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Abstract This article will combine the finite element method, the interpolated coeffi-

cient finite element method, the eigenfunction expansion method, and the search-extension

method to obtain the multiple solutions for semilinear elliptic equations. This strategy not

only grently reduces the expensive computation, but also is successfully implemented to

obtain multiple solutions for a class of semilinear elliptic boundary value problems with

non-odd nonlinearity on some convex or nonconvex domains. Numerical solutions illus-

trated by their graphics for visualization will show the efficiency of the approach.
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1 Introduction

Consider the semilinear elliptic Dirichlet BVP:

△u+ f(x, u) = 0 in Ω, u = 0 on ∂Ω, (1.1)

where Ω is a bounded domain in Rd with a regular boundary ∂Ω and the function f(x, t)

satisfies the following hypotheses:

(A1) f(x, t) ∈ C1(Ω ×R,R);

(A2) there are constants C1 and C2 such that

|f(x, t)| ≤ C1 + C2|t|
p,

where 0 ≤ p < d+2
d−2 for d ≥ 3. If d = 2,

|f(x, t)| ≤ C3 exp(ψ(t)),

where ψ(t)/t2 → 0 as t→ ∞ and C3 is a constant.
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(A3) f(x, 0) = f ′
t(x, 0) = 0;

(A4) there are constants µ > 2 and M > 0, such that for |t| ≥M , 0 < µF (x, t) ≤ tf(x, t).

It is well-known that the functional J : H1
0 (Ω) → R defined by

J(u) =

∫

Ω

(

1

2
|∇u|2 − F (x, u)

)

dx, (1.2)

where F (x, u) =
∫ u

0
f(x, t)dt, is C1 and satisfies the PS condition (see [1], [2]). 0 is a local

minimum point of J , whose Morse index MI = 0. It is easy to verify that the critical points

of J(u) correspond to weak solutions of (1.1). It is known [3] that (1.1) has an infinite number

of solutions if f(x, t) is of odd nonlinearity and F (x, t) > 0 for |t| ≥ M . Without assuming

the oddness of f(x, t) w.r.t. t, the study of the multiple solutions of (1.1) becomes much more

challenging. The sharpest result so far was obtained by Z.Q.Wang [4], who used linking and

Morse type arguments to verify that (1.1) has at least three nontrivial solutions, two of which

are the positive and negative mountain pass solutions under the hypotheses (A1) to (A4). In

more recent articles by Castro et al. [5] and Bartsch and Wang [6], it was further proved that

the third nontrivial solution claimed in [4] was a sign-changing solution with Morse index 2.

In recent years, several constructive methods, e.g., the Mountain Pass Algorithm (MPA),

the High Linking Algorithm (HLA), the Minimax Algorithm (MNA), and the Search-extension

Method (SEM) have been developed (see [7], [8], [9] and [10] resp.). However, in general, the

MPA can only get the two positive and negative mountain pass solutions with Morse index 1 or

0. Due to the fact that the HLA depends on some local behaviors of the known critical points,

the HLA can find at most four solutions of (1.1), two of which are sign-changing solutions

with MI = 2, even if f(x, t) is of odd nonlinearity. The MNA is dependent on the continuity

of the peak selection, the separation condition, and an ascent direction of the known critical

point and thus can only obtain the critical points with “nice” properties. When f(x, t) is of

odd nonlinearity and the domain is symmetric, the SEM can produce an infinite number of

solutions of (1.1), whose structure and distribution are connected with the eigenvalues of −△.

Nevertheless, the fact that f(x, t) is of general nonlinearity and the domain is nonsymmetric

makes the computation very large and expensive.

In this article, we suggest an improved search-extension method (ISEM) which combines

the finite element method, the interpolated coefficient finite element method, and the SEM to

compute the solutions of (1.1) with non-odd nonlinearity on some symmetric and nonsymmetric

domains. One will see that our approach is very robust numerically.

2 The Interpolated Coefficient Finite Element Method

As the interpolated coefficient finite element method plays a crucial role in the ISEM, we

first introduce some background and results about it.

Denote a subspace S0 = {u ∈ H1(Ω), u = 0 on ∂Ω}. Consider the weak form of a semilinear

elliptic problem with zero Dirichlet boundary condition, that is,

Q(u, v) = A(u, v) − (f(u), v) − (g(x), v) = 0, v ∈ S0, (2.1)

where Ω is a d-dimensional bounded domain with boundary ∂Ω and the bilinear form

A(u, v) =

∫

Ω

(aij(x)DiuDjv + a(x)uv)dx (2.2)
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is assumed to be bounded and S0-coercive. Furthermore, it is supposed that d ≤ 3 and the

problem (2.1) has a solitary solution u.

