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Abstmct In spite of the fact that many textbooks pro- 
claim that  the  photon theory of light is necessary to 
explain the  Compton effect, it is possible to  treat it as a 
classical phenomenon provided the  important  role of 
the stationary state is recognised. The classical theory is 
presented  and  the  quantum rules for the interaction of 
an  electromagnetic wave with a  charged  particle are es- 
tablished. 

1. introduction 
I should like to indulge in a little fantasy: to 
pretend  that we stand  near  the beginning of the 
20th century and  attempt  to discover the laws for 
the interaction  between light and  matter using the 
classical theory of the day, being guided by experi- 
ments which, in principle, could be performed  near 
that time. From time to time I shall comment on 
the conclusions we have reached  from the point of 
view of the present day-such comments will be 
placed in square brackets. 

The view of physics at the time we consider is 
dominated by the theories of Maxwell, Lorentz and 
Einstein. We know that Maxwell’s equations  and 
the  Lorentz force  equation explain how electrical 
charges  and currents  interact;  and we have  learnt 
that light is propagated as a wave of the elec- 
tromagnetic fields described by these  equations. 
Recently we have learnt  the new mechanics of 
Einstein. He has shown that  the transformations 
required to keep the laws of mechanics invariant 
between  inertial  observers are  the same as those 
shown by Lorentz to  be necessary to  keep  the laws 
of electromagnetism  invariant.  A synthesis of 
mechanics and electricity has  been achieved. Since 
the newly discovered fundamental particles of mat- 
ter,  the  proton  and  the electron, are  the sources of 
both mass and charge, we ask ourselves the follow- 
ing: ‘How does light (a manifestation of elec- 
tromagnetic  theory)  interact with a  charged particle 

R & m e  Bien que  de nombreux ouvrages prttendent 
que la description de la lumiere en termes de photons 
est  indispensable pour l’interprktation de l’effet 
Compton, il est cependant possible de  donner  de ce 
phknombne un traitement classique, B condition de  pren- 
dre en compte c o m e  il convient le r61e, important, 
de  l’ttat stationnaire.  L‘article prtsente  cette  thtorie 
classique et Ctablit les regles quantiques qui comman- 
dent l’interaction de l’onde tlectromagnttique avec une 
particule chargte. 

(a simple particle of matter)?’ 
We set out  to establish a  theory, guided by 

experiment, of the interaction  between  a  beam of 
polarised light and a free stationary  electron. [We 
note from our present viewpoint in the 1980’s that 
this simple experiment  has not been performed-at 
least to  the knowledge of the  author. High fre- 
quency radiation  X-rays  and  y-rays  have  been  scat- 
tered from  electrons  bound in atoms.  It can then  be 
argued that  the electrons are effectively free but 
three points  should  be  noted. Firstly one observes 
in the scattered  radiation,  components of the same 
frequency  as the incident radiation; this part of the 
scattered  radiation is presumably from bound elec- 
trons. Secondly, the scattering hardly takes place 
from a single electron  but rather from  a system of 
electrons confined to a volume less than  a cubic 
wavelength. Thirdly, the electrons in the atom do 
not have  zero momentum as is assumed in the 
simple theory.] 

2. The experiment 
The results of experiments  have  been reported by 
Compton  (1923). [An extensive review and ap- 
preciation of the work of A H Compton  has  been 
published by Strewer, 19751. The results show that 
an incident beam of radiation of frequency fo when 
scattered by an electron to an angle 0 in the 
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laboratory  has  a  frequency 

f=fo[I+E(I-cose)]-’. (1) 

A series of experiments,  performed using beams of 
various incident frequencies, establishes that  the 
empirical constant F is proportional to that fre- 
quency: E = Tefo .  Since E is dimensionless we may 
decide to call T ,  the Compton  period of the elec- 
tron  and  determine its value experimentally to be 
T ,  = 8.0933 x lo-*’ S .  Indeed  some brilliant experi- 
menter may decide to perform the experiment 
using other charged particles. F e  author believes 
that an accurate  experiment under controlled  con- 
ditions for any other charged particle has never 
been  done.] He would presumably find that  the 
Compton period is inversely proportional to  the 
mass of the particle and write 

E = kfo/mn (2) 
with the constant k having the measured value of 

k = Ternn 

= (8.0933 x S )  x (9.1096 x kg) 
= 7.3726 X kg S. (3) 

One perceives perhaps the emergence of a  funda- 
mental physical constant. But we must now turn  to 
theory for guidance. 

