
819

ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2015, Vol. 121, No. 5, pp. 819–827. © Pleiades Publishing, Inc., 2015.

Stability of the Lepton Bag Model Based
on the Kerr–Newman Solution1

A. Burinskii
Nuclear Safety Institute, Russian Academy of Sciences, Moscow, 115191 Russia

e-mail: bur@ibrae.ac.ru
Received May 19, 2015

Abstract—We show that the lepton bag model considered in our previous paper [10], generating the external
gravitational and electromagnetic fields of the Kerr–Newman (KN) solution, is supersymmetric and rep-
resents a BPS-saturated soliton interpolating between the internal vacuum state and the external KN solution.
We obtain Bogomolnyi equations for this phase transition and show that the Bogomolnyi bound determines
all important features of this bag model, including its stable shape. In particular, for the stationary KN solu-
tion, the BPS bound provides stability of the ellipsoidal form of the bag and the formation of the ring–string
structure at its border, while for the periodic electromagnetic excitations of the KN solution, the BPS bound
controls the deformation of the surface of the bag, reproducing the known flexibility of bag models.
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1. INTRODUCTION AND OVERVIEW
It has boon discussed since long ago that black

holes may be connected with elementary particles.
However, the spin/mass ratio of elementary particles is
extremely large, and the corresponding black hole
loses the horizons, turning into an ultra-extreme
(overcharged and over-rotating) Kerr–Newman (KN)
solution with a naked singular ring, which forms a
topological defect of space time. As usual, emergence
of a singularity is a hint for a generalization of the the-
ory, and the Kerr singular ring created the problem of
the source of the KN solution. This problem proved to
be very complicated, and this year we can mark the
50th anniversary of its discussions. Earlier attempts to
build a source of the KN solution where discussed by
Israel in [1], and Israel referred to the paper by New-
man and Janis [2], wherein the nontriviality of this
problem was first indicated. Carter obtained in [3] that
the KN solution has the gyromagnetic ratio g = 2, cor-
responding to that of the Dirac electron, and starting
from this fact, Israel [1] suggested a classical model of
the electron based on a rotating disk-like source of the
KN solution, enclosed by the Kerr singular ring.

The consistent regular model of the KN source was
suggested by Lopez, who built the KN source as a
rotating vacuum bubble, covering the Kerr singular
ring. At the same time, many properties of the KN
source indicated its close relationships to string mod-
els [4–7], and a resolution of this duality was coming
from the disk-like soliton model [8], in which the vac-
uum internal state of the Lopez bubble source was

replaced by a superconducting pseudo-vacuum
formed by the Higgs mechanism of symmetry break-
ing. The ring string emerged in this model as a narrow
tube of the electromagnetic (EM) potential concen-
trated at the sharp boundary of the disk-like source,
similar to the well-known Nielsen–Olesen vortex
string model in the Landau–Ginzburg theory [9].

Recently, this model was generalized to a gravitat-
ing bag model [10], for which one of the known fea-
tures is the f lexibility and ability to create string-like
structures.2

A principal peculiarity of the model considered in
[10] was the requirement to retain the external gravita-
tional EM field of the KN solution, which is known [3,
13] to have the gyromagnetic ratio g = 2, correspond-
ing to that of the Dirac electron. Such a bag can be
considered as a semiclassical model for some particles
of the electroweak sector of the Standard Model, such
as the electron or the muon, since the external gravita-
tional and EM field of these particles corresponds to
the KN solution with very good precision.

In this paper, we show that this bag model is super-
symmetric and represents a BPS-saturated soliton
interpolating between a supersymmetric pseudo-vac-
uum state inside the bag and the external field of the
exact KN solution. We obtain that all the important
features of this soliton considered in [10] follow unam-

1 The article is published in the original.

2 Extended particle-like soliton models based on the Higgs mech-
anism of symmetry breaking, such as Q-balls, skirmions, bags,
and vortex strings, are widely discussed now. Flexibility of the
bag models is used, in particular, for the f lux-tube string models
[11, 12].
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biguously from the Bogomolnyi equations corre-
sponding to the BPS-saturated solution.