For the sake of the implementation of the finite element method and the interpolated

coefficient finite method in the subsequent discussions, the domain Ω is subdivided into a finite

number of elements τ with the subdivision Jh quasi-uniform and Zh = {xj}
M
1 , the set of all

interior nodes. Denote Sh ⊂ S0 the n-degree finite element subspace and {Nj(x)}
M
1 the base of

Sh. It is well known that the classical finite element solution uh ∈ Sh of (2.1) can be expressed

as uh(x) =
M
∑

j=1

UjNj(x) with Uj = uh(xj) and satisfies

A(uh, v) − (f(uh), v) = (g, v), v ∈ Sh. (2.3)

By taking v = Ni, i = 1, 2, · · · ,M , (2.3) leads to a nonlinear algebraic system of equations

M
∑

j=1

A(Nj , Ni)Uj − (f(

M
∑

j=1

Nj(x)Uj), Ni) = (g,Ni), i = 1, 2, · · · ,M, (2.4)

which is often solved by the Newton method. Therefore the Jacobi matrix J of (2.4) is the

main concern. The direct computation shows that

{A(Ni, Nj) − (Ni, f
′(

M
∑

k=1

NkUk)Nj)}M×M , (2.5)

which has to be updated repeatedly as the iterations proceed. Obviously, the nonlinearity of

f(u) makes the integrations in the second term of (2.5) quite large in calculations and then

results in the very expensive computation for the Newton method.

To overcome this difficulty, a simple and efficient solution called the interpolated coefficient

finite element method (ICFEM), which was originally inspired by solving semilinear parabolic

problems, was first proposed by M.Zlamal [11]. For implementation in this article, the details

of the ICFEM are given as follows based on problem (2.1).

Substitute the interpolation Ihf(uh) =
M
∑

j=1

Nj(x)f(Uj) with Uj = uh(xj) rather than f(uh)

into (2.3) and still denote the ICFEM solution as uh =
N
∑

j=1

UjNj(x). Then, we obtain a new

finite element equation

A(uh, v) − (Ihf(uh), v) = (g, v), v ∈ Sh. (2.6)

As a result, we obtain a nonlinear algebraic system of equations

M
∑

j=1

(kijUj −mijf(Uj)) = (g,Ni), i = 1, 2, · · · ,M, (2.7)

where the elements of the stiffness matrix kij = A(Nj , Ni, ) and the elements of the mass matrix

mij = (Nj , Ni) can be computed once. The Jacobi matrix of (2.7) is

J1 = {kij −mijf
′(Uj)}M×M . (2.8)

As kij and mij are given, the Jacobi matrix J1 can be obtained simply by multiplying mij and

f ′(Uj). Therefore, the computation is greatly reduced compared with that for solving (2.4).
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Actually, the ICFEM has become one of the most efficient methods for solving a wide

variety of semilinear elliptic or parabolic problems. For semilinear parabolic problems, some

error analysis of ICFEM has been obtained (see [12], [13]). For the semilinear elliptic problem

(2.1), [14] assumed

(B1) u ∈ Hn+1(Ω)
⋂

S0 is a solitary solution of (2.1), that is, Q(u, v) = 0 and

|Q(w, v)| ≥ c‖w − u‖‖v‖, w ∈ Nǫ(u), v ∈ S0, c = c(u) > 0,

where Nǫ(u) = {w|w ∈ Hn+1
⋂

S0,maxΩ |u− w| < ǫ}.

By introducing the auxiliary linear elliptic operatorB(w, v) = A(w, v)−(f ′(u)w, v), v ∈ S0,

[14] obtained the convergence of ICFEM for (2.1), that is.

Theorem 2.1 Suppose the assumption (B1) holds and the triangulation is quasiuniform.

Then its n-degree ICFEM solution uh has an optimal order convergence estimate ‖uh − u‖ =

C(u)hn+1, where the constant C(u) depends on the norm ‖u‖n+1,Ω.

The proof can be seen in [14].

Remark 2.1 The condition f ′(u) ≤ 0, that is, the coerciveness of B(w, v) is not required

in Theorem 2.1. This fact means that the ICFEM can be used conveniently in the computation

of the multiple solutions of (1.1), as will be seen later.

Actually, we are focusing on the superconvergence analysis of ICFEM and have obtained

some promising results, e.g., the error estimate O(h4) at nodal points for the triangular and rec-

tangular quadratic ICFEM with the uniform meshes. The corresponding work will be submitted

in our subsequent articles.

