheet of the KS spae (r < 0) along the lines � = onst,� = onst reates another ongruene with a di�erentradial diretion, and the ongruene whih is outgoingby r > 0 turns into the ingoing one on the negativesheet4). Thus, the Kerr solution in the KS form de-sribes two di�erent sheets of spae�time, determinedby two di�erent ongruenesk�� (x)dx� = �dr � dt� a sin2 � d� (6)and two di�erent metrisg��� = ��� + 2Hk�� k�� (7)on the same Minkowski bakground x� 2M4.2) We use the signature (�+++).3) These are Riemannian sheets of the Kerr omplex radialdistane ~r = r + ia os �.4) Relations (5) also hange [23℄.

This two-sheetedness reated the problem of thesoure of Kerr geometry, and there appeared two linesof investigation. One of them [10; 11; 24℄, aepted thetwo-sheetedness as an indiation of its plausible on-netion with a spinor struture of the Kerr spae�timeand with the two-sheeted struture of the topologiallynontrivial �Alie� strings introdued by Shwarz andWitten [25℄.An alternative line of investigation was related totrunation of the KN negative sheet, and to a on-sistent replaement of the exised region by a sourein agreement with the Einstein�Maxwell �eld equa-tions [6�9; 12�14℄.There is a freedom in hoosing the trunating sur-fae, and in the most suessful version of the modelsuggested by López [9℄, the KN soure formed a bub-ble, whose boundary was determined by mathing theexternal KN metri (2) with a �at metri inside thebubble. Aording to (2) and (3), this boundary has tobe plaed at the radius r = R = e2=2m.We see from (5) that r is indeed the oblate spheroi-dal oordinate,x2 + y2a2 sin2 � � z2a2 os2 � = 1; (8)and the soure of the KN solution takes the form of avery oblate disk of the radius r � a = 1=2m with thethikness re = e2=2m; (9)whih is the lassial radius of the eletron. Thus,the �ne struture onstant aquires a geometrial mea-ning as the degree of oblateness of the disk-like soure,re=r = e2 � 137�1.As a result of the regularization, the disk-like re-gion surrounding the Kerr singular ring is exised andreplaed by �at spae, whih ats as a ut-o� para-meter � an e�etive minimal distane R = re to theformer Kerr singular ring. We note that in the asewithout rotation, a = 0, the disk-like bubble takes thespherial form and the size of the lassial eletron,Eq. (9).The López model was later transformed into asoliton�bubble model [13, 14℄, in whih the thin shell ofthe bubble was replaed by a �eld model of a domainwall providing a smooth phase transition between theexternal KN solution and the �at internal spae. Thisphase transition was modelled by the Higgs mehanismof symmetry breaking, and the �at interior of the KNbubble was formed by a false-vauum state of the Higgsondensate.230



ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015 Gravitating lepton bag modelThe �eld model of broken symmetry is similar tothe Landau�Ginzburg model of superondutivity [26℄,and regularization of the singular KN solution an beviewed as an analogue to the Meissner e�et, expulsionof the gravitational and EM �elds from the interior ofthe superonduting soure.3. HIGGS CONDENSATE AND THE MASS OFTHE DIRAC FIELDThe Higgs symmetry breaking mehanism used forregularization of the KN solution relates the soureof the KN solution to many other extended partile-like models of the eletroweak setor of the StandardModel. In partiular, we note the superondutingstring model of Nielsen and Olesen [26; 27℄, Coleman'sQ-ball models [28�32℄, and the famous MIT and SLACbag models. In this paper, we pay espeial attentionto the fermioni setor of the KN soure and obtain alose similarity between the Higgs mehanism of massgeneration in the KN soliton model and that in theSLAC bag model [5℄.The Hamiltonian of the SLAC model for ouplingthe Higgs �eld to the Dira �eld  has the formH = Z d3x� y(�i� �r+ g��) ++ 12( _�2 + jr�j2) + V (�)� ; (10)where g is a dimensionless oupling parameter, andself-interation of the nonlinear Higgs �eld � is de-sribed by the quarti potentialV (j�j) = g(��� � f2)2; (11)where � = hj�ji is the vev of the Higgs �eld. The truevauum of the Higgs �eld � = 0 is not the lowest-energystate, and the Higgs �eld is triggered in the false-vau-um state � = f , whih breaks the gauge symmetry ofthe spinor �eld  . As a result, the fermion aquires themass m = g�, whih is used in the on�nement meha-nism of bag models. However, the false-vauum state ofthe Higgs �eld � = f also breaks the gauge symmetryof the EM �elds. In the known bag models, it turns theexternal EM �elds into short-range one, whih distortsthe external KN solution.For example, in the MIT bag model, the Higgs vevvanishes inside the bag, r < R, and takes a nonvani-shing value � = f in outer region r > R (see Fig. 2).The Dira equation in the presene of the � �eldtakes the form (i��� � g�) = 0; (12)
