Appendix B - Derivation of the relativistic energy-momentum Equation

Reference [28] mentions on page 835 that simply combining equations (5.62) and (5.65) to each other should generate the complete relativistic energy-momentum equation (5.70), but they do not offer the detailed derivation of this equation: $\mathrm{E}^{2}=(\mathrm{pc})^{2}+\left(\mathrm{mc}^{2}\right)^{2}$.

Here is for convenience the complete step by step derivation of this famous equation:

$$
\begin{array}{rlrl}
\mathrm{E} & =\gamma \mathrm{m}_{0} \mathrm{c}^{2} & (5.62) & \mathrm{p}=\gamma \mathrm{m}_{0} \mathrm{v} \\
\frac{\mathrm{E}}{\mathrm{~m}_{0} \mathrm{c}^{2}}=\frac{1}{\sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}} & \frac{\mathrm{p}}{\mathrm{~m}_{0} \mathrm{v}}=\frac{1}{\sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}} \\
\left(\frac{\mathrm{E}}{\mathrm{~m}_{0} \mathrm{c}^{2}}\right)^{2} & =\frac{1}{1-\mathrm{v}^{2} / \mathrm{c}^{2}} & \left(\frac{\mathrm{p}}{\mathrm{~m}_{0} \mathrm{v}}\right)^{2} \frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}=\frac{\mathrm{v}^{2} / \mathrm{c}^{2}}{1-\mathrm{v}^{2} / \mathrm{c}^{2}} \\
\frac{\mathrm{E}^{2}}{\mathrm{~m}_{0}{ }^{2} \mathrm{c}^{4}}=\frac{1}{1-\mathrm{v}^{2} / \mathrm{c}^{2}} & \text { (B1) } & \frac{\mathrm{p}^{2}}{\mathrm{~m}_{0}{ }^{2} \mathrm{c}^{2}}=\frac{\mathrm{v}^{2} / \mathrm{c}^{2}}{1-\mathrm{v}^{2} / \mathrm{c}^{2}} \tag{B2}
\end{array}
$$

Subtracting momentum equation (B2) term for term from mass equation (B1), we obtain:

$$
\begin{gather*}
\frac{\mathrm{E}^{2}}{\mathrm{~m}_{0}{ }^{2} \mathrm{c}^{4}}-\frac{\mathrm{p}^{2}}{\mathrm{~m}_{0}{ }^{2} \mathrm{c}^{2} \mathrm{c}^{2} \mathrm{c}^{2}}=\frac{1}{1-\mathrm{v}^{2} / \mathrm{c}^{2}}-\frac{\mathrm{v}^{2} / \mathrm{c}^{2}}{1-\mathrm{v}^{2} / \mathrm{c}^{2}} \tag{B3}\\
\frac{\mathrm{E}^{2}}{\mathrm{~m}_{0}{ }^{2} \mathrm{c}^{4}}-\frac{\mathrm{p}^{2} \mathrm{c}^{2}}{\mathrm{~m}_{0}{ }^{2} \mathrm{c}^{4}}=\frac{1}{1-\mathrm{v}^{2} / \mathrm{c}^{2}}-\frac{\mathrm{v}^{2} / \mathrm{c}^{2}}{1-\mathrm{v}^{2} / \mathrm{c}^{2}} \\
\frac{\mathrm{E}^{2}-\mathrm{p}^{2} \mathrm{c}^{2}}{\mathrm{~m}_{0}{ }^{2} \mathrm{c}^{4}}=\frac{1-\mathrm{v}^{2} / \mathrm{c}^{2}}{1-\mathrm{v}^{2} / \mathrm{c}^{2}}=\frac{\gamma}{\gamma} \tag{B4}\\
\frac{\mathrm{E}^{2}-\mathrm{p}^{2} \mathrm{c}^{2}}{\mathrm{~m}_{0} \mathrm{c}^{4}}=\frac{\gamma^{2}}{\gamma^{2}} \\
\gamma^{2}\left(\mathrm{E}^{2}-\mathrm{p}^{2} \mathrm{c}^{2}\right)=\gamma^{2} \mathrm{~m}_{0}{ }^{2} \mathrm{c}^{4} \\
\gamma^{2} \mathrm{E}^{2}-\gamma^{2} \mathrm{p}^{2} \mathrm{c}^{2}=\left(\mathrm{mc}^{2}\right)^{2} \text { where } \mathrm{m}=\gamma \mathrm{m}_{o}
\end{gather*}
$$

$$
\begin{equation*}
\gamma^{2} \mathrm{E}^{2}=\mathrm{p}^{2} \mathrm{c}^{2}+\left(\mathrm{mc}^{2}\right)^{2} \text { where } \mathrm{p}=\gamma \mathrm{m}_{\mathrm{o}} \mathrm{v} \tag{B5}
\end{equation*}
$$

And finally, since γ is dimensionless, then $\mathrm{E}=\gamma \mathrm{E}$ and we obtain equation (5.70):

$$
\begin{equation*}
\mathrm{E}^{2}=(\mathrm{pc})^{2}+\left(\mathrm{mc}^{2}\right)^{2} \tag{5.70}
\end{equation*}
$$

With equation (B4), there is a strong temptation to simplify both occurrences of the Lorentz factor to 1 before proceeding, but this leads to the often encountered non-relativistic version: $\mathrm{E}^{2}=(\mathrm{pc})^{2}+\left(\mathrm{m}_{0} \mathrm{c}^{2}\right)^{2}$ which is Newtonian and adds only the translational half of the kinetic energy of a massive particle in motion, leaving out the electromagnetically oscillating half that converts to the relativistic mass increment (see Section 3.7).

The proper procedure is to square the mutually reducible γ factor occurrences, so they can be reunited with the two occurrences of m_{o} as the development proceeds.

At face value, fusing the last occurrence of the squared γ factor with the energy ($\gamma^{2} E^{2}$) may seem to be problematic, but considering that this factor is a dimensionless quantity, it can be multiplied with the energy component without any adverse effect for the integrity of the equation.