3 The Improved Search-extension Method

As described in Section 1, the problem (1.1) associates with the functional J(u) whose

critical point u is a (weak) solution of (1.1), that is,

(∇u,∇v) − (f(u), v) = 0, ∀v ∈ S0. (3.1)

Our present objective is to combine the FEM, the ICFEM, the eigenfunction extension

method, and the SEM to overcome the difficulties caused by the general nonlinearity and

domains to solve (1.1).

First consider the weak form of the eigenvalue problem w.r.t. −△, that is,

(∇u,∇v) = λ(u, v), ∀v ∈ S0, (3.2)

whose eigenpairs {λj , φj}, j = 1, 2, 3, · · · can be obtained accurately in some symmetric domain

Ω, e.g., a square or a circle. However, we have to apply the FEM to calculate them for the

general domains or operators. Substituting u =
M
∑

i=1

NiVi, v = Nj, j = 1, 2, · · · ,M in (3.2), we

get

K1V = λK2V, (3.3)

where K1(i, j) = (∇Ni,∇Nj), K2(i, j) = (Ni, Nj), i, j = 1, 2, · · · ,M . Then we can obtain the

eigenvalues λ and its corresponding eigenfunctions φ =
M
∑

i=1

ViNi(x) by the standard numerical

method.
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As the eigenfunctions of −△ are only used in the search for the initial guesses in the ISEM

below, the meshes for solving (3.2) by the FEM can be relatively crude to reduce the cost of

the computation. However, the meshes for computing the multiple solutions of (1.1) by the

ICFEM have to be much more refined to guarantee the accuracy. Then the number M of the

interior nodes of the meshes varies accordingly.

Now we propose an algorithm to obtain the multiple solutions of semilinear elliptic PDES

with general nonlinearity in general domains based on (1.1).

Improved Search-extension Algorithm

Step 1. Computing the eigenpairs of −△.

Solve the eigenvalue problem (3.2) by the FEM if the eigenpairs are not obtained accurately.

Step 2. Search for the initial values in SN .

Without loss of generality, assume that 0 < λ1 ≤ λ2 ≤ · · · ≤ λN and {φj}
N
1 form a normal-

ized orthogonal system, that is, (φi, φj) = δij , A(φi, φj) = λjδij . As
∫

Ω F (u)dx does not contain

the derivative of u ∈ H1, it possesses some compact property. Set SN = span{φ1, φ2, · · · , φN}.

Then the solutions of (1.1) can be approximated by

u(x) =
N

∑

j=1

ajφj(x) ∈ SN , (3.3)

with N being large enough. To determine a = a(N) = [a1, a2, · · · , aN ]T, substituting (3.3) into

J(u), we obtain

J(u) =
1

2

N
∑

j=1

λja
2
j −

∫

Ω

F (u)dx,

whose critical points satisfy

∂J(u)

∂ai

= Fi(a) = λiai − gi(a) = 0, gi(a) = (f(

N
∑

j=1

ajφj), φi), i = 1, 2, 3, · · · , N. (3.4)

This is an algebraic system of equations.

Suppose λl is a k-tuple eigenvalue and the corresponding eigenfunctions φl, φl+1, · · · ,

φl+k−1 span the subspace S∗
k . We may consider that all nonzero solutions ul(x) of (1.1) are

arranged in the order of eigenvalues λl. By taking N appropriately large such that SN ⊃ S∗
k ,

the solutions of (3.4) a0 = a0(N) = [a0
1, a

0
2, · · · , a

0
N ]T can be searched out and the rough initial

guesses of the solutions ul are obtained. Indeed, in many simpler cases, we only need to search

for the initial guesses of the solutions in S∗
k . In this manner, we obtain a system of algebraic

equations with k unknowns a(k) = [al, al+1, · · · , al+k−1]
T , that is,

λiai = gi(a(k)), i = l, l + 1, · · · , l+ k − 1. (3.5)

When k is not large, a(k) can be searched out by a simple algorithm. Therefore, we get a rough

initial approximation u0
l ≈ ω

l+k−1
∑

j=l

a0
jφj for each root a0(k), where ω ∈ (0.5, 1] can be chosen

in computation. Actually we always take ω = 1 at first, it will do if the numerical results are

convergent. Otherwise we will reduce ω gradually until the results are convergent. In some

complicated cases, we should increase the number of bases in order to search for more and
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better initial values. The purpose of this step is to separate all the solutions and determine

their rough positions.