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Fig. 2. Kerr's prinipal ongruene of null lines(twistors) is foused on the Kerr singular ring, form-ing a branh line of the Kerr spae into two sheets
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Fig. 3. Positions of the vev of the Higgs �eld � andthe on�ned spinor wave funtion 	 (quark) in the MITbag modeland the Dira wave funtion  turns out to be mass-less inside the bag and aquires a large e�etive massm = gf outside. The quarks are on�ned inside thebag, where they oupy the most energetially favor-able position.Geometry of the Higgs vauum state is di�erent inthe SLAC bag models (see Fig. 3). The vev � givesthe mass to the Dira �eld outside the bag as well asinside. The mass vanishes only in a very narrow regionnear the surfae of the bag, r � R. Suh geometry ofthe broken vauum state reates a sharp loalization ofthe Dira wave funtion at the border of the bag.In the bag models, we are faed with several veryimportant novelties.231
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Fig. 4. Classial solutions of the SLAC bag model. Thevauum �eld � and the loalized spinor (quark) wavefuntion on�ned to the thin shell, the boundary of thebag(A) The statement on the impossibility of loaliza-tion of the Dira wave funtion beyond the distanesomparable with the Compton wave length ~=m is vio-lated, and quarks an loalize within a very thin regionat the bag shell. The reason of that is the salar natureof the on�nement potential, for whih � : : : there isno Klein paradox of the familiar type enountered inthe presene of strong, sharp vetor potential� [5℄.(B) A semilassial approah to the one-partileDira theory is e�etively used. Solving the Dira equa-tion for a quark in a salar potential assumes that allthe negative-energy states are �lled, and the treatmentis foused on the lowest positive-energy eigenvalues.Therefore, � : : : there is no ambiguity in identify-ing and interpreting the desired positive energy �one-partile� solutions� [5; 33℄.(C) The mass term of Dira equation (12) is deter-mined by the vev of the Higgs �eld �(x) = hj�(x)ji, andtherefore turns out to be a funtion in the on�gurationspae.(D) Bag models are presumed to be very soft, om-pliable, and extensible. They are easily deformed, andunder rotations and deformations they may aquire ex-tended stringy strutures aompanied by vibrations.All these peuliarities of the bag models are om-patible with the soliton-bubble soure of the KN solu-tion. However, there is one important di�erene: thetypial bag model represents a bubble or avity in asuperonduting media, the Higgs ondensate, while inthe gravitating bubble-soure of the KN solution, theHiggs ondensate is enlosed within the bubble, leavingthe true vauum outside the bag unbroken.In the MIT and SLAC bag models, the Higgs on-

densate is plaed outside the soure, and the exter-nal vauum represents a superonduting false-vauumstate (see Fig. 4), leading to the short-range externalEM �eld.A dual geometry (turned inside out) was suggestedin the Coleman Q-ball model [28℄. The self-interatingHiggs �eld of a Q-ball is on�ned inside a ball-likesoure, r < R, leaving the external vauum unbroken.Most of the Q-ball models led to a oherent osillatingstate of the Higgs vauum inside the bag (osillons [30�32℄)5). The KN soliton soure [13, 14℄ also exhibits thispeuliarity. We an summarize that on�nement of theHiggs ondensate inside the bag is a neessary require-ment for the orret gravitating properties of the bagmodels. However, formation of the orresponding po-tential turns out to be a very nontrivial problem, whihannot be solved by the usual quarti potential (11).4. FIELD MODEL OF BROKEN SYMMETRYAND PHASE TRANSITION FOR THEGRAVITATING BAG MODELAmong