<div dir="ltr">Dear Wolf,<div><br></div><div>comments below</div><div><br><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Dec 19, 2017 at 6:47 PM, Wolfgang Baer <span dir="ltr"><<a href="mailto:wolf@nascentinc.com" target="_blank">wolf@nascentinc.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
  
    
  
  <div bgcolor="#FFFFFF">
    <p>Always been interested in your experimental setup for showing
      beam-beam interactions <br>
    </p>
    <p>do you have a description of exactly what you do show
      interactions in a vacuum - </p></div></blockquote><div>I have had to make the assumption that air is so much lower density than any detectors that any interaction of light with air can be neglected. Lack of funds and time prevent me from actually performing the experiments in vacuum. Air does effect the refractive index in the light path; however, the effect is so small that it would not be noticed in our experiments. It is known that high intensity light can alter the refractive index (general relativity?); but, the effect is very many orders of magnitude below our sensitivity.</div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div bgcolor="#FFFFFF"><p>how can you tell identical frequency
      waves in closely spaced parallel beams apart if they d interact?</p></div></blockquote><div><div>You have asked an important question. It is similar to one that I have recently raised myself.</div><div><br></div><div>After interacting with our beam splitter (a parallel surface neutral-density filter), a single laser beam becomes two parallel beams with a fixed phase relationship. The relative phase of the 2 waves depends on the path length of the beam thru the filter. As the beams spread with their natural individual divergence angle, the two beams will begin to overlap. Eventually the overlap will become almost complete and the two beams with identical individual  'footprints' will have a nearly identical joint far-field footprint (however the light pattern will be quite different).  If they are out-of-phase, then, even as they overlap, there will be a 'null-zone' between them. If in-phase, the central zone of the common far-field pattern will be bright and have at least one pair of null-zones enclosing it.</div><div><br></div><div>If the two out-of-phase beams just out of the splitter have the same intensity, then, in the far field, there will still be two same-intensity beams. Are these the same two beams? That is the question. Blocking one of the beams leaves the other intact but eliminates the null zone that had separated the two. Thus, it appears that the two uninterrupted beams each reflect from the null zone and do not interact further. When the null zone is removed by blocking one beam, light 'bleeds' across the central line and spreads into the shadow of the blocking mask.</div><div><br></div><div>If the two beams just out of the splitter have the same intensity, but are in-phase, then, in the far field, there will now be three beams (a bright central beam ad two weak side beams). Obviously, none of these three is one of the original two. The two original beams interact to provide three nearly independent beams. Blocking either of the small outer beams will leave the other two beams nearly unaffected. It only eliminates one of the null-zones. The other null-zone remains between the two remaining beams and keeps them separated. The fact that the two remaining beams, of quite different intensity, maintain their relative size and intensity tells an interesting tail. The two beams are not identical, yet together, they create a null-zone as a reflective barrier that prevents more than a small bit, if any, of the more intense beam from crossing into the weaker beam region. In its turn, the weak beam will shift intensity further away from the center line. </div><div><br></div><div>The null-zone is established as a region where the two beams have no net flow. The fact that the two beams are not equal intensity undermines my hypothesis that only identical-frequency and intensity beams, exactly in or out of phase, act like identical particles. Surprisingly, the intensity does not appear to be critical. The phase and frequency appear to be the critical features. This intensity problem and its implications must be investigated further.</div></div><div><br></div><div>Andrew M.</div><div> </div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div bgcolor="#FFFFFF">
    <p>wolf<br>
    </p>
    <pre class="gmail-m_-7104258642304206160gmail-m_-1878338066393406044m_915721035309352760moz-signature" cols="72">Dr. Wolfgang Baer
Research Director
Nascent Systems Inc.
tel/fax 831-659-3120/0432
E-mail <a class="gmail-m_-7104258642304206160gmail-m_-1878338066393406044m_915721035309352760moz-txt-link-abbreviated" href="mailto:wolf@NascentInc.com" target="_blank">wolf@NascentInc.com</a></pre><div><div class="gmail-m_-7104258642304206160gmail-m_-1878338066393406044h5">
    <div class="gmail-m_-7104258642304206160gmail-m_-1878338066393406044m_915721035309352760moz-cite-prefix">On 12/17/2017 6:48 AM, Andrew
      Meulenberg wrote:<br>
    </div>
    </div></div><blockquote type="cite"><div><div class="gmail-m_-7104258642304206160gmail-m_-1878338066393406044h5">
      <div dir="ltr">
        <div>
          <div>
            <div>
              <div>
                <div>
                  <div><br>
                  </div>
                  Dear folks,<br>
                  <br>
                </div>
                For the last several years, we (Hudgins, Meulenberg, and
                Penland) have been studying the interference effects of
                identical-frequency waves. Using a thin optical flat as
                a laser-beam splitter, it is possible to easily provide
                closely-spaced parallel beams of coherent light that
                appear to interact indefinitely (in vacuum, and even
                down to the individual-photon level?).<br>
                <br>