Step 3. Discretize (1.1) by the ICFEM.

By the ICFEM, the discrete form of (3.1) is

K1U −K2F1(U) = 0, (3.6)

where F1(U) = [f(U1), f(U2), · · · , f(UM )]T.

Step 4. Solve (3.6) by the numerical extension method.

Set F (U) = K1U −K2F1(U), whose Jacobi matrix is J(U) = K1 −K2diag(f ′(U1), f
′(U2),

· · · , f ′(UM )), and G(U) = DF (U0)(U − U0)T with U0(i) = u0
l (i), i = 1, 2, · · · ,M where u0

l is

obtained in step 2. Then define an extension vector function

H(U, t) = tF (U) + (1 − t)G(U), 0 ≤ t ≤ 1. (3.7)

Instead of solving (3.6) directly, we will solve the homotopy equation

H(U, t) = 0, 0 ≤ t ≤ 1 (3.8)

by the Newton method. When t = 0, (3.8) becomes G(U) = 0 whose solution vector is U0.

When t = 1, (3.8) becomes F (U) = 0, which is the target equation.

To solve (3.8), we take a subdivision t0 = 0 < t1 < t2 < · · · < tm = 1, where ti = i/m, i =

0, 1, 2, · · · ,m, and m is large enough, and solve successively each nonlinear subproblem

Pi : H(U(ti), ti) = 0, i = 1, 2, · · · ,m. (3.9)

To solve the subproblem Pi, the Newton method is used by taking the approximate solution

for Pi−1 as its initial guess except that the initial guess is U0 for problem P1. In solving

each subproblem (3.9) with i = 1, 2, · · · ,m− 1, we use the Newton method several times until

‖U (p)(ti) − U (p−1)(ti)‖ < ǫ0 for some p ≥ 2. Finally we solve Pm, that is, the target equation

(3.6) by the Newton method with a pretty good initial guess until

‖U (p)(1) − U (p−1)(1)‖ < ǫ1, (3.10)

where ǫ1 is much less than ǫ0.

Remark 3.1 The most important advantages of the improved search-extension algorithm

(ISEM) are:

(i) In Step 1, when Ω is some symmetric domain, e.g., a 1-D interval, a square or a circle,

the eigenvalue problem can be solved accurately. However, for the general elliptic operator and

domain, the FEM is an efficient tool to solve the corresponding eigenvalue problem. This step

makes it possible for our approach to be used for solving a broad type of semilinear elliptic

problem in various domains.

(ii) In Step 2, the linear combination of some eigenfunctions corresponding to the k-tuple

eigenvalue λl supplies a reasonable initial guess for the solutions of (1.1). In such a manner,

we can deduce that the solutions of (1.1) are distributed in terms of the eigenvalues of −△ and

gain some knowledge about the structure and distribution of the solutions.

(iii) In Step 3, the ICFEM reduces the computation works greatly.

(iv) In Step 4, the numerical extension method guarantees the global convergence of our

approach.
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4 The Computational Examples

When f(u) is of non-odd nonlinearity, only three solutions of (1.1) in general domains

were verified to exist theoretically and at most four solutions were computed numerically as

described in Section 1. Based on the problem

△u+ f(u) = 0 in Ω, u = 0 on ∂Ω, (4.1)

where

f(x, u) =







u3, if u ≥ 0,

u5, if u ≤ 0,

and Ω ⊂ R2 are, respectively, a square, a triangle, and a concave L-type domain, our numerical

results will show that the ISEM is robust for the problems with non-odd nonlinearity.

Case 1 Let Ω = Ωs = (0, π) × (0, π) ⊂ R2.

In this case, the eigenpairs of −△ are {λp,q, φp,q} with λp,q = p2+q2, φp,q = sin px1 sin qx2,

p, q = 1, 2, 3, · · ·. We have computed the solutions with the initial guesses that are the linear

combinations of the eigenfunctions corresponding to the single eigenvalues λ1,1 and λ3,3 and the

double eigenvalues λ1,2 and λ1,3, including the positive and negative mountain pass solutions.

For simplicity, we present only two of them in Fig. 1–2 and Table 1.

Fig.1 A solution in Ωs with Fig.2 A solution in Ωs with

the initial guess aφ1,3 + bφ3,1 the initial guess aφ3,3

Table 1 The solutions of (4.1) in Ωs

The initial guess Eigenvalueλ umax umin

aφ1,3 + bφ3,1 10 3.8242 −3.2999

aφ3,3 18 4.7261 −3.0847

We note that Fig. 1–2 are nonsymmetric because of the non-odd nonlinearity of f(u).