theories with spontaneous symmetry brea-king, an important plae is taken by the �eld modelof a vortex in ondensed matter, whih was onside-red by Abrikosov in onnetion with the theory oftype-II superondutors. Nielsen and Olesen (NO)used this solution for a semilassial relativisti stringmodel [26℄. The NO string model, representing a mag-neti �ux tube in a superondutor, was generalizedto many other semilassial �eld models of the soli-toni strings and has found wide appliation in the ele-troweak setor of the standard Glashow�Salam�Wein-berg model [27; 34℄.The NO model [26℄ ontains a omplex salar �eld� and the gauge EM �eld A�, whih beomes massivevia the Higgs mehanism. The Lagrangian has the formLNO = �14F��F���12(D��)(D��)��V (j�j); (13)where D� = r� + ieA� are the U(1) ovariant deriva-tives and F�� = A�;� � A�;� is the �eld strength. Thepotential V has the same quarti form as in (11),V = �(�y�� f2)2; (14)where � is replaed by the omplex �eld � = j�jei�.The Lagrangian LNO � Lmat desribes a vortexstring embedded in the superonduting Higgs onden-sate in �at spae�time. Similarly to the bag models,this model annot be generalized to gravity beause5) Suh a model was �rst onsidered by Rosen [29℄.232



ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015 Gravitating lepton bag modelthe Higgs ondensate gives mass to the external EMand gravitational �elds, turning them into nonphysialshort-range �elds on�iting with the real gravitationaland EM properties of strings and partiles.An improvement of this �aw was suggested by Wit-ten in his U(1) � ~U(1) �eld model of a osmi super-onduting string [25℄, in whih he used two Higgs-like�elds, �1 and �2. One of them, say �1, had the re-quired behavior, being onentrated inside the soure,while the other, �2, played an auxiliary role and tookthe external omplementary domain extending up toin�nity. These two Higgs �eld are harged and ad-joined to two di�erent gauge �elds A1 and A2, suhthat when one of them is long-distant in some region 
,the other is long-distant in the omplementary region
 = U1=
. This model is suitable for any loalizedgravitating soure, but for the superonduting soureof the KN solution we used in [13℄, a supersymmetrigeneralization of the Witten model was suggested byMorris [35℄.4.1. Supersymmetri phase transitionThe supersymmetri sheme of a phase transition isbased on three hiral �elds �(i), i = 1; 2; 3 [20℄. Oneof this �elds, say �(1), has the required radial depen-dene, and we hose it as the Higgs �eld H, setting theadditional notation as (H; Z;�) � (�0;�1;�2).The ation oupled to gravity is given byS = Z p�g d4x� R16�G + Lmat� ; (15)where the full matter Lagrangian takes the formLmat = �14F��F�� �� 12Xi (D(i)� �(i))(D(i)��(i))� � V; (16)whih ontains a ontribution from the triplet of thehiral �eld �(i).The potential V required for our model is obtainedby a standard supersymmetri sheme of broken sym-metry [20℄, whih determines it via a superpotentialW (�(i), �(i)�), V (r) =Xi j�iW j2: (17)The superpotential leading to the required geometry ofbroken symmetry was suggested by Morris [35℄:W (�i; ��i) = Z(���� �2) + (Z + �)H �H; (18)

where � and � are real onstants. This yieldsV = (Z+�)2jHj2+(Z)2j�j2+(���+H �H��2)2; (19)and the equation �iW = 0 (20)determines two vauum states separated by a spike ofthe potential V at r � R:EXT: the external vauum, r > R + Æ, V (r) = 0,with the vanishing Higgs �eldH = 0, and Z = 0;� = �,andINT: an internal state of the false vauum, r << R � Æ, V (r) = 0, with broken symmetry, jHj = �,and Z = ��, � = 0.4.2. Appliation to the KN soureChoosing López's boundary for regularization of theKN soure allows us to neglet gravity inside the soureand at the boundary, and we an hene neglet thegravitational �eld in the zone of the phase transitionand onsider the spae�time as �at. At the same time,outside the soure, we have the exat Einstein�Maxwellgravity, beause the gauge symmetry is unbroken andall the terms 12(D��(i))(D��(i))�vanish together with the potential V (j�j). Therefore,outside the soure, we have only the matter termLmat � �14F��F��leading to the external KN solution.Hene, inside the soure (zone INT) and on theboundary, we have only the part of Lagrangian thatorresponds to self-interation of the omplex Higgs�eld and its interation with the vetor potential ofthe KN eletromagneti �eld A� in �at spae�time.The �eld model is redued to the model onsideredby Nielsen and Olesen for a vortex string in superon-duting media [26℄,LNO = �14F��F���12(D�H)(D�H)�+V (jHj); (21)where D� = r� + ieA� is the ovariant derivative,F�� = A�;� � A�;�, and r� � �� redues to a deriva-tive in �at spae with the �at D'Alembertian ���� = �.For the interation of the omplex Higgs �eldH(x) = jH(x)jei�(x) (22)233