3. The theory 
We  choose  a simple electromagnetic wave, plane 
and circularly polarised,  propagating in vacuum 
along the z axis. In  the laboratory  frame this is 
written 

E(z ,  t )  = E,($ COS 4 + 9 sin 4) 

B ( z ,  t )=- ( - i?s in4+9cos4)  En 
C 

where the phase 4 = 2 ~ r f ~ ( t -  z /c ) .  The electric 
amplitude En is that which  gives the same  ir- 
radiance as a  linear polarised wave of amplitude 
&Eo, (RMS value Eo). Subscripts zero are used to 
label all important physical quantities in the inci- 
dent  state before any interaction  has  occurred. 
Poynting’s vector is constant in time: 

So E X Bl(1.o = (Ei/&oc)E. (4) 

Unit vectors of an appropriate Cartesian coordinate 
system are  denoted by f, 9, i. 

We study the interaction of this wave with an 
initially stationary particle of charge q and rest 
mass m,. Using the Lorentz  force equation we 
establish an equation of motion  for the particle. 
Even in neglect of radiation  reaction  terms we  find 
it  is complicated. However, believing as we do  that 
there is simplicity at the  end of all transient  be- 
haviour (we recall the simple steady-state of stand- 
ing waves that persist on a plucked undamped 

string  after the transient complications of the exci- 
tation and  the reflections have died away), we seek 
a steady-state solution. We  note that the rotating 
electric field  will (eventually) guide the particle into 
a circular path, and the action of the magnetic field 
on the now moving particle will push it  ‘down 
stream’.  We  therefore  seek  a  steady-state solution 
in  which  we have a constant down-stream velocity 
V =  c@? on which  is superimposed  a constant 
rotation. 

We  transform to a new frame of reference  mo- 
ving  with velocity V. We call this the zero- 
momentum (ZM) frame  because, after interaction, 
the particle has zero  linear  momentum in it. Quan- 
tities measured in this frame are labelled by an 
asterisk. The Lorentz  transformations give us: 

The phase is invariant: 

$l* = 2Trf*(t*- z * / c )  = $l. 
Therefore 

B*(z*, t*) =- (-2 sin 4 + 9 cos 4) (6) 
E* 

C I 
It is straight-forward to recognise a  steady state in 
this frame; it is illustrated in figure l(a). The (posi- 
tively charged) particle is rotating in antiphase to 
E* under  a  centripetal force F* = qE*. Its velocity 
U*, tangential to  the circular path, is  always anti- 
parallel to B* so there is no  magnetic force to 
further accelerate it downstream. The particle ro- 
tates in a circle at  a fixed value of z* ,  i.e. with a 
constant recoil velocity Vi in the laboratory, with 
an angular velocity 2 ~ f *  in synchronism with the 
passing circularly polarised wave of frequency f*. 

The above analysis has presumed  that any force 
of interaction  between the magnetic field and  a 
magnetic moment F of the particle, F = V B  F, is 
zero. It can readily be shown that if F has only a 
z component, this force is indeed  zero. Thus for  a 
steady state  to be  created the spin must be aligned 
parallel or antiparallel to  the orbital motion and  the 
average value (expectation value) of any transverse 
components must be zero. [We detect  here  the 
emergence of rules for  the coupling of angular 
momenta.] The centripetal  force  equation can be 
written as 

4.rr2m*f*’R* = qE* (7) 
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t x* 

Figure l ( a )  Motion of the  particle (9, mo) in the  zero-momentum (m) frame; ( b ) ,  Emission of radiation  at an angle 
8* in the ZM frame  and 0 in the  laboratory  frame. 

where m* is a relativistic mass in the ZM frame. 
The  equation can be used to give the radius R* of 
the steady-state orbit. 

The rotating  particle  radiates (or scatters) an 
electromagnetic field. What is the frequency ob- 
served  at  a  point P at an angle 8 in the laboratory 
(figure l (b )?  The frequency of the scattered radia- 
tion is f *  in the ZM frame. According to  the  re- 
lativistic Doppler formula the frequency  observed 
in the laboratory is 

f = f *  
l + p  COS e* 
(1 -p')"* 

The polar angles in the two frames are related by 

Using this and  equation ( 5 )  for  the relation  be- 
tween the incident  frequency and f*, equation (8) 
becomes 

between the theoretical and experimental parame- 
ters  and must now seek the meaning of this. 

