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I. THE CRUX OF THE MATTER

This is a report on work in progress; it is incomplete. The
motivation for this study is a coincidence that this writer has
found absolutely ‘mystical,’ and which seems to be very sig-
nificant. It is, that the Lorentz group arises in structures that
are not nowadays thought to be related.

The Lorentz structure first appeared in the famous transfor-
mations under the same name that arose in Special Relativity
Theory. In that venue, they are considered to transform co-
ordinates when the observer is thought to transform from one
inertial frame to another. Alternately, they are applied to situ-
ations in which it is considered that the observer is fixed, but
the object of interest is accelerated or “boosted” into another
inertial frame. These applications are the traditional ones, and
very well known.

Somewhat less well known, is that the Lorentz group arises
also in the study of ‘squeezing where the degree of “squeez-
ing” is also specified by a Lorentz transformation.(1) Like-
wise, the Lorentz group is useful in describing a chain of op-
tical devices.(2) The Lorentz group also arises naturally in
analysis of the “entanglement” of qubits. (3) Finally, non-
relativistic analogies of the salient physical effects derived
from Lorentz transformations, i.e., time-dilation and space-
contraction, are observed in the mechanics of dislocations in
crystals. (4; 5)

These applications have no obvious connection to a change
of inertial frame—whatever they do have in common. But,
under it all, there must be some common structure or logic
that requires the Lorentz group for encoding. What is it?

II. THE CLUE

There is one other venue in which the Lorentz group struc-
ture arises and which might provide the clue needed to find
the answer to the question just posed. It is that the structure
of projective geometry on 3 + 1 Galilean space induces the
Lorentz-Minkowski structure.(6) Further, geometrical projec-
tion is intuitively the structure of observation. Thus, it ap-
pears, in other words, that Special Relativity can be inter-
preted as the geometry of observation. This means that while
the geometry of ontology is Galilean; it is the act of observ-
ing using light which realizes the hypothetical assumptions of
projective geometry in 3 + 1 space, where the “1” is a time
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dimension, and which induces the Minkowski-Lorentz struc-
ture.

Projection on 3+1 space is not the simple projection on 3-
space; it silently incorporates specific physically relevant hy-
potheses. One seems to be, that projection rays are straight;
another is, that the ratio of any one of the spacial directions
to the time dimension is a constant. These two features are
easily recognized as parallel to the fundamental assumptions
for Special Relativity. The main difference is that, in this pro-
jection formulation, it is clear that the ontological space of
the source of projection rays is a Galilean space. This feature
seems to be unknown or unrecognized in the standard presen-
tations of Relativity.

It is also clear that the projection rays are in fact elec-
tromagnetic ‘interactions.’ It is worth considering just what
such interactions might comprise.(7) Historically, there are
two main notions or paradigms: particle beams and waves.
Neither of these two, however, really corresponds fully to the
character of the projection ray in the sense that each requires
considerable hypothetical input to specify its character. On
the other hand, the direct-interaction on the light cone con-
ception, as introduced first (apparently) by Schwarzschild, re-
quires virtually no additional definition: it seems tailor-made
as a model for projection rays.(8) For these reasons, herein
it shall be taken that the native electromagnetic interaction is
in fact just such a projection ray from source charge to sink
charge, where the latter can be in possession of either a hu-
man observer or his object of interest.

Clearly, an “observer” in the sense of an experimenter is not
just an elementary sink charge, because, as a sentient being,
he has two eyes and can triangulate. A single eye, on the other
hand, can only determine the elevation and azimuth of an in-
coming ray. In the most primitive circumstance, such a ray
should be conflateable with what is in field theory, the electric
field (i.e., according to Coulomb’s Law) and manifest itself as
an attraction or repulsion to the source charge along the rela-
tive direction to the delayed position of the source charge.

III. THE MATHEMATICS

All of the structure mentioned above in connection with my
speculations on the fundamental nature of electric interaction
as a physical realization of projection have been thoroughly
worked out mathematically, however, not for the special pur-
pose of just describing this interaction.(9–11) Thus, the log-
ical development, or construction, of the this mathematical
structure was so discovered, or created, so as to be optimal for
purely mathematical argumentation, not its application to any
physical phenomenon.
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The key mathematical concepts center on the fact that the
“celestial sphere” of any observer can be identified with the
Riemann sphere on the Argand (complex) plane.(11) All any
observer can discern regarding an incoming signal at an in-
stant, is its azimuth and elevation, but neither the distance to
the source nor the time of flight of the emission. In other
words, the observer cannot distinguish between two signals
(here meant to be momentary pulses with a given azimuth and
elevation): one originating a relatively short time ago and at
relatively close range, or one emitted from further away at a
more remote time. That is, the resolution distance in the eye
of the observer as far as he can tell, is ‘zero’ for these two
pulses. Now, what I wish to argue here, is that it is no accident
that this physical fact maps onto the Minkowski statement that
there is no ‘distance’ on the light cone. But, according to the
common and nowadays orthodox understanding attributed to
this statement, the story has at least one chapter in which it
is asserted that a traveler on the light cone, i.e., one moving
with the speed of light experiences no flow of time.(12) From
the view point taken herein, however, the physical situation is
quite different: namely, that although the sources of signals
‘on the light’ cone are both spatially and temporally separate,
an observer or recipient of these pulses is geometrically un-
able to distinguish either the spacial or temporal intervals sep-
arating them. Ontologically, that is, while these two sources
maintain their separate identity, an observer circumstantially
situated at the apex of the light cone cannot perceive these
intervals; in other words, for him as only an epistemological
matter, their true ontology remains indiscernible. These null
distances are in fact the “resolution distances” only for par-
ticularly situated observers. From our viewpoint a light wave
front takes a time interval of d/c to traverse the Euclidean dis-
tance d.