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Fig. 5. Region of broken symmetry in the KN solitonbag model. The potential V (R) forms the inner andouter vauum states V = 0 with a narrow spike at theboundary of the bag. The Higgs �eld H is on�nedinside the bag, r < R, forming a false vauum state,whih gives mass to the Dira equationwith the Maxwell �eld, we obtain the following ompli-ated systems of nonlinear di�erential equations:D�D�H = � �HV; (23)�A� = I� = ejHj2(�;�+eA�): (24)The obtained vauum states EXT and INT show thatjH(r)j should be a step-like funtionjH(r)j = (�; r � R� Æ;0; r � R+ Æ; (25)with a transition region R � Æ < r < R + Æ, where itsbehavior is determined by the impat of the eletro-magneti �eld.Outside the soure, r > R+ Æ, we have H = 0 andobtain I� = 0. Inside the soure, with r � R � Æ, wehave also I� = 0, whih is provided there by the om-pensation of the vetor potential by the gradient of thephase � of the Higgs �eld, �;�+eA� = 0. Hene, anonzero urrent exists only in the narrow transitionalregion R� Æ < r < R, where this ompensation is onlypartial, and (24) desribes the �region of penetration�of the EM �eld inside the Higgs ondensate (see Fig. 5).4.3. Important onsequenesThe analysis of Eq. (24) in [13, 14℄ showed two re-markable properties of the KN rotating soliton:(I) the vortex of the KN vetor potential A� formsa quantum Wilson loop plaed along the border of the

disk-like soure, whih leads to quantization of the an-gular momentum of the soliton,(II) the Higgs ondensate should osillate inside thesoure with the frequeny ! = 2m.The KN vetor potential has the form [22℄A�dx� = �Re� er+ia os � (dr�dt�a sin2 � d�� : (26)The maximum of the potential is reahed in the equa-torial plane, os � = 0, at the López's boundary of thedisk-like soure (9), re = e2=2m, whih plays the roleof a ut-o� parameter,Amax� dx� = � ere (dr � dt� a d�): (27)The � omponent of the vetor potential, Amax� == ea=re, shows that the potential forms a irular �ow(Wilson loop) near the soure boundary. Aordingto (24), this �ow is ompensated inside the solitonby the gradient of the Higgs phase �;�, and does notpenetrate inside the soure beyond a transition regionr < re � Æ. Integrating this relation along the losedloop � = [0; 2�℄ under the ondition I� = 0 yields theresult (I).Similarly, using (24) and the ondition I� = 0 forthe time omponent of the vetor potentialAmax0 = e2re = me ;we obtain the result (II).5. FERMIONIC SECTOR OF THE KN BAGMODELNow we have to onsider mathing the solutions ofthe Dira equation with the interior of the regular soli-toni soure and with the external KN solution. Westart from the region inside the KN soure and the ad-jaent Æ-narrow layer of phase transition, r < R + Æ.In aordane with the used sheme of regularization,these regions are to be �at, and we an use the usualDira equation ���	 = m	, whih in the Weyl rep-resentation splits into two equations��� _�i�� �� _� = m��; ��� _��i���� = m�� _�; (28)where the Dira bispinor	 =  ���� _� !is presented by two Weyl spinors �� and �� _�.234



ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015 Gravitating lepton bag modelIn the onept of bag models, fermions aquire massvia a Yukawa oupling to the Higgs �eld, Eq. (12), andbeause the Higgs ondensate in the KN soure is on-entrated inside the bag, Eq. (25), the mass term of theDira equation takes the maximal valuem = g� (29)in the internal region while the Dira equation outsidethe bag turns out to be massless and splits into twoindependent massless equations��� _�i�� �� _� = 0; ��� _��i���� = 0; (30)orresponding to the left-handed and right-handed�eletron-type leptons� of the Glashow�Salam�Wein-berg model [21℄.Outside the bag, we have external gravitational andEM �elds of the KN solution, and we should use theDira equation in the