<html><head><meta http-equiv="Content-Type" content="text/html charset=windows-1252"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class=""><div class=""><br class=""></div><div class=""><br class=""></div><div class=""><br class=""></div><div class=""><br class=""></div><div class=""><br class=""></div><div class="">Hello Chip, Grahame, Vivian, John W, Alex, Hodge and others,</div><div class=""><br class=""></div><div class="">    Alex, congratulations on your latest “bag model” article on arXiv. Do you have any suggestions on how we can get on arXiv? Does your bag model’s radius change by increasing the model's speed relativistically? Someone in an <a href="http://Academia.edu" class="">Academia.edu</a> article discussion group I am in asked me if I had heard of your work. I was pleased to say “yes”.</div><div class=""><br class=""></div><div class="">    The below diagram (figure 1 in my SPIE article at <a href="https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength" class="">https://www.academia.edu/15686831/Electrons_are_spin_1_2_charged_photons_generating_the_de_Broglie_wavelength</a> ) represents the relationships among momentum, energy and velocity for the relativistic spin-1/2 charged photon model of the electron. The figure also applies to some other helical photon-like object models of the relativistic electron because the total photon-like object’s momentum P=gamma mc is the hypotenuse of a momentum triangle where p=gamma mv is the longitudinal component of the photon-like object's momentum (and equals the the momentum of the relativistic electron being modeled), while mc is the transverse component of the photon-like object’s total momentum P=gamma mc, as shown by the pythagorean formula P^2 = p^2 + (mc)^2 .  Since P=E/c  for the photon-like object, where the energy of the helically-moving  photon-like object is E=gamma mc^2 , the 90-degree momentum triangle relating P, p and mc corresponds to the relativistic energy-momentum equation for an electron: E^2 = p^2 c^2 + m^2 c^4 as is evident if you just substitute P=E/c into the momentum triangle formula  P^2 = p^2 + (mc)^2 .</div><div class=""><br class=""></div><div class="">   If the above momentum triangle relationship is agreed for all our helical models of the relativistic electron , the only quantitative difference among Graham’s, Vivian’s, Chip’s and my helical photon models in this regard is the helical radius R's dependence on gamma, compared to the resting electron’s trajectory radius Ro=hbar/2mc (shown by the oval’s transverse radius at the left end of the figure).   My spin-1/2 charged photon model predicts that the helical radius R is given by R=Ro/gamma^2 = hbar/(2mc gamma^2) as shown in the figure,  (which equals 1/2 in this diagram where the value used for gamma in the diagram is  gamma = sqrt(2) = 1.414 so also v= c/sqrt(2) = 0.707c in the diagram. The value of theta in the figure is therefore 45 degrees. Grahame’s electron model predicts that R=Ro for all values of gamma. Vivian predicts that R=Ro/gamma which would equal 0.707 Ro in this example.  I’m not sure what Chip’s model predicts for the radius of the helically trajectory (I think it is R=Ro/gamma) which however is not necessarily the same as the radius of the helically moving photon-like object itself. Chip, Vivian and I seem to agree that the photon radius decreases as R=Ro/gamma for highly relativistic values of gamma, while Grahame doesn’t as far as I know have a prediction for the radius of a photon-like object (as distinct for his prediction of the constant radius of the trajectory of the photon-like object of Ro for all values of gamma. </div><div class=""><br class=""></div><div class="">   In Graham’s electron model, the orbital value alone for the angular momentum is always mc x Ro = hbar/2 even at highly relativistic velocities. Any additional angular momentum such as spin-1 or even spin-1/2 of the helically-moving photon would add a component of this spin at highly relativistic velocities to this orbital angular momentum value of hbar/2, giving a total z-component of spin greater than hbar/2 at highly relativistic velocities, which is contrary to experiment. Chip also doesn’t seem to take into account the spin of the photon-like object itself in his calculation of the total spin of his relativistic model of the photon as the electron’s momentum increases, which forces him to decrease the radius of his photon model as Ro/gamma (as I understand him) to keep the total spin of his electron model equal to hbar/2. But it is clear from the diagram that the transverse momentum component of the circulating photon-like object remains mc even at highly relativistic electron values, so his calculated value of orbital spin should actually decrease if his R decreases with increasing gamma.</div><div class=""><br class=""></div><div class="">   I would also like to know if John W agrees with the momentum right triangle relations here for a relativistic electron model. I believe that he thinks that the radius of a photon decreases as 1/gamma from various energy considerations. And Hodge? John M?</div><div class=""><br class=""></div><div class="">     Richard</div><div class=""></div></body></html>