[Some remarks concerning the theory are in 
order. It will be  noted that  equation (9) has been 
established by the use solely of a classical descrip- 
tion of radiation.  This  contrasts markedly with 
statements frequently  made in textbooks  that the 
Compton effect requires  a quantum theory of radi- 
ation for its explanation. It is indeed true that the 
usual treatment as originally proposed by Compton 
established  a value for the  parameter E in terms of 
the incident frequency and physical constants. That 
theory  has however already  accepted  quantum 
properties  for the energy  and  momentum of the 
radiation and has used the conservation laws. As 
yet we have invoked no such principles. Equation 
(9) has  been established entirely as a result of the 
Doppler modification of the scattered frequency 
from  a moving resonator.  The important principle 
has  been the recognition of the role of a  steady 
state in the intermediate (or interaction) state  be- 
tween the incident  and scattered states]. 

This  theoretical result for  the scattered  frequency is 4. Establishing the  laws of interaction 
to  be compared with the empirical result of equa- So far we have not established what the recoil 
tion (1); the resemblance is encouraging. We iden- velocity V is; thus we do not know the coefficient 
tify the relationship @/(l - p )  in equation (9). To proceed we must make 
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Laboratory  frame Zero momentum frame 

Incident 
state 

Interaction 
s ta te  

Scattered 
s ta te  

f 0  

f 0  

P I  = 0 P, = p. = - m o c  

W,=  0 w,=w,+ WO 

P 
1- P 

- " moc2 
1- 0 
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W v = p c  

V J 
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Figure 2 Momenta and energies in the incident, interaction and scattered states observed in the laboratory and ZM 
frames. 

use of the  conservation  laws of momentum  and 
energy  in  order  to  establish  the  relationship of the 
state of the  system  before  interaction  (incident 
state)  to  the  excited  state of the  particle  after 
interaction  (interaction  state). The linear  momen- 
tum P and  the  total  energy W of the  particle  has 
changed in the  interaction;  hence a quantity of 
momentum p and of energy W must  have  been  ex- 
tracted  from  the  electromagnetic field. The classical 
theory of radiation  based on Maxwell's equations 
tells us that  the  energy  per  unit  volume (U = eoEi 
in the  present case) and  the  momentum  per  unit 
volume ( g  = soEi/c)  are  related by U = cg. Hence 
the  amount of energy  and  momentum  extracted 

from  the  electromagnetic field (may  we  introduce 
the  word  'tantum'??)  are  related by W =cp.  The 
description of momentum  and  energy  interchange 
is shown  in  figure 2 .  The  values of momentum  and 
energy in terms of p, m. and c are  established as 
follows. We  start  in the  laboratory  frame  for  the 
incident  state  where  radiation  has  frequency fo and 
the  particle is at  rest: Po = 0 ,  W, = moc2. The  cor- 
responding  values of energy  and  momentum in the 
ZM frame  are  established by Lorentz  transforma- 

f The author is indebted to Professor G W Series for 
reminding him of some  dimly remembered Latin: 'tan- 
tum', so much; 'quantum', how much. 
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tion: P: = -pmoc/(l- W: = moc2/(1 - p2)l”. 
Since this is the ZM frame, the field momentum to 
be  transferred must be p! = -P$ and  the corres- 
ponding  energy is W: = cpt. The values of p. and 
wo, the ‘tanta’ of electromagnetic  momentum  and 
energy  extracted  from the field in the laboratory, 
are then obtained by the reverse Lorentz transfor- 
mation. All values of momentum  and energy in the 
incident state  are established. 

After interaction (in the interaction state all 
important quantities are labelled by a  subscript I) 
p: and PT are both  zero. Hence wT = O  and, by 
conservation of energy WT = W: + w t .  The corres- 
ponding values of the interaction state in the 
laboratory  frame are again established by the  re- 
verse Lorentz transformation. The results in figure 
2 are self-consistent by Lorentz  transformations 
between  frames (horizontally) and conservation 
laws between states (vertically). We shall discuss 
the scattered state below. 

209 

5. The tantum rules 
The results set  out in figure 2 show that, in the 
interaction,  a tantum of energy 

AW=wo-wI=  W,-Wo=pmoc2/(l-p) (11) 

is transferred from  the radiation to  the particle in 
the laboratory. Using the identification of equation 
(10) and  the empirical  result of equation (2), we get 

A W = (kc2)fo. (12) 

(The  same result is obtained in the ZM frame  but 
with f* on the right-hand  side.) Similarly the tan- 
tum of momentum transferred  from the radiation 
to  the particle is 

AP = Pmoc/( 1 - p )  
= (kc2)/ho (13) 

where A. = c/fo is the wavelength of the radiation in 
the laboratory frame. (Again the  same result is 
obtained in the ZM frame with A* = c/f* on the 
right-hand  side). 

