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New Path to Unification of Gravity with Particle Physics

Alexander Burinskii
Laboratory of Theor. Phys. , NSI, Russian Academy of Sciences, B. Tulskaya 52 Moscow 115191 Russia, ∗

The principal new point is that ultra-high spin of the elementary particles makes Einstein’s gravity
so strong, that its influence to metric is shifted from Planck to the Compton scale! Compatibility
of the Kerr-Newman (KN) gravity with quantum theory is achieved by implementation of the
supersymmetric Higgs model without modification of the Einstein-Maxwell gravity. We consider
the nonperturbative bag-like solution to supersymmetric generalized LG field model, which creates
a flat and supersymmetric vacuum state inside the bag, forming the Compton zone for consistent
work of quantum theory. The bag is deformable, and its shape is controlled by BPS bound, providing
compatibility of the bag boundary with external gravitational and electromagnetic (EM) field. In
particular, for the spinning KN gravity bag takes the form of oblate disk with a circular string placed
on the disk border. Excitations of the KN EM field create circular traveling waves. The super-bag
solution is naturally upgraded to the Wess-Zumino supersymmetric QED model, indicating a bridge
from the nonperturbative super-bag to perturbative formalism of the conventional QED.

PACS numbers: 11.27.+d, 04.20.Jb, 04.70.Bw

I. INTRODUCTION

Modern physics is based on Quantum theory and Grav-
ity. The both theories are confirmed experimentally with
great precision. Nevertheless, they are contradicting and
cannot be combined in a unified theory. One of the
principal points is the structure of elementary particles,
which are considered as pointlike and even structureless
(for example electron) in quantum theory, but should be
presented as the extended field configurations for com-
patibility with the right hide side of the Einstein equa-
tions, Gµν = 8πTµν .

Revolutionary step for unification was made in su-
perstring theory, however, as mentioned John Schwarz,
“...Since 1974 superstring theory stopped to be considered
as particle physics... ” and “... a realistic model of ele-

mentary particles still appears to be a distant dream ... ”
[1]). One of the reasons of this is that extra dimensions
are compactified with extra tiny radii of order the Planck
length 10−33 cm, which does not correlate with charac-
teristic lengths of quantum physics and makes impossible
to test extra dimensions with currently available energies.
The idea to bring fundamental gravitational scale close
to the weak scale was considered in different approaches,
and in particular, in the brane world scenario, where the
weakness of the localized 4d gravity is explained by its
“leaks” into the higher-dimensional bulk, and the brane
world mechanism allowed to realize ideas of the super-
string theory for any numbers of the extra dimensions
[2].

Alternative ideas were related with nonperturbative
4D solutions of the non-linear field models – solitons, in
particular, solitonic solutions to low energy string theory
[3–5]. This approach, being akin to the Higgs mechanism
of symmetry breaking, is matched with nonperturbative
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approach to electroweak sector of the Standard Model.
The most known is the Nielsen-Olesen model of dual
string based on the Landau-Ginzburg (LG) field model
for a phase transition in superconducting media, and also
the famous MIT and SLAC bag models [6–8] which are
similar to solitons, but being soft, deformable and oscil-
lating, acquire many properties of the dual string mod-
els. Besides, being suggested for confinement of quarks,
the bag models assume consistent implementation of the
Dirac equation. The question on consistency with grav-
ity is not discussed usually for the solitonic models, as it
is conventionally assumed that gravity is very weak and
is not essential on the scale of electroweak interactions.
For example, in [9] we read ”... quantum gravity effects
are usually very small, due to the weakness of gravity rel-

ative to other forces. Because the effects of gravity are
proportional to the mass, or the energy of the particle,
they grow at high energies. At energies of the order of E

1019 GeV, gravity would have a strength comparable with
that of the other Standard Model interactions.”

Our principal point here is that the assumption on the
weakness of gravity is not correct, since it is based on
the underestimation of the role of spin in gravitational
interactions. Indeed, nobody says that gravity is weak in
Cosmology where physics is determined by giant masses.
Similarly, the giant spin/mass ratio of spinning parti-
cles makes influence of gravity very strong in the particle
physics.