Case 2 Let Ω = Ωt = {(x1, x2) ∈ R2|x1 > 0, x2 > 0, x1 + x2 ≤ 1}.

In this case, the domain is nonsymmetric, so Step 1 of the ISEM is used to determine the

eigenpairs of −△ numerically and then we can obtain the solutions of (4.1) in Ωt by the ISEM.

Indeed, we have computed eight solutions of (4.1) in Ωt with the initial guesses aφi, i = 1, 2, 3, 4,

including the positive and negative mountain pass solutions. Subsequently, four of these are

shown in Fig. 3–6 and Table 2.
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Fig.3 The positive mountain pass solution Fig.4 A solution in Ωt with

in Ωt with the initial guess aφ1 the initial guess aφ2

Fig.5 A solution in Ωt with Fig.6 A solution in Ωt with

the initial guess aφ3 the initial guess aφ4

Table 2 The solutions of (4.1) in Ωt

The initial guess Eigenvalue λ umax umin

aφ1 49.3506 10.5494 0

aφ2 98.7212 16.2363 −4.5372

aφ3 128.3519 18.3905 −4.8468

aφ4 167.8930 15.2311 −6.1799

Case 3 Let Ω = ΩL = {(x1, x2) ∈ R2|[−1, 1] × [0, 1] ∪ [−1, 0] × [−1, 0]}, which is an

L-type domain.

In this case, the domain is concave and the eigenpairs of −△ are unknown. Similar to

Case 2, we can determine the eigenpairs of −△ numerically and then obtain the solutions of

(4.1) in ΩL by the ISEM.

Indeed, we have obtained six solutions with the initial guesses aφi, i = 1, 2, 3. Furthermore,

we have also obtained the solutions with the initial guesses aφ8 +bφ9 corresponding to the least

double eigenvalues λ8 = λ9. Here a and b are also determined by Step 2 in the ISEM. For

simplicity, we shall show below four of these in Fig. 7–10 and Table 3.
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Fig.7 A positive mountain pass solution Fig.8 A solution in ΩL with

in ΩL with the initial guess aφ1 the initial guess aφ2

Fig.9 A solution in ΩL with Fig.10 A solution in ΩL with

the initial guess aφ3 the initial guess aφ8 + bφ9

Table 3 The solutions of (4.1) in ΩL

The initial guess Eigenvalue λ umax umin

a1φ1 9.6731 4.8739 0

a2φ2 15.2083 5.3523 −3.1025

a3φ3 19.7399 5.5854 −3.3610

a8φ8 + b9φ9 49.3686 7.8396 −4.3075

5 Some Further Discussions

In Section 3, we have proposed a new algorithm (ISEM) for computing the solutions of

semilinear elliptic equation (1.1). As the theoretical analysis and numerical computation of the

multiple solutions for (1.1), in which f(u) is of non-odd nonlinearity, encounter the inherent

difficulties, as shown in Section 1, we have implemented the ISEM to a typical model problem

(4.1) in various domains. We note that the ISEM can obtain more than eight solutions with

two of them, the positive and negative mountain pass solutions, in the general domains Ω.

Indeed, for a square and a concave L-type domain, we have obtained more than 20 solutions

for (4.1). Nevertheless, we encountered some difficulties in the numerical computation for (4.1)

in a triangle when the eigenvalues are large. By numerical experiments implementing Matlab

software, we note that the corresponding eigenvalues increase rapidly and the eigenpairs with
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large eigenvalues cannot be computed accurately enough. We guess that this may result in

the inaccuracy of the initial guess determined in Step 2. Therefore, we can at least prove that

(1.1) has much more than three solutions when f(u) is non-odd nonlinearity. Actually, we have

computed the solutions of other problems of type (1.1) with non-odd nonlinearity, we have a

conjecture that is as follows.

Conjecture If f(u) satisfies the hypotheses (A1)–(A4) and lim
|u|→∞

f(x,u)
u

= +∞, then

(1.1) has an infinite number of solutions.

Moreover, the fact that the solutions obtained by the ISEM are listed in terms of the

eigenvalues describes the structure and distribution of the solutions. On the other hand, it

is known that the Morse index is an important notation that provides understanding of the

local structure of a saddle point and can be used to measure the instability of a saddle point.

The first two authors have developed a numerical method to compute the Morse indices of the

solutions of (1.1) in one-dimensional domains. In a subsequent article, we will compute the

Morse indices of the solutions of (1.1) in two-dimensional domains implementing the analogous

strategy of that in [15].
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