1.1. Source of the KN Solution as a Spinning Soliton

The Kerr–Schild form of the KN metric is [131

 (1)

where ημν is the metric of an auxiliary Minkowski
space3 M4,

 (2)

is a scalar function, r and θ are ellipsoidal coordinates,
and kμ is the null vector field, kμkμ = 0, forming the
principal null congruence (PNC) _, a vortex polar-
ization of the Kerr space–time. The surface r = 0 rep-
resents a disk-like “door” from the negative sheet r <
0 to the positive one r > 0. A smooth extension of the
solution from the retarded to advanced sheet (together
with a smooth extension of the Kerr PNC) occurs via
the disk r = 0 spanned by the Kerr singular ring r = 0,
cosθ = 0 (see Fig. 1) and creates another PNC on the
negative sheet. The null vector fields kμ±(x) turns out
to be different on these sheets, and two different null
congruences _± create two different metrics

on the same Minkowski background.
The mysterious two-sheeted structure of the Kerr

geometry motivated the search for various models for
the source of the KN solution avoiding the negative
sheet. A relevant “regularization” of this space was
suggested by Lopez [14], who excised a singular region
together with the negative sheet and replaced it by a

3 We use the signature (–+++).

2g Hk kμν μν μ ν= η +

2

2 2 2
/2

cos
mr eH

r a
−=

+ θ

2g Hk k± ± ±
μν μν μ ν= η +

regular core with a f lat internal metric ημν. The result-
ing vacuum bubble should be matched with the exter-
nal KN solution along the boundary r = R, determined
by the condition

 (3)
which in accordance with (1) and (2) leads to

 (4)

Since r is Kerr’s oblate radial coordinate (see
Fig. 2), the bubble source takes an ellipsoidal form and
covers the Kerr singular region, forming a f lat space
inside the disk of the radius rc ≈ a = ℏ/mc and thick-
ness re, with the degree of flatness re/rc ~ e2 = α ≈ 137–1

corresponding to the fine structure constant.
Developing this model led in [8] to a soliton model

with a domain-wall phase transition, in which gravity-
controls the external classical space time, while quan-
tum theory forms a supersymmetric pseudo-vacuum
state inside the bubble. The conflict between quantum
theory and gravity is resolved by the principle of the
separation of their zones of influence:

PI: space time should be f lat inside the core,
PII: the exterior should be the exact KN solution,
PIII: the boundary between regions PI and PII is

determined by Lopez condition (3), (4).
In [8, 15], a mysterious effectiveness of this princi-

ples was mentioned, which uniquely defines the form
of this soliton and two its peculiarities:

(A) the Higgs field is oscillating with the frequency
ω = 2m, and therefore belongs to a type of oscillons,

(B) angular momentum is quantized, J = n/2, n =
1, 2, 3, ….

In this paper, we show that the KN bubble source
forms a BPS-saturated soliton, and both peculiarities

| ( ) 0,r RH r= =

2
.
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m
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Fig. 1. Null directions of the Kerr congruence kμ are
focused on the Kerr singular ring, forming a two-sheeted
space of the advanced and retarded fields.
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(A) and (B) are uniquely determined by the Bogomol-
nyi equations, which also determine the shape of the
soliton and therefore its dynamics and stability.

Starting in Section 2 from the description of our
approach used in previous paper [10], we derive the
Bogomolnyi equations adapted to specific Kerr’s
coordinates in Section 3, and integrate them by reduc-
ing the problem to two dimensions (t, r), time and the
Kerr radial coordinate.

In Section 4, we generalize the stationary KN bag
to the bag model f lexible to deformations and obtain
that these deformations are also controlled by the
principles PI–PIII. Considering stringy deformations
of the bag caused by EM excitations of the KN solu-
tion, we show that traveling waves may create defor-
mations that break smoothness of the solution and
create a traveling singular pole connected with a trav-
eling circular wave. We conclude in Section 5.