For the great spin/mass ratio of the elementary parti-
cles, about 1020 − 1022 (in dimensionless units G = c =
~ = 1), the commonly accepted view that gravity is weak
and not essential in particle physics up to Planck scale,
should be replaced by principally new point of view that
GRAVITY IS NOT WEAK, and its influence becomes
crucial for the structure of the spinning particles at the
Compton scale of the electroweak interactions.

We show that spin of the Kerr-Newman (KN) rotat-
ing black hole (BH) with parameters of an electron de-
forms space-time in the Compton zone so strongly that
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the compatible with gravity structure of spinning particle
is determined almost unambiguously as a supersymmet-
ric bag model.
The KN space-time with ultra-high spin has the naked

singular ring creating two-sheeted topology. This space
differs from Minkowski space so strongly that neither the
Dirac theory nor perturbative QED can be applied, since
they require the flat space at least in the Compton zone of
the dressed particle. We show here that this conflict can
be resolved without modification of the Einstein-Maxwell
gravity – the space can be cured by a supersymmetric bag

model, in which the singular region of KN solution is re-
placed by the flat internal space of the Compton size. We
find the corresponding non-perturbative BPS-saturated
solution in frame of the supersymmetric generalized LG
model, in which boundary of the bag is formed by the
domain wall (DW) interpolating between the external
KN gravity and the supersymmetric vacuum state in-
side the bag. Similar to the usual bag models, the super-
bag model is deformable and displays a super-consistency
with the external gravitational and electromagnetic (EM)
KN field, in the sense that its shape and dynamics are
fully defined by matching its boundary with a special sur-
face (which can be called as ”zero gravity surface” (ZG)),
where the external gravitational field is compensated by
the EM field. The ZG-surface determines position of the
BPS DW-solution, and therefore, it determines shape of
the bag, as a disk-like configuration with a closed string
placed at the sharp border of the disk [10–12]. We show
that the supersymmetric LG model can be naturally up-
graded to the Wess-Zumino SuperQED model [13], re-
vealing connections between the non-perturbative solu-
tions of the supersymmetric LG model and the conven-
tional perturbative technics used in QED.

II. SUPER-BAG MODEL AS BPS SOLUTION
TO GENERALIZED LG MODEL

A. Basic features of the ultra-rotating
Kerr-Newman solution

It has been recently obtained [14, 15], that the source of
ultra-spinning Kerr-Newman (KN) solution can be con-
sidered as a superconducting soliton having many fea-
tures of the bag model [10, 11, 16], but with the essential
advantage of compatibility with Einstein-Maxwell grav-
ity in four dimensions. As is known, the bag models
take intermediate position between strings and solitons
[17–19]. Although, the bags were initially offered as the
extended models of hadrons, [6–8], being based on the
Abelian Higgs model of symmetry breaking their indi-
cated rather applicability to the Salam-Weinberg model
of leptons, which was one of the reasons to consider the
gravitating KN bag as the model for consistent with grav-
ity leptons.
The spinning KN solution is of particular interest in

this regard, since, as it was obtained by Carter [20, 21],

that gyromagnetic ratio of the KN solution is g = 2, and
therefore corresponds to the external field of the elec-
tron. The spin/mass ratio of the electron is about 1022,
and structure of source of the KN solution for such a
huge spin should shed the light on origin of the conflict
between gravity and quantum theory. One can see that
the KN field with parameters of electron becomes ex-
tremely strong on the Compton distances, so that the
BH horizons disappear and the Kerr singular ring of the
Compton radius a = ~/m becomes open, which breaks
topology of space-time and creates two-sheeted metric.
In the Kerr-Schild (KS) approach, metric of the KN so-
lutions is [20]

gµν = ηµν + 2Hkµkν , (1)

where ηµν is metric of an auxiliary Minkowski spaceM4,
(signature (−+++)), and H is the scalar function which
for the KN solution takes the form

