Appendix A4-3 – Relativity in Action Theory Nomenclature


In this appendix we will show that relativistic corrections to classic physics are required when an actual clock inside an otherwise isolated system is used to measure time rather than the external Newtonian time.  


We will call the Newtonian global time parameter applicable for any whole isolated system “Tw”, its Energy “Ew” and will define these parameters by the canonical transformation equations 

Eq. A4,3-1               Ew = Ew(…pf,qf…) and Tw  = Tw(…pf,qf…)

 
Where the pf and qf are the momentum and coordinate variables for all degrees of freedom defining the Whole system under consideration. In these coordinates the amount of action in a time interval dTw is given by

 Eq. A4,3-2             dAw = Pw∙dQw + Qw∙dPw  



Where: Pw = ∂Aw/∂Qw the action density over the distance dQw called the momentum of the system point and Qw = ∂Aw/∂Pw associated with forces happening in the dQ interval. For isolated Whole systems the second term is zero and the motion of the system point is a constant velocity Vw which defines a constant scale relationship between energy and momentum along the whole system point trajectory.
Eq, A4,3-3             dTw •Vw = dQw , Ew = Pw•Vw 


Classic physics was built on finding solutions to the equations of motion in terms of the Newtonian time parameter,  

Eq, A4,3-4   qf = qf(Ew,Tw,…αf-1,βf-1..),   pf = pf(Ew,Tw,… αf-1,βf-1..)

Where the alpha and beta represent constants of the motion that can be identified as the initial conditions of the isolate system (see Goldstien Classical Mechanics). Unfortunately Newtonian time cannot be directly measured and from within an isolated system such as our universe is assumed to be a measurement must be made on a subsystem we recognize as a clock to define the measured time used in actual practice.


To see how this modifies our physics lets build such a clock mechanism in action theory nomenclature using a particle with 3 degrees of freedom.  Figure A4.3-1 shows a clock  where the third axis is used to measure time and the distance along the axis is the clock dial marked out in meters and a time scale. Like a typical clock dial these are fixed and allow the reading of time as indicated by the motion of the system point. In this mechanism the system point moves parallel to the q3-axis so that the action is
Eq. A4.3-5 dAw=Pw∙dQw/dTw = p3∙dq3/dTw
and the velocity of the system point and the clock pointer are identical

Eq. A4.3-6  Vw = dQw/dTw = dq3/dTw =v3.

Lets assume q3 is actually a clock dial and the other axis are special coordinates defined by the vector r. So this clock is stationary in the frame defining the spatial coordinates. Next we build the same clock mechanism only we give it a velocity in the spatial “r” direction. As shown in figure A4.3-2 the system point now makes an angle “θ” with the q3-axis but to the extent it is isolated the Newtonian distance and time  measured along the Qw-axis remains constant. In other words a clock tick requires the same amount of action as before. The action required for this event however is now given by 

Eq. A4.3-6       dAw=Pw∙Vw = p3•v3 = p3’•v3’ + pr•vr.


Where the primed values are the applicable for the moving clock and the unprimed values for the stationary clock. By utilizing the definition of momentum as “m∙v” and canceling the common mass we rewrite this equation as

Eq. A4.3-6          v32 = v3’2 + vr2,



Which expresses the usual triangle relationship and can be written as

Eq. A4.3-7
  v3’ = v3∙(1 - vr2/v32)1/2 = v3∙(1 - vr2/Vw2)1/2
        The velocity of the pointer particle along the clock dial axis is slower for the moving clock because some of the action contained in the clock mechanism is used in the translation motion rather than along the time dial of the clock. By multiplying both sides by the Newtonian time Tw and reading the time scale “t”  on the clock dial rather than the distance scale we get

Eq. A4.3-8         dt’ = dt∙(1 - vr2/c2)1/2, 



where the system point speed when a light clock is used corresponds to the speed of light “c”, which in CAT theory is only constant when when identified with the Whole isolated system speed of “Now”. This constant is actually dependent on the gravitational energy potential the observer imbedded in any isolated Whole system finds itself.



This derivation of the clock dilatation effect is quite general and shows that the relativistic corrections to classical physics are applicable whenever a subsystem of the Whole is measured as our definition of time. If as commonly believed the Universe is an isolated system and atomic clocks are used to define time these corrections are applicable.
Conclusion:


We have shown that the formulation of classic physics when Newtonian time is defined as a function of all degrees of freedom provides an accurate formulation of the evolution of an isolated system. However  a clock within such an isolated system  is used to measure time and such a measurement result is substitute for Newtonian time the description is only approximately correct when spatial velocities are small and the interaction with the clock mechanism is excluded. Relativity theory correctly accounts for this deficiency however the physical cause of relativistic phenomena - as being due to the inclusion of interactions with whatever subsystems in an otherwise isolated event are identified as the clock - has not been identified until now.
