2. GRAVITATING BAG MODEL 
AND THE SUPERSYMMETRIC SCHEME

OF PHASE TRANSITION

The bubble source formed by the López boundary
was generalized to a soliton [8], and then to a gravitat-
ing bag model [10, 16]. The concept of a bag model
assumes incorporating the fermionic sector, in which
the Dirac equation acquires mass through a Yukawa
coupling to the Higgs field [11, 12]. As a consequence,
the mass turns out to be a variable function of the
space time distribution of the Higgs condensate. The
boundary of the bag is modeled by a domain wall
interpolating between the external KN solution and
the f lat internal pseudo-vacuum state, and the phase
transition between these states is controlled by the
Higgs mechanism of symmetry breaking, which is
used in many soliton models as well as in the well-
known Nielsen–Olesen model [9], which is in fact the
Landau–Ginzburg (LG) field model for the vortex
string in a superconducting media.

As it was shown in [10], the typical quartic
potential Φ,

 (5)

used for the Higgs field in previous soliton and bag
models, is not suitable for the source of the KN solu-
tion because the external Higgs field distorts the exter-
nal KN solution, turning the EM field into a short-
range one.

Contrary to the standard bag model forming a cav-
ity in the Higgs condensate [11], condition PII
requires the Higgs condensate to be enclosed inside
the bag. This cannot be done with potential (5), and a
more complex scheme of a phase transition was used
in [10], which contained three chiral fields Φ(i), i = 1,
2, 3. In fact, it is a supersymmetric generalization of
the LG model [17].

2 2(| |) ( ) , | | ,V gΦ = σσ − η σ = 〈 Φ〉

One of the fields, say Φ(1), was identified as the
Higgs field Φ. Hence the new notation

 (6)
was used.

Due to condition PI, the bag is to be placed in the
flat region, and the domain wall phase transition may
be considered with the f lat background metric, gμν =
ημν. Therefore, the domain-wall boundary of the bag
and the bag as a whole are not dragged by rotation.
Because of that, the chiral part of the Hamiltonian is
simplified to

 (7)

where the covariant derivatives

are f lat. As in [18], the potential V is determined by the
superpotential

 (8)

It was shown in [10] that the superpotential

 (9)
suggested by Morris [19], where μ and η are real con-
stants, provides the necessary concentration of the
Higgs field inside the bag, and from the supersymme-
try condition ∂iW = 0, two vacuum states were deter-
mined:

(I) internal: r < R – δ,

 (10)

(II) external: r > R + δ,

 (11)

(III) the transition zone R – δ < r < R + δ, where
vacua (I) and (II) are separated by a positive spike of
the potential V.

The principal result obtained here is that the posi-
tion of the domain wall boundary satisfying require-
ments PI, PIII is uniquely determined by the Bogo-
molnyi bound, and therefore these requirements
determine stability of the bag, leading to a supersym-
metric and BPS-saturated source of the KN solution.

As was discussed in [10] (and earlier in [8]), inside
the bag and in the transition zone (III), the space is
f lat, the fields Φ2 and Φ3 are constant, and only the
complex Higgs field Φ(x) = |Φ(x)|eiχ(x), interacting
with the vector potential of the KN solution Aμ pene-
trating inside has a nontrivial dynamics. As a result,
the field model in this zone reduces to the Abelian

1 2 3( , , ) ( , , )ZΦ Σ ≡ Φ Φ Φ

3 3
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field model in f lat space time, which has only one chi-
ral field Φ and coincides with the model for the vortex
string used by Nielsen–Olesen [9]. The corresponding
Lagrangian leads to the equations

 (12)

 (13)

which are consistent with the vacuum states in zones
(I) and (II).