HKN =
mr − e2/2

r2 + a2 cos2 θ
, (2)

where r and θ are oblate spheroidal coordinates, and kµ
is a null vector field kµk

µ = 0, forming a Kerr congruence
– the vortex of polarization of gravitational and electro-
magnetic field in the Kerr space-time. The Kerr singular
ring corresponds to border of the disk r = 0, in the equa-
torial plane cos θ = 0.
Similarly, vector potential of KN solution is also

collinear with the null direction kµ,

Aµ = − er

(r2 + a2 cos2 θ)
kµ (3)

−10

−5

0

5

10

−10

−5

0

5

10
−10

−5

0

5

10

Z 

FIG. 1: Vortex of the Kerr light-like (null) congruence kµ

propagates analytically from negative sheet of Kerr metric,
r < 0, to positive one, r > 0. In the equatorial plane, cos θ =
0, the Kerr congruence is focused on the Kerr singular ring,
r = cos θ = 0.

The KN metric becomes two-sheeted, since the Kerr
congruence

kµdx
µ = dr − dt− a sin2 θdφ, (4)
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is out-going at the ‘positive’ sheet of the metric, r > 0,
and passes analytically to ‘negative’ sheet, r < 0, be-
ing extended via ring r = 0, where it becomes in-going.
The two null vector fields kµ(x)

± become different at
r > 0 and r < 0, leading to two different metrics
g±µν = ηµν+2Hk±µ k

±
ν on the positive and negative sheet of

the same Minkowski background. Similarly, it leads also
to two-sheeted vector-potential A±

µ , that makes space in-
appropriate for quantum theory, and therefore, conflict
between quantum theory and gravity is shifted by 22 or-
ders earlier then it is usually expected, from the Planck
to the Compton scale. As usually, singularity is signal
to new physics – theory of more high level. The KN
gravitational field is strong near the Kerr singular ring
and creates vortex of the space-time polarization in the
Compton zone of the dressed electron, which should be
flat for work of quantum theory. It is usually assumed
that in vicinity of strong field, gravity should be mod-
ified to a new Quantum Gravity. Taking into account
sharp incompatibility of Quantum and Gravity, natural
requirement for such new theory would be separation of
their zones of influence: formation of the internal zone
(I) – flat core for quantum theory, and external zone
(E) – for undisturbed gravitational and electromag-

netic fields.
There should also be selected intermediate zone
(R) – interpolating between (I) and (E).

In the case of strong KN field, these demands become
so restrictive that determine structure of the new theory
almost uniquely. It turns out that the flat Compton zone
free from gravity may be achieved without modification of

the Einstein-Maxwell equations, through SUPERSYM-
METRY, which eats up the strong gravitational field in
the core of particle. Expelling gravity from the core of
the KN spinning particle is similar to expelling the EM
field from superconducting core, and both of these super-
phenomena are realized in core of the KN solution by the
supersymmertric LG field model [13, 22–28] in the form
of a BPS-saturated Super-Bag solution, for which just
the strong contradiction between Quantum and Gravity
determines extreme sensitivity of the model to the choice
of the separating surface (R).
The natural choice of this surface for the KN solution

was suggested by C. López [29]. According (1) and (2) it
should be the surface ”zero gravity” (ZG) at

r = R =
e2

2m
, (5)

where function H vanishes

HKN (R) = 0, (6)

and metric becomes flat, and can be matched with flat
Minkowski space for r < R. It turns the López source of
the KN solution in a shell-like bubble. So far as r is the
oblate spheroidal coordinate, [20], related with Cartesian
coordinates by transformations

x+iy = (r+ia) exp{iφK} sin θ, z = r cos θ, ρ = r−t,
(7)

the bubble surface r = R takes the oblate ellipsoidal form
– the disk of the thickness R and radius rc =