ovariant form�KSD�	 = 0; (31)where �KS are -matrixes adapted to the KS form ofmetri (2), andD� = �� � 12������� � i k2p2�F����� (32)are ovariant derivatives.The exat solutions on the KS bakground were pre-viously onsidered by Einstein and Finkelstein in [36℄,and following them we an hoose the �KS matrixes inthe form �KS = �W +p2Hk�5W ; (33)where �W are matries of the Weyl representation forthe Minkowski spae ��� . They satisfy the usual anti-ommuting relationsf�W ; �W g = 2��� ; f�W ; 5W g = 0;(5W )2 = �1; (34)while �KS satisfy the antiommuting relations12f�KS ; �KSg = ��� � 2Hk�k� = g��KS; (35)adapted to the KS metri. It is known that the exatKS solutions belong to the lass of algebraially spe-ial solutions, for whih all the tensor quantities are tobe aligned with the Kerr null ongruene [22℄, and thegeneral relations (31), (33), (32) beome muh simplerwhen the Dira �eld 	(x) is �aligned� with the Kerrongruene k�(x), k��	 = 0: (36)

For the aligned Dira �eld, the nonlinear terms of theeletromagneti and gravitational interations anel,and the Dira equation linearizes [36℄, taking the formof a free Dira equation in �at spae�time (30).The alignment ondition (36) an be rewritten inthe form (k � �)� = �; (k � �)�� = ���; (37)whih shows that the left-handed and the right-handed�elds �� and � are to be oppositely polarized with re-spet to the spatial diretion of the Kerr ongruenek. We obtain that only one of these two �half-leptons�,the left-handed �, is indeed onsistent with the Kerrongruene k+ = (1;k), seleted for the physial sheetof the KN solution. The onsistent solution takes theform 	TL = (�; 0), whih shows expliitly that only theleft-handed �eld � is aligned with k+ and survives onthe physial sheet of the KN geometry. This solutionis exat, beause the left- and right-handed spinors areindependent for the massless Dira equation. Similarly,we obtain the solution	TR = (0; ��), whih is not alignedwith k+ and with the seleted physial sheet of the KNsolution. However, it is aligned with the ongruenek� and �lives� on the negative sheet of advaned �elds.Thus, the massive Dira solution	 =  ���� _� !splits into the left and right massless parts 	L and 	R,whih outside the bag an live only on the di�erentsheets of the two-sheeted Kerr geometry.This important peuliarity of the Dira solutionson the Kerr bakground was also mentioned in [36℄,where authors noted that the Dira equations on theKS bakground � : : : are not onsistent unless the massvanishes : : : �. Meanwhile, this obstale disappears in-side the bag-like soure of the Kerr geometry, where thespae is �at by onstrution of the solitoni soure (seeSe. 2). When the massless Weyl spinors pass from twodi�erent external sheets on a ommon �at spae insidethe bag, they are ombined into a Dira bispinor, whihaquires mass from the Higgs ondensate via Yukawaoupling (see Fig. 6). Removing the two-sheeted stru-ture that was assoiated with the problem the soure ofKN solution, we meet its appearane from another side,by analysis of the onsistent solutions of the Dira equa-tion on the KS bakground. We obtain that the two-sheeted struture of KS geometry agrees with elemen-tary onstituents of the standard model, the massless�left-handed� and �right-handed� eletron �elds [21; 33℄,providing the onsisteny of the external Dira �eldwith KN gravity.235
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Fig. 6. Two sheets of the external KN solution aremathed with �at spae inside the bag. The masslessspinor �elds �� and �� _� live on di�erent KN sheets,aligned with k+� and k�� null diretions. Inside the bag,they join into a Dira bispinor, whih obtains mass fromthe Higgs ondensate on�ned inside the bagThe Kerr ongruenes are determined by the Kerrtheorem [22; 37℄, whih is formulated in twistor termson the Minkowski spae ��� auxiliary to KS metri(2). The �rst twistor omponent Y also plays the roleof a projetive spinor oordinate (see details in theAppendix and [16; 37℄). The Kerr theorem gives twosolutions Y �(x) for the KN partile, whih are on-neted by the antipodal relation Y + = �1= �Y � and de-termine two antipodal ongruenes k+��(x) and k���(x).The Weyl spinors orresponding to solutions Y �(x) areexatly the Weyl spinor omponents � and � of thealigned Dira solutions onsidered