Equation (13), which is indeed Eq. (2.4) of the
Nielsen–Olesen model [9], indicates that the current
must not penetrate inside the bag beyond a thin sur-
face layer. Setting Iμ = 0 inside the bag, we obtain
∂ν∂νAμ = 0 and

 (14)

which shows that the gradient of the phase of the Higgs
field χ,μ must compensate the penetrating inside vector
potential Aμ of the KN field. We emphasize that
although the KN gravitational field vanishes near the
boundary of the bag, its strong effect on the EM field
is maintained. Since the KN vector potential

 (15)

is aligned to directions of the Kerr congruence kμ, it
must be dragged by the Kerr singular ring even in the
flat limit (see Fig. 3).

The boundary of the bag at r = R = e2/2m regular-
izes vector potential (15), and it takes the maximal
value in the equatorial plane cosθ = 0:

,Vν
μ Φ∂ ∂ Φ = ∂

2
,| | ( ),A I e eAν

μ μ μ μ μ∂ ∂ = = Φ χ +

, 0,eAμ μχ + =

Re
cos

eA k
r iaμ μ= −

+ θ

 (16)

There are only the longitudinal Ar and the timelike
A0 components of the vector potential in the stationary
KN solution. Since k0 = 1, the timelike component
takes the maximal value A0 = –2m/e, which in accor-
dance with (14) should be compensated by the phase
of the Higgs field χ, 0 which leads to the important
result (A): oscillations of the Higgs field with the fre-
quency ω = 2m.

At the same time, the longitudinal part of the vec-
tor potential Aμ forms a closed loop along the bound-
ary of the bag in the equatorial plane, and in accor-
dance with (14) it should also be compensated by the
change in the phase of the Higgs field χ, ϕ. In [8], using
the Kerr relation J = ma, we obtained the second
remarkable consequence (B): angular momentum is
quantized, J = n/2, n = 1, 2, 3, ….

We now consider these results as a consequence of
the supersymmetry of the bag model. We use the rec-
ipe described in [20, 21] for a similar problem for a
planar domain wall with one chiral field and reduce
the problem to solvable first-order Bogomolnyi equa-
tions, in particular implying (A) and (B).

3. SOURCE OF THE KN SOLUTION 
AS A BPS-SATURATED SOLITON

The full Lagrangian corresponding to the bosonic
part of the N = 1 supersymmetric model with three
chiral fields Φ(i) = {Φ, Z, Σ}, i = 1, 2, 3, has the
form [18]

 (17)

As we mentioned earlier, the part of the Lagrangian
related to the field Φ(i) = Φ(1) ≡ Φ is the same as in the
Nielsen–Olesen model.

The corresponding stress–energy tensor decom-
poses into a pure EM part  and contributions

from the chiral fields :

 (18)

The flatness of the metric inside the bubble and in
the vicinity of the domain wall boundary leads to the
disappearance of dragging of the chiral fields, and
similarly to previous treatment, we can use the chiral
part of the Hamiltonian in form (7).

The domain-wall boundary of the bag and the bag
as a whole do not rotate. Nevertheless, the influence
of gravity is saved in the shape of the bag and also as a

(max) 2 .mA k
eμ μ= −

( ) ( ) ( ) ( )1 1 ( )( )* .
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⎡ ⎤
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Fig. 3. The Kerr surface ϕ = const. The Kerr congruence is
dragged by rotation even in the zero-mass limit. In the
equatorial plane, the congruence is tangent to the Kerr sin-
gular ring, and the vector potential forms a closed Wilson
loop wrapped around the boundary of the spheroidal bag.