√
R2 + a2,

where a = J/m.
For solution without rotation, a = 0, and bubble turns

into a sphere of the classical radius re. Such spherical
shape was suggested by Dirac in [30] as an ”extensible
electron model” – prototype of the bag models, display-
ing one of their basic features of the bags – their deforma-
bility.
We see that deformations of the KN Super-Bag appear

as consequence of the requirement on sharp separation of
the zones (I),(E),(R).
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A.  a / R = 0 B.  a / R = 3 

C. a / R = 7 

D.  a / R = 10 

FIG. 2: (A): Spherical bag without rotation a/R = 0, and
disk-like bags for different values of the rotation parameter:
(B)- a/R = 3; (C) - a/R = 7; and (D) - a/R = 10.

B. Spinning bag creates a string

Usually, it is assumed that bags are deformed by ro-
tations taking the shape of a string-like flux-tube joining
the quark-antiquark pair [6].
In the KN Super-Bag, the spinning gravitational field

controls disk-like shape of the bag, and string-like struc-
ture is formed for a/R > 0, at edge rim of the disk, as
shown in Fig.2. In the equatorial plane, this string ap-
proaches very close to the Kerr singular ring, see Fig.3A,
so, it is really just the singular ring regularized by the
bag boundary.
Among diverse attempts to use nonperturbative mod-

els in the electroweak sector of the Standard Model (SM)
[31–35], the central place takes the Nielsen-Olesen (NO)
model [36, 37] of the string, which is created as a vortex
line in a superconductor.
The assumption, that Kerr singular ring is similar to

NO model of dual string was done very long ago in
[38, 39], where it was noted that excitations of the KN so-
lution create traveling waves along the Kerr ring. Later,
it was obtained in [5, 40] close connection of the Kerr
singular ring with the Sen fundamental string solution to
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FIG. 3: Regularization of the KN string. Boundary of bag
fixes cut-off R = re for the Kerr singular ring. A) The exact
KN solution. B) The KN solution is excited by the lowest
traveling mode: emergence of the singular pole.

low energy string theory.[44] In the KN bag model this
string is formed at the sharp boundary of the supercon-
ducting disk, as a dual analog of the NO vortex line in
superconductor.
In accordance with the condition (6), the KN grav-

ity controls position of the bag boundary (R), and also
more thin effects, such as excitations of the KN gravity
define dynamics of the bag and appearance of the trav-
eling waves.
In particular, it has been shown [11], that the lowest

EM excitation of the KN solution creates the traveling
wave which has a circulating lightlike node. At this point,
surface of the deformed bag touches the Kerr singular
ring, as it is shown in Fig.3B, which breaks regulariza-
tion at this point and creates the lightlike singular pole,
which can be considered as emergence of the bare Dirac
particle circulating inside the Compton zone of dressed
electron. On the other hand, this pole breaks homogene-
ity of the closed circular string, creating the frontal and
rear ends turning this string in the open. As usual, the
end points of an open string are associated with quarks,
and the KN super-bag model turns into a single “bag-
string-quark” system, 4D analog of D2-D1-D0-brane sys-
tem of the string–M-theory.