above. Beause theKerr theorem is formulated in �at spae�time, the solu-tions Y �(x) are extended unambiguously from the ex-ternal KN spae to the �at spae inside the bag, whihdetermines the Dira bispinor~	 =  f1(x)��f2(x)�� _� ! ; (38)whih is aligned to both external ongruenes and rep-resents a onstraint, seleting the Dira solution withthe required polarization in the �at spae inside thebag.Another very spei� peuliarity of the bag mod-els is the emergene of the variable mass term in Diraequation (12). The mass term is determined by thevev of the Higgs ondensate �, whih depends on theregions of spae�time, and in the region of the maxi-mum of the Higgs ondensate � = �, is alled the baremass m = g�. The Dira wave funtion, a solution of

the Dira equation with a variable mass term, avoidsthe region with a large bare mass, and tends to oupya more energetially favorable position, whih is theprinipal idea of quark on�nement.In the SLAC bag model [5℄, the resulting wave fun-tion is determined by the variational approah. TheHamiltonian isH(x) = 	y�1i� �r+ g���	; (39)and the energetially favorable wave funtion is de-termined by minimizing the averaged HamiltonianH = R d3xH(x) under the normalization onditionZ d3x	y(x)	(x) = 1:This yields �1i� �r+ g���	 = E	; (40)where E appears as the Lagrangian multiplier enforingthe normalization ondition. Similarly to the results ofthe SLAC bag model, we expet that the Dira wavefuntion does not penetrate deep in the region of a largebare mass m = g�, and onentrates in a very narrowtransition zone at the bag boundary R�Æ < r < R+Æ.As was argued in [5℄, the narrow onentration of theDira wave funtion is admissible in bag models be-ause there is no Klein paradox for the salar poten-tial. The exat solutions of this kind are known inthe two-dimensional ase, and the orresponding varia-tional problem should apparently be solved numeriallyby using ansatz (38), where f1(x) and f2(x) are variablefators.The use of lassial solutions of the Dira equationin a given salar potential leads also to the problem ofnegative-energy states. In the bag models, this problemis treated semilassially by using the assumption [5℄that � : : : all the negative-energy states in the pres-ene of this potential are �lled : : : �, and as a result, itis neessary to onsider only the lowest positive-energyeigenvalues6).6) This is an approximation to rigorous treatment based onthe normal ordering. The negative-energy states orrespond toharge-onjugate solutions 	(x) = C �	(x), �	(x) = C�1 �	(x)of the harge-onjugate Dira equations (with the replaemente! �e). In partiular, the urrent density is determined by theommutation relationsj�(x) = ie2 [ �	(x); �	(x)℄ = ie2 ( �	(x)�	(x)� ie2 �	(x)�	(x));and similarly for the expetation value of energy or any otheroperator bilinear in the fermion �eld.236



ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015 Gravitating lepton bag modelThe splitting of the KS spae�time outside thesoure of the KN solution looks strange from the stand-point of standard gravitation, but it appears more nat-ural by omparison with eletromagnetism, whih issensitive to the di�erene between retarded and ad-vaned �elds.It is known [38℄ that the Kerr solution an be repre-sented in the KS form via both Kerr ongruenes k+� ork�� , but not via the both simultaneously. For the KNsolution with an EM �eld, the situation is more om-pliated. Although both representations are admissi-ble, the representation via retarded �elds is physiallypreferable beause the asymptoti advaned EM �eldof the KN solution would ontradit its experimentalbehavior in �at spae. The vetor potential A� of theKN solution must also be aligned with the Kerr on-gruene, and should be retarded (Aret) on the physialsheet determined by the outgoing Kerr ongruene k+� .The appearane of advaned EM �elds (Aadv) is impor-tant in nonstationary problems. In partiular, in theDira theory of radiation reation, the retarded poten-tials Aret are split into a half-sum and half-di�erenewith advaned onesAret = 12[Aret +Aadv℄ + 12[Aret �Aadv ℄;where A+ret = 12[Aret +Aadv℄ (41)is onneted with radiation reation, andA�ret = 12[Aret �Aadv℄ (42)forms a self-interation of the soure. A similar stru-ture is also present in the Feynman propagator.The �elds Aret and Aadv annot reside on the samephysial sheet of the Kerr geometry, beause eah ofthem should be aligned with the orresponding Kerrongruene. Considering the retarded sheet as a ba-si physial sheet, we �x the ongruene k+� and theorresponding metri g+�� , whih are not allowed forthe advaned �eld Aadv and must be positioned on theseparate sheet with a di�erent metri g��� .6. DISCUSSIONTaking the bag model onept, we should also a-ept the dynamial properties of the bags, whih aresoft and easily deformable [5, 17℄, forming a stringystruture. Typially, these are radial and rotationalexitations aompanied by the formation of the open