φ
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drag effect acting of the KN EM field, which retains
correlation with a twisted Kerr congruence even in the
flat-space limit. We have to take it into account, and it
is advisable to use the Kerr coordinate system

 (19)

which is adapted to the shape of the bag, and where
KN vector potential (15) takes the simple form ([13],
Eq. (7.7))

 (20)

As we have seen, the components Aϕ and At have
very specific behavior, and are compensated by the
phase of the oscillating Higgs field

 (21)
which is equivalent to the equations 

 (22)

which are analogs of (13), and lead to respective con-
sequences (A) and (B). As a result, these terms drop
out from expression (7), and all the remainder chiral
fields depend only on the Kerr radial coordinate r:

 (23)

The sum  in expression (7) reduces
to a single term,

 (24)

where the coordinate r parameterizes the oblate sur-
face of the bag and, similarly to parallel surfaces of the

( ) sin ,
cos , ,

ix iy r ia e
z r t r

φ+ = + θ
= θ = ρ −

( ) 2Re ( sin ).
cos

eA dx dr dt a d
r ia

μ
μ = − − − θ φ

+ θ
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(1) 1 (1) 10, 0,t φΦ = Φ =$ $

2 2 3 3( ), ( ).r rΦ = Φ Φ = Φ
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3
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0

1

1 [| | | | ],
2

i i
r i

i

H T W
=

= = Φ + ∂∑ $

planar domain walls, the surfaces r and r + dr can be
regarded as “locally parallel” to each other (see Figs. 4
and 5).

Following [20, 21], we now use a “trick,” by intro-
ducing the angles αi, which allow us to rewrite expres-
sion (24) in the equivalent form

 (25)

where the phases αi should be independent of r and be
chosen so as to ensure the vanishing of the square
terms, i.e.,

 (26)

Peculiarity of this equation is a mix of the analytic
and anti-analytic functions. The functions W and
Z ≡ Φ2 are real, and without loss of generality we can
also set a real Φ3, which allows us to take α2 = α3 = 0.
For the Higgs field, represented by the function

we have

and from (26) and (21) we obtain

 (27)
In this case,

23
(ch ) ( )
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Fig. 4. Axial section of the spheroidal domain-wall (DW)
phase transition.
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and its substitution into (25) leads to

 (28)

where the replacement of the covariant derivatives 
with the partial ∂r is valid due to the concrete form of
superpotential (9).

A minimum of the energy density H(ch–r) is
achieved for

 (29)

which are the Bogomolnyi equations corresponding to
the saturated Bogomolnyi bound. Expression (28)
turns into a full differential,

 (30)

We can now obtain the mass–energy of the bag
together with its domain-wall boundary

 (31)

For the Kerr coordinate system,

 (32)
Axial symmetry allows us to integrate over ϕ, lead-

ing to

 (33)

Using (30), we obtain

−

=

∂ ∂⎛ ⎞= ∂ Φ − + ∂ Φ⎜ ⎟
⎝ ⎠∂Φ ∂Φ∑

23
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r
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3 0(ch)
bag ch 0 .M M dx gT≡ = −∫

2 2 2( cos )sin .g r a− = + θ θ

2 2 2 0(ch)
bag 02 ( cos )sin .M drd r a T= π θ + θ θ∫

(34)

Taking into account that superpotential W(r) is
constant inside and outside the source.

 (35)
we have ∂rW = 0 inside and outside the bag and, by
crossing the bag boundary, we obtain the difference

After integration over r ∈ [0, R] and then over X =
cosθ, we obtain

 (36)

4. STRINGY DEFORMATIONS
OF THE KN BAG

As discussed in [10], taking the bag model concept,
we should also accept the dynamical point of view that
the bags are to be soft and deformed, acquiring exci-
tations similar to excitations of the dual string models
[12, 22, 23]. By deformations, the bags may form
stringy structures. Generally considered are the radial
and rotational excitations, forming open strings or f lux
tubes. The old Dirac model of an “extensible” spheri-
cal electron [24] may also be considered as a prototype
of the bag model with spherically symmetric deforma-
tions, i.e., radial excitations.

The bag-like source of the KN solution without
rotation, a = 0, represents the Dirac model of a spher-
ical “extensible” electron, which has the classical elec-
tron radius R = re = e2/2m at rest. The KN rotating
disklike bag (see Fig. 1 in [10]) may be considered as
the Dirac bag stretched by rotation to a disk of the
Compton radius, a = ℏ/2mc, which corresponds to the
zone of vacuum polarization of a “dressed” electron.