We also notice that angular momentum is trans- 
ferred  to  the particle. The  author  does not know of 
a  properly  covariant  description  for  angular 
momentum  but in the appendix justifies the  for- 
mula 

L =  
W2-c2P2-mgc4 

4Tf( W - C P )  

as appropriate  to  the present situation, where W, P 
and f are  the total  energy,  linear  momentum  and 
driving frequency respectively in the frame being 
used. In the incident state, in both the laboratory 
and  the ZM frames, W2-  c2P2 = m;c4 and the angu- 
lar  momentum is zero. In the interaction state, 
substitution of values of W and P from figure 2 
together with the  appropriate value of f ( f o  for the 
laboratory  and f *  for  the ZM frames)  leads to  the 

result that, in either  frame, L = (kc2)/2.rr. We  de- 
duce that  the transfer of angular  momentum is 

AL = (kc2)/2r. (15) 

The quantity kc2 occurs in each of the  tantum 
transfer  equations (12), (13) and (15). It would 
appear  to  be a  fundamental physical constant de- 
serving a symbol of its own (h). Using the previ- 
ously measured value of k in equation (3) we write 

h = kc2 

= (7.3726 X kg s) X (2.99793 x 10’m s - ~ ) ~  

= 6.6262 X J S .  

From our standpoint  at the beginning of the cen- 
tury we recognise our  tantum of energy to have the 
same property as the ‘quantum’ of energy intro- 
duced by Planck (1901). We  refer to his nomencla- 
ture  and write the quantum rules for interaction: 

when electromagnetic  radiation of frequency f 
interacts with a charge-matter system it causes a 
change of energy of hf, a  change of linear 
momentum of h/A, and a  change of angular 
momentum of h/2rr, where Planck’s constant h = 
6.6262 X J S. 

Furthermore, in establishing these  rules, we have 
established  a  relationship  between the theoretical 
and empirical parameters ( p  and E )  and the inci- 
dent frequency fo: from equations (11) and (12), 

or 

p =E= hfo/(hfo+moc2). 
l + &  

Thus  the equation for  Compton scattering can be 
written as 

or in terms of wavelength, 

[The result is identical to  that achieved by Comp- 
ton (1923) using a  photon concept and regarding 
the scattering as an elastic collision between  cor- 
puscles. It is  of interest to note that Compton  wrote 
‘. . . . if an X-ray were  scattered by an electron 
moving in the direction of propagation at a velocity 
pc, the frequency of the ray scattered  at an angle 0 
is given by the  Doppler principle as 

f = f o [ l + ~ ( l - c o s 8 )  1 - P  l ’  

It will be  seen  that this is of exactly the same form 
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as 

derived on the hypothesis of the recoil of the 
scattered electron.  Indeed if .E = @/(l - p )  or (3 = 
&/(l + E), the two expressions become identical. It is 
clear, therefore,  that so far as the effect on the 
wavelength is concerned, we may replace the  re- 
coiling electron by a  scattering  electron moving in 
the direction of the incident beam  at  a velocity such 
that (3 = &/(l + E) .  We shall call pc the 'effective 
velocity' of the scattering  electrons'. 

Compton, however, gave no justification for the 
relation  between p and  E, nor  did he develop  a 
model which  gives an explanation of the scattering 
phenomenon in terms of (3. 

In contrast to this completely corpuscular model 
of Compton, Schrodinger  (1927)  developed  a com- 
pletely wave-like model in which the electromagne- 
tic waves undergo Bragg reflection from  a  set of 
standing  matter-waves  produced by the superposi- 
tion of the  de Broglie waves for the incident and 
scattered  electron. As Schrodinger points out it is 
necessary to regard  this wave scattering as a  steady- 
state process. It is interesting  therefore  that the 
present paper has used more commonly accepted 
models (at least from the classical point of view), a 
wave for the radiation  and  a corpuscle for the 
electron.] 