III. SUPERSYMMETRY ENSURES
CONSISTENCY WITH GRAVITY

A. Generalized LG field model and domain wall
(DW) phase transition

The LG field model of superconductivity is used in
many solitonic models, in particular, in the NO dual
string model, as a field model in the MIT and SLAC
bag models, and really, it is also the the Higgs model
of symmetry breaking, because the Higgs vacuum itself

”... is analog to a superconducting metal”, [8]. The LG
Lagrangian used in the NO model (minimal LG model)
is

LNO = −1

4
FµνF

µν − 1

2
(DµΦ)(DµΦ)∗ − V (|Φ|), (8)

whereDµ = ∇µ+ieAµ are the U(1) covariant derivatives,
and Fµν = Aµ,ν−Aν,µ is the corresponding field strength,
and potential V has the quartic form

V = λ(Φ†Φ− η2)2, (9)

where η is condensate of the Higgs field Φ, its vacuum
expectation value (vev) η < |Φ| >, [36].
The minimal LG model can be used to describe super-

conductivity inside the bag – interplay of the KN vector-
potential with the Higgs condensate. Since requirements
(I),(E),(R) define inside the bag a flat space, the corre-
sponding covariant derivatives can be taken as flat,

Dµ = ∇µ + ieAµ → Dµ = ∂µ + ieAµ. (10)

However, the NO and KN models have opposite spa-
cial configurations: the KN bag model should describe a
superconducting disk surrounded by the long-range EM
and gravitational field, while the NO model describes
vortex of the EM field inside the superconducting Higgs
condensate which breaks the external long-range EM and
gravitational field. Note, that this is a typical drawback
of the most of soliton models and, in particular, the usual
bag models which are formed as a ”cavity in supercon-
ductor” [8]. The reason of this disadvantage lies in the
use of the potential (9).
The correct opposite configuration – condensation of

the Higgs field inside the core – requires more complex
scalar potential V formed from several complex fields
Φi, i = 1, 2, 3, [14]. Kinetic part of the corresponding
generalized LG model differs from those of the minimal
LG model (8) only by summation over the fields Φi,

LGLGkin = −1

4
FµνF

µν − 1

2

∑
i

(DiµΦi)(Dµ
i Φi)

∗, (11)

while the potential V is changed very essentially, and has
to be formed by analogy with machinery of the N = 1
supersymmetric field theory [13] from a superpotential
function W (Φi).[45] The scalar potential[46]

V (r) =
∑
i

FiF
∗
i (12)

is formed through derivatives of the function W (Φi),

Fi = ∂W/∂Φi ≡ ∂iW, (13)

where

W (Φi, Φ̄i) = Z(ΣΣ̄− η2) + (Z + µ)HH̄, (14)
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µ and η are real constants, and the special notations are
introduced (H,Z,Σ) ≡ (Φ1,Φ2,Φ3), to identify Φ1 as the
complex Higgs field

H = |H |eiχ, (15)

which interacts with the KN vector field Aµ as D1µ =
∇1µ+ieAµ. The fields Φ2 and Φ3 are assumed uncharged,
and Diµ = ∇iµ for i = 2, 3.
The condition Fi = ∂iW = 0 determines two vacuum

states with V = 0:
(I) internal vacua: r < R − δ, where the Higgs field

|H | = η, and Z = −µ, Σ = 0,
and
(E) external vacuum state: r > R+δ, where the Higgs

field H = 0, and Z = 0, Σ = η,
separated by spike of the potential V > 0 in zone
(R) – a domain wall (DW), interpolating between

zones (I) and (E), in the full correspondence with the
requirements (I),(E),(R).
Reduction of the corresponding LG equations to Bogo-

molny form is performed by minimization of the energy
density per unit area of the DW surface,

µ =
1

2

3∑
i=1

[

3∑
µ=0

|D(i)
µ Φi|2 + |∂iW |2]. (16)

The four dimensional DW solutions in supersymmet-
ric LG model have paid attention in the works [22–28],
where it was usually considered the static planar DWs
positioned in (x,y) plane, with the transverse to the wall
z-direction. However, even in the simplest case of the one
field Φ(z) and one coordinate z,

µ =
1

2
(|∂zΦ|2 + |∂ΦW |2), (17)

reduction of the LG equation to Bogomolny form turns
out to be nontrivial, since it requires the introduction of
an arbitrary phase factor α, so that (17) can be equiva-
lently presented in the form