Let us use the 3’d z-axis as the degree of freedom used to measure time. Figure Fig. A4.3-1  show the 
 is constant, that action is conserved, and that we can divide the time instances to contain an equal amount of action so that “dAw = Ew∙dTw”  for all divisions. Under these assumptions the mechanics of classic physics applies. However the development also explicitly included an internal clock which is traditionally the Universe that we called “U”. The purpose of this inclusion was to identify the fact that any measurement of time from a tangible clock inside the Whole is also subject to reaction forces and if they are not taken into account error will occur.

Let us assume for the moment that “Y”, “I” and “U” are subsystems of the Whole and are traveling along at the rate  “Vw” down the Whole systems time line and U and I are stationary in U so that all our directions are parallel and our coordinate axis are lined up so that our constant position coincide at the origin of figure A4.2-4. At time instant T1w a force impulse is applied  between the sub-sytems. Lets further assume that the force is relatively small and therefore the angular deviation “θu”  is much smaller than the angle shown on that diagram. After the impulse system trajectory dQw is a  straight line almost along the Qu axis. The difference due to a transfer of action into the spatial directions of I and Y is given by
Eq. A4.2-26    

d2Qu = dQu – dQw = dQw∙ cos(θu) – dQw = dQw∙θu2/2 

Where the d2 notation means the change in the interval “d”. At the same time the direction in the spatial directions is given by,
Eq. A4.2-27 dr = dQw∙sin(θu) = dQw∙θu. 


This means to first order we can assume changes in the spatial direction followed by a subsystem of the Whole is not accompanied by a discernable change in the time direction distance covered.  Therefore as long as the velocities in the spatial “r” directions are small compared with the velocities in the time directions 

Eq. A4.2-28

Vu =~Vw, dQu=~ dQw,  and Tu =~ Tw.

Therefore we can use measured time from U as a clock, which is usually denoted by the letter “t” and the formulas of classic physics apply. However as the speeds increase as shown in figures A4.2-4 the effect on the clock can no longer be ignored ie. the clock slows down enough to introduce a measurable effect. We can calculate this effect from the geometries shown in figure A4.2-6 as follows. The distance of the displacement during the time interval dTw are related as follows
Eq. A4.2-28
dQu = (dQw2 -  dr2)1/2 = dQw ∙ (1 -  dr2/dQw2)1/2  
Dividing both sides by the constant Vw gives two measures of time 

Eq. A4.2-30
dTu = dTw ∙ (1 -  dr2/dQw2)1/2
Dividing the numerator and denominator by Tw2 gives, 

Eq. A4.2-31
dTu = dTw ∙ (1 -  (dr/dTw) 2/ (dQw/dTw)2)1/2 = dTw ∙ (1 -  Vr2/Vw2)1/2.
 And finally identifying more traditional symbols 


dTu = dt; the coordinate time interval “t”, of the moving subsystems You and I



as measured by the Universe clock ie, our coordinate frame


dTw= dt’;  the system time interval “t’ “ between measurements


Vr   = v ; the apparent velocity of the You and I subsystems


Vw = c ; The speed of Now in the Whole  identified as the speed of light by 



Einstein

With these definitions we get the time dilation formula 

Eq. A4.2-32
                 dt’ = dt/1 -  v2/c2)1/2,

which expresses the fact that the moving observer's period of the clockΔ t ′ {\displaystyle \Delta t'}  is longer than the period Δ t {\displaystyle \Delta t} in the frame whose clocks measure that period. Though only one prediction of special and general relativity has been presented in detail the accurate description of physics of interacting sub-systems of an isolated Whole leads to corrections of Newtonian classic physics. The reason special and relativistic corrections are required is due to the fact that actual experiments must use time measured by clocks which interact with the 


Conclusion:


We have shown that the formulation of classic physics when Newtonian time is defined as a function of all degrees of freedom provides an accurate formulation of the evolution of an isolated system. However  a clock within such an isolated system  is used to measure time and such a measurement result is substitute for Newtonian time the description is only approximately correct when spatial velocities are small and the interaction with the clock mechanism is excluded. Relativity theory correctly accounts for this deficiency however the physical cause of relativistic phenomena - as being due to the inclusion of interactions with whatever subsystems in an otherwise isolated event are identified as the clock - has not been identified until now.
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Fig. A4.3-2  Relativistic effect when using a moving internal clock to measure time








q1





q3-axis





T1w





dAw=Pw∙dQw





sec.





dr





r





Qyi





d2Qu





θu





Fig. A4.3-2  Relativistic effect when using an internal clock to measure time
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Fig. A4.3-1  Relativistic effect when using an internal clock to measure time
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