              </div>
              Over the last year, in parallel with the forum discussions
              of the photonic electron, the implications of this
              interaction have been evolving. The first step was the
              recognition that the two beams were equivalent to streams
              of identical particles. Furthermore, depending on their
              phase, the two beams acted as both bosons and fermions. In
              their constructive interactions (as a Bose condensate?)
              and destructive interactions (obeying the Pauli exclusion
              principle?), they attracted each other when in phase and
              appeared to repel one another when 180 degrees out of
              phase. This observation (a phase dependence, perhaps
              related to charge, as suggested by Penland) is beginning
              to expand into explanations and hypotheses for many of the
              laws (and tools) of physics.<br>
              <br>
            </div>
            Since many of this group believe that leptons are self-bound
            photons, the proposed dual nature of photons, which is
            dependent on a major characteristic of the wave nature of
            light (phase), could be fundamental to the understanding of
            much of physics. Despite being bosons, by definition,
            photons are seen to have both bosonic and fermionic natures
            in their interactions and, perhaps, within their very
            nature. Another concept includes that of symmetry and
            parity. Within a photon and its interactions, we can find
            both symmetric and anti-symmetric conditions as well as
            those of even and odd parity.<br>
            <br>
          </div>
          Thus, within the nature of a photon, we can find the physical
          bases for much of the mathematics that is the basis of
          theoretical physics. I believe that the macroscopic
          observations, which have led to much of physics theory, can be
          explained in the study of light and its interactions
          (including those with itself). The reasons that this
          observation is not obvious lie within our inability to 'see'
          the interaction. First, light is not composed of point
          particles. With the exception of a few manufactured cases,
          photons are many wavelengths long (up to 1E8 cycles?). Only if
          photons can interact  (collectively, in time and/or space)
          over a large percentage of these wavelengths will any effects
          be noticeable without the aid of matter as a detector to sum
          over many interactions. And, even then, it is mathematically
          impossible to distinguish the effects of transmission
          (non-interaction?) or reflection (interaction?) in the
          coincidence of identical photons. Nevertheless, the fact that
          the mathematics for identical particles is different from that
          of identifiable particles gives us the precedent for looking
          at this aspect of light.<br>
          <br>
        </div>
        The observation of particle (e.g., electron) interaction is
        possible because the photons composing the particles have all of
        their high-energy nodes collected in small enough regions for
        their energy density to be sufficiently high to distort the
        space in which they reside. The 'permanence' of these structures
        depends on resonance, which provides and depends on a fixed
        internal phase relationship. Thus, the particular interaction of
        light with itself is reflected in the nature of matter.<br>
        <div>
          <div><br>
          </div>
          <div>Neither the statement that "light interferes with light,"
            nor the statement that "light does <u>not</u> interfere
            with light," is completely correct. It is the combination of
            these two statements, along with their exceptions and
            understanding, that provides the basis for understanding the
            physical universe. <br>
          </div>
          <div><br>
          </div>
          <div>Andrew M.<br>
          </div>
          <div><br>
          </div>
        </div>
      </div>
      <br>
      <fieldset class="gmail-m_-7104258642304206160gmail-m_-1878338066393406044m_915721035309352760mimeAttachmentHeader"></fieldset>
      <br>
      </div></div><pre>______________________________<wbr>_________________
If you no longer wish to receive communication from the Nature of Light and Particles General Discussion List at <a class="gmail-m_-7104258642304206160gmail-m_-1878338066393406044m_915721035309352760moz-txt-link-abbreviated" href="mailto:Wolf@nascentinc.com" target="_blank">Wolf@nascentinc.com</a>
<a href=<a class="gmail-m_-7104258642304206160gmail-m_-1878338066393406044m_915721035309352760moz-txt-link-rfc2396E" href="http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/wolf%40nascentinc.com?unsub=1&unsubconfirm=1" target="_blank">"http://lists.natureoflig<wbr>htandparticles.org/options.cgi<wbr>/general-natureoflightandparti<wbr>cles.org/wolf%40nascentinc.com<wbr>?unsub=1&unsubconfirm=1"</a>>
Click here to unsubscribe
</a>
</pre>
    </blockquote>
    <br>
  </div>

<br>______________________________<wbr>_________________<br>
If you no longer wish to receive communication from the Nature of Light and Particles General Discussion List at <a href="mailto:mules333@gmail.com" target="_blank">mules333@gmail.com</a><br>
<a href="<a href="http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/mules333%40gmail.com?unsub=1&unsubconfirm=1" rel="noreferrer" target="_blank">http://lists.natureoflig<wbr>htandparticles.org/options.cgi<wbr>/general-natureoflightandparti<wbr>cles.org/mules333%40gmail.com?<wbr>unsub=1&unsubconfirm=1</a>"><br>
Click here to unsubscribe<br>
</a><br>
<br></blockquote></div><br></div></div></div>