µ =
1

2
|∂zΦ− eiα∂Φ̄W̄ |2 +Re eiα∂zW, (18)

which is saturated by the Bogomolny equation

∂zΦ = eiα∂Φ̄W̄ . (19)

The DW forming the KN bag is much more compli-
cated, since first of all it is not planar, but forms the
spheroidal boundary profile of which is shown in Fig.3.
Second, it is formed by three chiral fields Φi, and thirdly,
the most important feature is that this DW is not static
and has non-trivial dependence on the phases of the com-
plex fields Φi. The corresponding BPS saturated solution
was found in [11, 16], where it was shown that the phases
αi of the complex fields Φi should acquire nontrivial de-
pendence from time and angular coordinate

α1 = 2χ(t, φ), α2 = α3 = 0, (20)

and the Higgs field becomes oscillating, showing that just
in the KN bag model the transformation to Bogomolny
form (18) begins to operate at full power.
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FIG. 4: The domain wall profile (axial section) defined by the
oblate spheroidal coordinate r = R.

B. Minimal LG model and quantization of the
angular momentum

The non-trivial dependence (20) is fixed in zone (I),
where the generalized LG model is reduced to minimal
LG model, and the NO Lagrangian (8) leads to equations

�Aµ = Jµ = e|H |2(χ,µ +eAµ). (21)

One sees that vector potential Aµ acquires from the
Higgs field the mass term mv = e|H |, and the EM field
becomes short-range, with the characteristic parameter
λ = 1/(e|H |) corresponding to the penetration depth of
the EM field in superconductivity. As a consequence,
the currents vanish inside the core, Jµ = 0, leading to
the equations

�Aµ = 0, χ,µ +eAµ = 0, (22)

showing that besides of the massive component Amv

µ

which falls off receiving the massmv from the Higgs field,
there are also the components of different behavior.
Vector-potential of the external KN solution (3) is

Aµdx
µ = − er

r2 + a2 cos2 θ
(dr − dt− a sin2 θdφ). (23)

It grows near the core and takes maximal value at the
boundary of the disk, at r = R = e2/2m, cos θ = 0,

Amax
µ dxµ = −Re 2m

e
(dr − dt− adφ). (24)

Note, that the component Ar is a perfect differential (as
it is shown for example in [20]) and can be ignored. At
the boundary, Amax

µ is dragged by the light-like direction
of the Kerr singular ring (see Fig.2) and the component
Amax

φ forms the closed Wilson loop, so that

e

∮
Amax

φ dφ = 4πma. (25)
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The right equation in (22) shows that penetrating inside
the disk vector potential determine oscillating phase of
the Higgs field as χ = 2mt + 2amφ. The condition of
multiplicity of the periods χ and φ gives 2am = n, n =
i, 2, 3, .., which in view of J = ma, leads to quantization
of angular momentum as

J = n/2, n = i, 2, 3, ... (26)

On the other hand (22) shows that phase of Higgs field

H = Φ1 = |H |ei(2mt+2amφ) (27)

oscillates with the frequency ω = 2m which supports
extension of the components Ain

t = 2m
e
, Ain

φ = 2ma
e

inside the disk.[47] At the disk boundary (22) is broken,
and according (21) there appear the surface currents Jµ.
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FIG. 5: Kerr’s coordinate φ = const. Kerr singular ring drags
the vector potential, forming a closed Wilson loop along edge
border of the DW.