6. The scattered state 
It is necessary to consider the  state of the system 
after the scattering of the radiation  has taken place. 
Since our model has shown that between the inci- 
dent  and  the interaction states (figure 2) an amount 
of energy hfo and an amount of momentum h/A, 
has  been  absorbed  from the electromagnetic  radia- 
tion (hf * and h/A* respectively in the Z M  frame), 
we must presume that a similar interchange occurs 
when the  scattered field  is created by an emission 
process. This is illustrated in the ZM frame of figure 
2 ,  giving an opposite  momentum  for the electron. 
When this is transformed to  the laboratory  frame 
one obtains the frequency f as a  function of 6 
(equation (9)) and an expression for  the momentum 
of the electron  and the angle of recoil 

cos 4 = (1 + &)tan 6j2. 

One is thus led to  the view that the observation of 
scattered  radiation in a direction 6 is always ac- 
companied (within the indeterminacies caused by 
the finite apertures of the measuring apparatus  and 
the lack of precise knowledge of the position of the 
scattering  electron) by a  unique recoil momentum. 
This model then implies that the radiation itself 
exists in quanta of defined energy,  momentum and 
angular  momentum. The extreme view is that  radi- 
ation exists as corpuscles, rather  remote from the 
wave-model with  which we started. The stage is set 

for many years of discussion about  the 'real nature 
of light'. The  author takes the view that  the only 
'real' things are  the observations of measurable 
events in detectors. The  nature of light itself  is 
unknowable. The important thing is to have a 
model which will enable the results of experiments 
to be  predicted.  From this point of view a wave 
model with quantum rules for interaction may be 
just as successful as a corpuscular model which 
incorporates wave-like properties in order  to ex- 
plain interference phenomena. 

It is also possible at this point to establish expres- 
sions for the intensity and  the polarisation of the 
scattered light and for the scattering cross section. 
One  starts by using dipole  theory in the ZM frame 
(charge q, rotating at radius R* at frequency f*- 
see equation  (7)) and making a  Lorentz  transforma- 
tion to  the laboratory frame.  The result, which 
agrees as might be expected with that  deduced by 
Compton  (1923), is not acceptable  however. As 
shown by Klein and Nishina (1929)  a  more exact 
result is obtained by taking into account the spin 
properties of the electrons using Dirac's relativistic 
equation  for  electron  motion. [It is interesting to 
note  that Klein and Nishina's treatment is semi- 
classical in its presentation. The  treatment given by 
Tamm  (1930) and presented by Heitler  (1953) is 
quantum electrodynamical.] 

Appendix 
Justification for equation (14). 
For  linear  motion, the invariant equation relating the 
linear  momentum and total  energy of a free particle is 
written 

-p2+"= m{c2 
W' 
C 2  

or, in the notation of covariant  4-vectors, 

pwp =m* ' nc 
Equation (A.l) can be written  as 

P2 W2-m{c4 
2m 2W 
" - 

where m = W/c2 is the relativistic mass. The right-hand 
side is non-zero only when the system has  some form of 
dynamical energy (i.e. other than rest-mass energy). The 
left-hand  side, P2/2m, tends to the kinetic energy for a 
free particle in the low velocity limit. An equivalent 
expression  for  a  rotating particle would be L2/21 where 
L is the angular  moment and I the moment of inertia. 
This  also  tends to  the kinetic energy of an  orbiting 
particle in the non-relativistic limit. However it must be 
remembered that such a particle is not free but  bound 
by forces to the centre of rotation  and has potential 
energy as  well  as kinetic energy. The total dynamical 
energy will be greater  than Lz/21. In the present case 
the potential  energy is proportional to the  square of the 
displacement  from the  centre of rotation  (from the 
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integration of equation (7) from the  centre to the final 
radius).  The virial theorem gives the result that  the 
potential  energy  equals the kinetic energy;  the total 
dynamical energy is twice the kinetic energy.  Therefore 
if the left-hand  side is to  represent  the total dynamical 
energy it must be Lz/I. Writing I = L/w we obtain 

L =  
W'- mic4  

2 0 w  
iA.3) 

An invariant  form of this involving covariant  4-vectors 
can be written 

L =  
P"P,-mic* 

2 k "P, 

where P' = (P, W i c )  is the 4-momentum of the particle 
and k W  = (k, w / c )  is the 4-vector of the wave propaga- 
tion with ( k /  = o / c .  This  electromagnetic wave provides 
the driving frequency. 

Applied to the ZM frame  after  interaction,  equation 

(A.4) reduces to  equation  (A.3) with W = W; and 
0 = 2 d * .  Applied to  the laboratory  frame  after 
interaction it reduces to  equation  (14) with W = W,,  
P = P,, W = 2 d 0 .  In each  case L is evaluated to  be  h/2n. 
The left-hand  side of equation (A.4) is indeed  an 
invariant  scalar. 
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