IV. PHILOSOPHY

Further, the mathematics of Riemann spheres covers the is-
sue of conformal transformations of the sphere. It turns out
that they are the bilinear maps which leave the Minkowski
metric (in our terms: the ‘resolution interval’) invariant. This
structure is well known (albeit mostly to specialists), and
it is understood that these transformations of the Riemann
sphere take account of what, in physical terms, is the Bradley-
aberration effect of incoming rays as seen by the ‘eye’ at the
center of the Riemann sphere. Thus, those Lorentz transfor-
mations corresponding to simple spacial rotations yield the
expressions for the same unaltered rays as seen by an ‘eye’ ro-
tated with respect to the orientation originally considered. In
the same manner, the Lorentz transformations corresponding
to ‘boosts’ yield the coordinates of the same rays as seen by
an eye moving with velocity v through the exact same momen-
tary observation point as the stationary eye. The relative dis-
tortion of the moving eye’s Riemann sphere takes the Bradley
aberration due to his motion into account; it does not repre-
sent any physical change whatsoever of the source charge or
of the momentary interaction-ray from it to the ‘eye,’ only its
appearance to observers.

This understanding is at sharp variance to much contem-
porary understanding of Minkowski structure. In this projec-
tion viewpoint, all results of Lorentz (more generally of con-
formal) transformations do not affect the source, or even the
‘sink,’ i.e., the ‘eye,’ but just its perception. In plain text:
Lorentz-FitzGerald contraction and time dilation are episte-
mological phenomena, that is, artifacts of the geometry of ob-
servation, or even just passive reception by a charge of electric
force from another charge. Further, as these effects are taken
as mere artifacts of observation, they cannot accumulate as is
supposed to occur in, e.g., the twin paradox. In this view, the
traveling twin will turn out to be exactly as old as his stay-
at-home sibling when his trip is finished, which is not true,
however, of the reports sent while underway to his stationary
sibling using electromagnetic signals.

V. FALLOUT

If the thesis presented herein is accepted, then various ar-
guments to be found in the literature get considerable support
for their logical underpinning. Those which I wish to em-
phasis here include arguments originally publicized by Din-
gle, Sachs and this writer. Each of these arguments can be,
arguably, better understood in terms of the geometry of pro-
jection as outlined above.

A. Dingle

Herbert Dingle advanced a criticism of Relativity Theory
in the 1930’s and 1940’s, which, in my distillation, can be
captured as a syntactical argument.(13) It is this: the princi-
ple of relativity states that all inertial frames are equivalent.
Thus, a particular frame in which a human “observer” finds
himself, is equivalent to those frames of whatever objects he
is observing. If it is supposed that he is observing various
cosmic rays which are underway at very high velocities in
various directions, then the rest frame of each of these rays,
or particles (alpha particles, say), is equivalent to that of the
human observer. Included in everything else, this means that
the human observer from the view point of any of these cos-
mic rays is suffering time dilation and FitzGerald contraction.
The antinomy that Dingle brought attention to, is, that there
are multiple particles, so that the observer should, according
to the convectional understanding, be suffering multiple time
dilations and spacial contractions. Of course, we humans are
all such observers, whether consciously or otherwise, and see
full well that that there is no such ambiguity in our clocks or
rulers.

This experience can lead to no other conclusion but, that
time dilations and FitzGerald contractions are simply artifacts
of the observation, and not induced characteristics of the ob-
jects being observed themselves. They can be only space-time
perspective effects, not modifications of any sort of the ob-
served physical object. Any other interpretation in Dingle’s
terms makes goulash of the logic and syntax of the vocabu-
lary of our languages.
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B. Sachs

Mendel Sachs, one might say, has rendered Dingle’s argu-
ment in mathematical terms. That is, he demanded, where
Dingle sought syntactical self consistency, mathematical con-
sistency, but in a round-about way.(14)

Sachs argued that in the end the total situation involving the
travel of the twin, because of accelerations, must be analyzed
using General Relativity (GR). In this regard, Sachs calls on
his quaternion version of GR, and argued that its equations
should govern the whole trip, including the accelerations in-
volved in launching the traveler, effecting his turn-around and
finally the deceleration putting him back into the inertial frame
of the stay-at-home twin. Sachs’ point is that these equations
in quaternion form are fully analytical (mathematically) and
single-valued so that integrals of such functions will be path-
independent. This implies that there will be no asymmetric
aging, or that the path length of two world lines that cross
twice will be of equal length between crossings, regardless of
the specific paths.