IV. SUPERBAG AS NONPERTURBATIVE
SOLUTION OF THE SUPERQED MODEL

A. Bosonic sector of the supersymmetric LG model

As we noticed earlier, the generalized LG model based
on the superpotential (14) is not true supersymmetric
model. The difference is that the true superpotential W
is to be a chiral function of the chiral superfields Φi, while
the scalar potential

V = FiF
∗
i (28)

is formed from the chiral part

F ∗
i = ∂W/∂Φi, (29)

but also incudes the antichiral superpotential W+(Φ+
i )

depending on the antichiral superfields Φ+
i

Fi = ∂W+/∂Φ+
i . (30)

These relations are retained in the bosonic sector of the
supersymmetric theory, where the fields Φi and Φ+

i turn
into the complex conjugate scalar components of the su-
perfields.
To get full correspondence with supersymmetric the-

ory, the fields Φi and Φ̄i in (14), should be considered as

independent chiral fields Φi and Φ̃i, and there should also
be introduced an antichiral superpotentialW+(Φ+

i , Φ̃
+
i ),

which in the bosonic sector turns into complex conju-
gated superpotential, built of the complex conjugated
fields W̄ (Φ∗

i , Φ̃
∗
i ). From the complex point of view, the

transition from (14) to supersymmeric Higgs model may
be considered as complexification of the moduli space –
analytical extension from the real section, fixed by condi-
tion Φ̄i = Φ∗

i , to its complex extension, the manifold with

independent coordinates Φi and Φ̃i, supplemented with
complex conjugate coordinates Φ∗

i , Φ̃∗
i . Therefore, the

transition to bosonic sector of the supersymmetric gen-
eralized LG model requires doubling of the chiral field to
eliminate their degeneracy on the real slice.
Returning to the original work by Morris [42], where

the potential (14) was suggested for super-generalization
of the Witten’s superconducting string model [43], we
should double the charged chiral fields Σ and Φ, and
consider five chiral superfields Σ±,Φ±, and Z, which in
Witten’s interpretation of this model as the U(I)×U ′(I)
Higgs field model, acquire the charges (±1, 0) for Φ±, and
charges for the Σ± fields as (0,±1). The chiral superpo-
tential (14) takes the form

W (Φi, Φ̃i) = Z(Σ+Σ− − η2) + (Z + µ)Φ+Φ−, (31)

with identification

Φi = (Φ+,Φ−,Σ+,Σ−, Z). (32)

The auxiliary fields

F ∗
i = ∂W/∂Φi = (F ∗

+, F
∗
−, F

∗
Σ+, F

∗
Σ−, F

∗
Z) (33)

take the form

F ∗
± = (Z + µ)Φ∓, (34)

F ∗
Σ± = ZΣ∓, (35)

F ∗
Z = Σ+Σ− +Φ+Φ− − η2, (36)

Vacuum expectation values of fields Φi for which F
∗
i = 0

give minima of the potential V = 0 corresponding to
supersymmetric vacuum states. Just as in case (14), we
obtain two isolated vacua
(I) Φ−Φ+ = η2, Z = −µ, Σ+ = Σ− = 0;
(E) Φ− = Φ+ = 0, Z = 0, Σ+Σ− = η2;
separated by the zone
(R) of the positive potential

V = |Σ+Σ− +Φ+Φ− − η2|2 + |(Z + µ)Φ+|2
+|(Z + µ)Φ−|2 + |Z|2(|Σ+|2 + |Σ−|2). (37)
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B. Transition to SuperQED model

We note that two oppositely charged superfields Φ+

and Φ− give rise to correspondence of the supersymmet-
ric LG model to kinetic part of the Wess-Zumino Su-
perQED model [13],

LSQEDkin = −1

4
W aWa+Φ+

+e
eV Φ+|θθθ̄θ̄+Φ+

−e
−eV Φ−|θθθ̄θ̄,

(38)
where V is vector superfield, and W a = − 1

4D̄D̄DαV. In
the same time, the potential part (31) corresponds to the
most general renormalizable supersymmetric Lagrangian
and gives rise to nonperturbative generalization of the
SuperQED model.