It has been obtained long ago that the Kerr geome-
try is closely related to strings [7]. In particular, in our
old work [4, 5], the Kerr singular ring was associated
with a closed ring string that may carry traveling waves
like a waveguide.4 In the soliton bag model, the Kerr
singularity disappears, but this role is played by the
sharp boundary of the disk-like bag. Like the Kerr sin-
gular ring [4], it can serve as carrier of traveling waves.
It was shown in [6] that the field structure of this string
is similar to the structure of the fundamental string,
obtained by Sen as a solitonic string-like solution of
low energy string theory [26]. As it was shown in [4, 5]
and recently in [27], the EM and spinor excitations of
the KN solution are concentrated near the Kerr ring,

4 Another, complex string appears in the complex structure of the
Kerr geometry [7, 25].

2 2 2
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Fig. 6. Regularization of the KN EM field. A section of the
disk-like bag in the equatorial plane. The distance from
positions of the boundary of the bag from the position of
the (former) singular ring acts as a cut-off parameter R.
(a) Axially symmetric KN solution gives a constant cut-off
R = re. (b) The boundary of the bag is deformed by a trav-
eling wave, creating a circulating singular point of tangency
(zitterbewegung).
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forming string-like traveling waves. For the stationary
KN solution, the EM field forms a frozen wave [4],
located along the boundary of the disk-like source.
Locally, this frozen string is a typical plane-fronted
EM wave with null invariants,

 (37)

and with the Poynting vector

directed along the tangent to the Kerr singular ring,
k ⋅ S > 0. In the regularized KN solution, the Kerr
singular ring is regularized, acquiring a cut-off
parameter R, which for the axially symmetric KN
solution is the constant R = re, Eq. (4) (see Fig. 6a).

Since the null vector of the Kerr congruence kμ is
tangent to the Kerr singular ring, and since R ≪ a, the
ring string at the boundary is almost light-like, and its
structure is very close to the known pp-wave strings
[28–30]. However, for an external observer, the light-
like closed string should shrink due to Lorentz con-
traction, [27]. The extended KN string, positioned
along the boundary of the bag, cannot be closed, [31],
since the end points of the string world-sheet xμ(ϕ, t)
and xμ(ϕ + 2π, t) must not coincide.5 There are two
ways to make a consistent extended string structure:

(1) to consider this string as an open one and to
complete it to a consistent sum comprising the left and
right modes,

(2) to form an orientifold string, which means that
the open string is built from a closed one by folding

5 Otherwise the worldsheet becomes a worldline. We are faced
here with an odd peculiarity of the Kerr spinning particle, where
the chiral fields form an extended bag, while the associated EM
field forms a light-like string that looks strongly reduced for an
external observer.

2 20, ,⋅ = =E H E H

1
4

= ×
π

S E H

its worldsheet [31]: the interval ϕ ∈ [0, 2π] is repre-
sented as a half-interval ϕ+ ∈ [0, π], doubled by the
reversed half-interval ϕ– ∈ [π, 2π], with xμ(ϕ–, t) =
xμ(2π – ϕ–, t).

Here, we follow the first way, and consider the
above “frozen” solution as a right mode of an exci-
tation. We complete it by the left counterpart, which
we find among other admissible excitations. All exact
solutions for the EM field on the Kerr background
were obtained in [13], and they are defined by an ana-
lytic function A = ψ(Y, τ)/P2, where Y = eiϕtan(θ/2) is
a complex projective angular variable, τ = t – r –
iacosθ is a complex retarded-time parameter, and P =
2–1/2(1 + ) for the Kerr geometry at rest. The vector
potential is determined by the function ψ as follows
[13]:

 (38)

The simplest function ψ = –e yields the stationary
KN solution with function (2). It corresponds to the
frozen circular EM wave discussed above (see Fig. 7).
This circular traveling mode is locally plane wave
“propagates” along the Kerr singular ring. By regular-
ization, the EM field acquires the constant cut-off
parameter R = re (see Fig. 6a).

