

Physical Aspects vs. Geometric Aspects:

$$r_{e} = \frac{\lambda_{c}}{4\pi} = \frac{\hbar}{2mc}, \alpha = \frac{r_{0}}{2r_{e}} = \frac{e^{2}}{\hbar c} \approx \frac{1}{137}, T_{w} = \frac{r_{0}}{2\pi r_{e}} = \frac{\alpha}{\pi} = \frac{e^{2}}{\pi \hbar c}, \mu_{e} = \frac{e\hbar}{2mc} \left[1 + \frac{1}{2} \left(\frac{\alpha}{\pi} \right) \right]$$

Quantization Condition, The Fine Structure Constant, The Charge Identified with the Twist, The Magnetic Moment Where r_e is the radius of the electron, λ_c is the Compton wavelength, r_0 is the classical radius of the electron, $\boldsymbol{\omega}_d$ is the de Broglie frequency, $\boldsymbol{\omega}_z$ is the Zitterbewegung frequency, T_w is the twist of the Hubius Helix.

Twisted Photon and Knotted Light