The chiral superfields Φ±, are expressed in the compo-
nent form

Φ±(y) = H±(y
µ) +

√
2θψ±(y

µ) + θθF±(y
µ), (39)

as functions of the chiral coordinates yµ = xµ+iθσµθ̄ and
θ, and the scalar components H± are independent Higgs
fields, splitting of the complex conjugated Higgs field of
the minimal LG model in (14) and (15). Interplay of the
oppositely charged Higgs fields H± with vector potential
in zone (I) is defined by (22) and yields

H± = |H±|e±iχ, H̄± = |H±|e∓iχ, χ = 2mt+ 2amφ,
(40)

where the fields H̄± are scalar components of the antichi-
ral fields

Φ+
±(y

+) = H̄±(y
+µ) +

√
2θ̄ψ̄±(y

+µ) + θ̄θ̄F̄±(y
+µ), (41)

as functions of the antichiral coordinates y+µ = xµ −
iθσµθ̄ and θ̄. The corresponding nonperturbative solution
with doubled Higgs fields (40) can be obtained similar to
[11].

In the Wess-Zumino SuperQED model, the two Weyl
spinors ψ± in (39) combine into one massive Dirac spinor
of the electron – superpartner of the Higgs doublet H±,
[13].

The nonperturbative super-bag solution generates in
the core of spinning particle the flat Compton zone (I),
which is free from gravity and supersymmetric, represent-
ing the conditions for the work of the perturbative Su-
perQED model, while the remarkable perturbative prop-
erties of the SuprQED – ”miracleous cancellations” of
the component super-graphs [13] for a link to pertur-
bative QED. Note, that in the nonperturbative model
of super-bag, the superpartners cannot be considered as
separate particles, and are integrated as the superfield
components of a single nonperturbative solution. The
super-bag model reveals correspondence not only with
gravity and electroweak sector of the SM, but also with
a nonperturbative version of the SuperQED model.

V. OUTLOOK

We have considered principal features of the Kerr-
Schild geometry which specify the supersymmetric bag
model as a new way to particle physics consistent with
gravity and electroweak sector of the SM. Two of them
are principally new relative to the widespread belief:
– the spinning KN gravity is not weak, and becomes

very strong at the Compton scale of the particle physics,
– compatibility between Quantum and Gravity can be

achieved by means of supersymmetric generalization of
the matter sector, without modification of the Einstein-
Maxwell theory.
We considered interplay of the KN gravity with the

matter sector based on the supersymmetric generalized
LG field model, which is equivalent to supersymmetric
Higgs mechanism of symmetry breaking, and give a non-
perturbative solution to generalized LG field model in the
form of a super-bag – nonperturbative version of the Su-
perQED model. By conception, the 4d super-bag model
has to be soft and oscillating, similar to the conception
of the superstring models [7, 17, 18].
Due to extreme high spin/mass ratio, impact of the

gravitational KN field on the structure of space-time be-
comes very strong, and the consistent supersymmetric
nonperturbative solutions become very sensible to the
external Einstein-Maxwell field. As a result,
a) the super-bag model creates a free from gravity

Compton core of spinning particle, where the supersym-
metric vacuum state of the Higgs field provides the flat
space, required for consistent work of quantum theory;
b) the super-bag takes the shape of a strongly oblate

disk forming a circular string along its border;
c) gravitational and electromagnetic excitations of the

KN solution create consistent stringy oscillations of the
super-bag in the form of traveling waves.
Many problems remain to be solved. The closest is the

so far unsolved problem of the exact nonstationary (os-
cillating or accelerating) generalization of the KN solu-
tion, the problem of the consistent solutions of the Dirac
equation corresponding to confinement of quark inside
the bag, and so on.
Nevertheless, the considered here features of the super-

bag model are so intriguing that we risk to state that they
really give the key to solution of the principal problem of
unification of gravity with particle physics.
Finally, we should mention very important new as-

pect of this study, the direct link to the non-perturbative
Wess-Zumino SuperQED model, which provides remark-
able cancellations between component diagrams, present-
ing a link between the nonperturbative bag-like solution
and the conventional technics of the perturbative QED.
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