Along with many other possible stringy waves, an
interesting effect is manifested by the lowest wave
solutions6

 (39)

It is easy to find the back reaction of this excitation.
The boundary of the disk is very close to the position
of the Kerr singular ring, and for the stationary KN
source, the cut-off parameter is constant, R = re, (see
Eq. (4)). The EM traveling waves deform the bag sur-
face, and the boundary of the deformed bag can be
determined from the condition H = 0, Eq. (3).

Like the stationary KN solution, the function ψ
acts on the metric through the function H, which in
the general case has the form

 (40)

and the condition H = 0 determines the boundary of
disk R = |ψ|2/2m, which acts as the cut-off parameter
for EM field. The corresponding deformations of the
bag boundary are shown in Fig. 6b. We see that solu-
tion (39) takes the form

6 Remarkable features of this combination were discussed in [4].
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Fig. 7. The circular left mode formed by a traveling wave
along the KN string is completed by the time-like right
mode formed by the frozen traveling wave of the stationary
KH solution q.
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in the equatorial plane, cosθ = 0, and the cut-off
parameter

depends on ϕ – ωt. The vanishing of R at ϕ = ωt cre-
ates a singular pole, which circulates along the ring
string together with the traveling wave of the exci-
tation, reproducing light-like zitterbewegung of the
Dirac electron. This pole may be interpreted as a sin-
gle end point of the ring string: either as a point-like
bare electron or as a light-like quark, if it is also present
in the associated fermionic sector.

5. CONCLUSION

The mysterious problem of the source of two-
sheeted Kerr geometry leads to a gravitating soliton-
bubble model, which has to retain the external long-
range gravitational and EM field of the KN solution.
The requirement of consistency with gravity leads to a
supersymmetric field model of a phase transition in
which the Higgs condensate forms a supersymmetric
core of a spinning particle-like solution. The resulting
model considered in [10] has much in common with
the famous MIT and SLAC bag models, as well as with
the basic concept of the Standard Model, where the
initially massless leptons (left and right) acquire a mass
inside the bag from the Higgs mechanism of symmetry
breaking.

In the present extension of [10], we showed that the
KN bag model forms a BPS-saturated solution of the
Bogomolnyi equations, and therefore the stationary
bag forms a stable configuration determined by the
KN parameters: charge, spin, and the rotation param-
eter a = J/m, while the mass is related to the parame-
ters of the domain-wall bubble encoded in the super-
potential W.

Similar to the other bag models, the KN bag is pli-
ant to deformations. The spinning bag takes the shape
of a thin disk, whose sharp boundary represents a ring
string, which can support traveling waves. The
domain-wall boundary of the disk is determined by the
BPS bound, which coincides with the Lopez bound-
ary determined by principles PI, PIII. For the station-
ary KN solution, this corresponds to the bag of an
oblate ellipsoidal form taking the Compton zone of a
dressed electron. The boundary of the disk is com-
pleted by a “frozen” light-like ring string of the Comp-
ton radius. Since the tangent direction to this string is
light-like with great precision, it shrinks by the
Lorentz contraction, and its true space time extension
cannot be “seen” by an external observer [27, 32]:7

7 However, as it was supposed in [27, 32], the real Compton
extension of this string could be observable in some experiments
with low-energy scattering.

2 2| | (1 cos( ))
2

eR t
m m

ψ= = + φ − ω

On the other hand, we showed that the ring string
traveling waves lead to deformations of the bag surface,
and the lowest EM excitation of the KN solution
breaks the regularization of the KN solution, creating
a singular pole that reproduces the known zitterbewe-
gung, circulating with speed of light along the ring
string together with traveling wave. The bag model
acquires an additional point-like element that may be
interpreted as an analog of the bare electron, while the
model as a whole turns into a single ‘bag–string–
quark’ system, which should be associated with a
dressed electron.
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