tube-shaped string ending with quarks. Another typeof deformation was onsidered in the Dira model ofan �extensible� eletron (1962) [39℄, whih an also beregarded as a prototype bag model with radial exita-tions7). The bag-like soure of the KN solution with-out rotation, a = 0, oinides with this �extensible�model of the Dira eletron, leading to the �lassialeletron radius� R = re = e2=2m. As we disussed inthe Introdution, the disk-like bag of the rotating KNsoure an be viewed as the strething of the spherialbag by rotations. For the parameters of an eletron,the spinning bag strethed into a disk of the radiusa = ~=2m, overing the Compton area of the �dressed�eletron. The disk is very thin with the degree of �at-tening � = 137�1. The boundary of the disk appearsto be very lose to the former position of the Kerr sin-gular ring, and the EM �eld near the boundary may beseen as a regularization of the KN singular EM �eld.Similarly to other singular lines, the Kerr singular ringwas onsidered as a string in [11℄. The struture of theEM �eld near this string was analyzed �rst in [10, 11℄,and muh later in [24℄. It appeared to be similar to thestruture of the fundamental string solution, obtainedby Sen in the low-energy heteroti string theory [24℄. Itis a typial light-like pp-wave string solution [19; 43; 44℄,whih in the Kerr geometry takes a ring-like form.Regularization of the KN soure does not removethis ring-string, but gives it a ut-o� parameter (9),R = re. It was shown in [10, 11℄ and later spei�edin [19; 37; 45℄ that the EM exitations of the KN so-lution lead to the appearane of traveling waves prop-agating along this ring-string. However, the light-likering-string annot be losed [46℄, sine the points dif-ferent by the angular period, x�(�; t) and x�(�+2�; t),should not oinide, and a peuliar point on the ring-string should make it open, forming a single quark-likeendpoint.The string traveling waves deform the bag bound-ary, reating a singular pole [47℄. We do not dis-uss it here in detail, leaving the treatment to a sepa-rate paper. We only note that the exat solutions forthe EM exitations on the Kerr bakground were ob-tained in [22℄, and using onditions I and II onsideredin the introdution, we an unambiguously determinethe bak-reation of the loal EM �eld on the metriand obtain the orresponding deformations of the bagboundary. The origin of singular pole is aused by airulating node in the EM string exitation. This node7) This view was also suggested in [40℄. An interpretation ofthe blak holes and AdS geometries as a sort of bag was alsonoted in [41; 42℄.237



A. Burinskii ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015yields the zero ut-o� parameter R, reating ontat ofthe bag boundary with the singular ring.This singular pole irulates along the sharp bor-der of the disk with the speed of light and may beonsidered in three ways: a) as a light-like quark en-losed inside the bag, b) as a single end-point of thelight-like ring-string (as show in [46℄, the light-like fun-damental string annot be losed), and ) as a nakedpoint-like eletron enlosed in a irular �zitterbewe-gung�. It leads to an integrated model for the dressedand bare eletron as a single oherent system similar tothe hadroni bag models.7. CONCLUSIONStarting from the old problem of the soure of theKN geometry, we �rst obtained a bubble-ore modelof the spinning partile, the false vauum of whih isformed by the Higgs mehanism of symmetry breaking.Contrary to the most other known models of partile-like objets, the KN bubble forms a gravitating solitonreating the external gravitation and EM �eld of aneletron. This ompatibility with