Sachs’ arguments seemed to have had little impact; perhaps
because they were based on his quaternion formulation of rel-
ativity, and few seem to be confident in its full veracity. How-
ever, Sachs’ argument can be reformulated in terms of a trip
without accelerations. The idea is to consider a trip composed
of two parts, each so configured that all accelerations are ac-
complished outside the actual segments of the trip of interest.
That is, the outward bound portion involves a preaccelerated
traveler who starts the clock of the stay-at-home twin as he
passes. Then, he starts by touch-tag the clock of another in-
bound preaccelerated traveler at the turn-around point, who
finally stops both his clock and the stay-at-home’s clock again
by just momentary contact. Standard analysis of just those
portions of the trips between the contacts without any accel-
erations still leads to the conclusion that the total travel time
involved is contracted. In this case the world lines are straight,
taken as arc-length their expression is analytical and satisfy
Sachs’ argument.

C. Geometry

By a circuitous and fortuitous accident, this writer came
up with a geometrical equivalent of Sachs’ argument. It is
best rendered graphically.(15) The essential point is that for
diagramming the trip in its idealized version without acceler-
ations, a crucial issue is that the actual location of the turn-
around point for the traveler is the vital factor; see Fig. 1. If
a specific object is identified as the marker for the turn around
point, then this object will have a world line, but the posi-
tion of the world line on the Minkowski chart of the traveler
does not coincide with the same world line on the chart of
the stay-at-home. Taking this little complication into account,
is essentially equivalent to respecting Sachs’ point regarding
self-consistency of the relevant mathematics, and of Dingle’s
point the syntactical self-consistency of the words used to dis-
cuss both the ontology and its mathematical rendition.

VI. CONCLUSIONS

In a certain technical sense, the arguments as rendered
herein are fully adequate to support the conclusion, that asym-
metric aging is simply an artifact of the structure of the act of
observation itself. This suffices arguably to resolve the twin
paradox as such, but is evidently insufficient to overcome all
the accumulated folklore.

Moreover, there is a complication, with respect to appli-
cation of these ideas to the mechanics of interacting massive
charged particles. It is, that each particle is effectively an “ob-
server” of all the others, necessitating the incorporation of the
attendant mathematical machinery into the coupled equations
of motion of the particles. While this complication appears
to be contained by the fact that the relativistic Lagrangian for
interacting particles has a Dirac delta function with the argu-
ment being the Minkowski metric,(16) it is not clear, that the
subsequent manipulations automatically take full account of
all the complications which are due to the noncommutivity of
Lorentz boosts. This is a question for further analysis. To test
this matter, it is the writer’s intention to program the formulas
used, to encode the mappings from the celestial sphere to the
Lorentz group on the Argand plane and apply them to a spe-
cific problem. The best candidate for such a problem may be
the Sagnac Effect, as it is still the topic of much controversy.

In any case, the extraordinary applications of the Lorentz
group can also be understood better already as encodifications
of the aberrations of light in consequence of the geometry of
observation. That Lorentz transformations describe optical
devices, for example, can be seen a consequence of the fact
that optical devices are deliberate means of altering the appar-
ent direction of light rays, which is operationally equivalent to
the same sort of aberrations due to the motion of an observer.

Finally, it is the writer’s intention to attempt to re-derive the
relativistic formalism with arguments parallel to those used in
the mathematical development. The purpose of such an ex-
ercise would be to precisely identify the physical hypothetical
inputs and use them to motivate the corresponding mathemati-
cal hypothetical inputs. With this, hopefully, counterintuative
relativistic effects will be attributed directly and logically to
hypothetical inputs for which there is undisputed empirical ev-
idence, so that any dispute over the true nature of astonishing
effects (i.e., asymmetric aging and dilation) can be resolved.

Note:Preprints of Refs. ((7; 15; 16)), and a
translation of Ref. ((8)) can be downloaded at
www.nonloco-physics.000freehosting.com.
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MINKOWSKI CHARTS FOR RELATIVE MOTION
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FIG. 1 This figure is comprised of two Minkowski charts superimposed on each other. The world line of the turnaround point in the fixed
frame passes through the point D on the x-axis. The corresponding point on the x′-axis is found by sliding up the eigenlength isocline to the
intersection with the x′-axis. The world line of the pylon passes through this point on the prime chart. The intersection of the pylon’s world
line with the t ′-axis is the point on the traveler’s chart representing the ‘turn-around’ event. The eigentime of the turn-around event in the fixed
frame is found by sliding down that eigentime isocline which passes through the turn-around event to its intersection with the t-axis. It is clear
that this value is identical with the time assigned by the fixed twin to the turn-around event as it may be projected horizontally over to the
intersection of the pylon’s world line in the fixed frame with the time axis of the traveler. The twin paradox arises by using, incorrectly, that
eigentime isocline which passes through the intersection of the traveler’s and the pylon’s fixed frame world-lines.
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