gravity has requiredthe use of a supersymmetri �eld model of phase tran-sition, leading to a supersymmetri false-vauum statein the ore of the partile and leaving the external grav-itational and EM �elds unbroken.The resulting soliton model has muh in ommonwith the famous MIT and SLAC bag models, but a-quires the �dual bag geometry�, in whih the Higgs on-densate is embedded �inside out � ompared to the pre-vious bag models.In this model, the two-sheeted struture of the Kerrgeometry is given by a natural spae�time (oordi-nate) implementation, forming a bakground for theinitially massless leptons of the Glashow�Salam�Wein-berg model [21℄.Without attempting a detailed desription, we annote that the desribed dressed eletron may be turnedinto a positron if we hange the role of the advaned andretarded sheets of the Kerr geometry. The higher exi-tation of the ring-string may generate the muon state,while swithing o� the salar and longitudinal ompo-nents of the EM �eld orresponding to the harge ofthe KN solution [48℄ and preserving only the transver-sal traveling waves, gives a neutral partile, whih hasthe features of a neutrino. Therefore, some variationsof the KN bag model an give the spae�time struturefor some other spinning partiles of the eletroweak se-tor of the Standard Model.Note added. After this paper �nished and sub-

mitted for publiation I learned from Jim Bogan on thepaper [49℄. In this paper, whih is a development ofthe previous paper [50℄, authors onsider a geometrialmodel of the eletron and other partiles on the baseof Taub�NUT solution, the self-dual properties andtwistorial struture of whih provide onnetions withthe Dira theory. Most part of their mathematialtreatment on the Dira equation is also related to theKerr�Newman solution, twistorial struture of whihis based on the Kerr theorem. Indeed, the knownKerr�NUT solution represents a ommon basis forthese both lines of investigation. I believe that thestruture of eletron is rather related with the Kerrrotation parameter, while the monopole parameter ofthe NUT solution may be important for the strutureof hadrons. I am grateful to J. Bogan for pointing thiswork.This work is supported by the RFBR (grant� 13-01-00602). The author thanks T. M. Nieuwen-huizen, Y. Rybakov, and B. Whiting for the interestin this work and the useful onversations.APPENDIXThe Kerr theoremThe Kerr theorem determines all the geodesi andshear free ongruenes as analyti solutions of the equa-tion F (TA) = 0; (43)where F is an arbitrary holomorphi funtion of theprojetive twistor variablesTA = fY; � � Y v; u+ Y ��g; A = 1; 2; 3; (44)where� = x+ iyp2 ; � = x� iyp2 ; u = z + tp2 ; v = z � tp2are null Cartesian oordinates of the auxiliary Minkow-ski spae.We note that the �rst twistor oordinate Y is alsoa projetive spinor oordinateY = �1=�0; (45)and it is equivalent to the two-omponent Weyl spinor��, whih de�nes the null diretion8) k� = �� _�� _��� ��.8) We use the spinor notation of book [20℄, where the �-mat-ries have the form �� = (1; �i), ��� = (1;��i), i = 1; 2; 3 and�� = ��� _�, ��� = ��� _��.238



ÆÝÒÔ, òîì 148, âûï. 2 (8), 2015 Gravitating lepton bag modelIt is known [22; 37℄ that the funtion F for theKerr and KN solutions an be represented in the formquadrati in Y ,F (Y; x�) = A(x�)Y 2 +B(x�)Y + C(x�): (46)In this ase, Eq. (43) an be solved expliitly, leadingto two solutions Y �(x�) = �B � ~r2A ; (47)where ~r = (B2 � 4AC)1=2. It has been shown in [37℄that these solutions are antipodally onjugate,Y + = �1= �Y �: (48)Therefore, solutions (47) determine twoWeyl spinor�elds �� and �� _�, whih in agreement with (48) are re-lated with two antipodal ongruenesY + = �1=�0; (49)Y � = �� _1=�� _0: (50)In the Debney�Kerr�Shild formalism [22℄, the funtionY is also a projetive angular oordinateY + = ei� tan �2 :It gives an expliit dependene on the Kerr angular o-ordinates � and � to spinor �elds �� and �� _�.For the ongruene Y +, this dependene takes theform �� = 0BB� ei�=2 sin �2e�i�=2 os �2 1CCA : (51)In agreement with (48), we have�Y � = �e�i� ot �2 ;and from the invariant normalization ���� = 1, weobtain �� = 0BB� �ei�=2 os �2e�i�=2 sin �2 1CCA ;whih yields�� _� = � _� _� �� _� = 0BB� ei�=2 sin �2e�i�=2 os �2 1CCA : (52)
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