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1 Introduction

“It seems to be a characteristic of the human mind that famil-
iar concepts are abandoned only with the greatest reluctance,
especially when a concrete picture of phenomena has to be
sacrificed.”

Max Born and Emil Wolf1

Momentum exchange theory (MET) is presented as an
alternative picture for photon diffraction based upon quan-
tized momentum transfer with the scattering lattice or
aperture.2–6 MET draws from the early ideas of Duane7

and later formalized by Landé.8–11 MET starts from a
momentum representation for scattered particles and postu-
lates the probability distribution for diffraction scattering is
determined by at least two important factors: (1) the momen-
tum transfer states of the scattering lattice and (2) the dis-
tance over which momentum is transferred between the
lattice and scattered particle. The distinct feature of MET
is this dependence on the specific path of the scattered par-
ticle and location of momentum transfer. Classical optical
wave (COW) theory leaves us with an erroneous understand-
ing of diffraction in suggesting that the probability for
detecting a diffracted photon is determined on observation
at the point of detection.2,5 This picture is conceptually
flawed as the probability must be determined at the location
of scattering to conform to conservation of momentum. The
current paper compares and contrasts METwith optical wave
theories to elucidate these underlying momentum exchange
selection rules. This picture is important as it illuminates
our debates over the wave-particle nature of light and
quantum uncertainty, framing the contrasts between the stan-
dard (Copenhagen) interpretation and several alternative
interpretations.12–16

For clarity, it is important to emphasize here the distinc-
tion between diffraction, which relates to the scattering and
probability distribution for individual photons, and interfer-
ence, which is a cooperative phenomenon that relates to the
probabilities of detection (absorption?) when there is a multi-
plicity of photons (e.g., two electromagnetic beams) that can
influence each other at the point of detection. An individual
particle cannot interfere with itself. Detection of a photon is
dependent on its polarization and phase (orientation?) and
the polarizability of the electronic states of a detector
(antenna or molecule) it interacts with. Thus, based upon
the characteristics of detection, multiple photons, concur-
rently at a detector, can affect the potential for each to be
absorbed (can interfere). Observed optical phenomena
can involve diffraction, or interference, or both (e.g., laser
holography).

In the 1920s, Duane7 and later Ehrenfest and Epstein17

showed diffraction could be explained in terms of a momen-
tum change by interaction with a scattering lattice dependent
on the geometry and momentum states of the lattice that can
be analyzed according to Fourier’s theorem. These early
ideas seemed to be lost with the initial formulations of wave
mechanics, but were later revived by Landé, who used them
in his formulation of quantum theory.8–11 The primary learn-
ing from these formulations is that the probability distribu-
tion for the scattering of a particle is determined by the
geometry of the scattering lattice, much as the angular dis-
tribution of light diffracted in classical optical theory is the
Fourier transform of the aperture or obstacle.18,19 These ideas
languished because of the success of classical electrodynam-
ics and wave mechanics to explain both optical diffraction
and interference, despite their conceptual challenges. More
recently, Van Vliet20 refreshed these early ideas of Duane
and Landé with an updated treatment of diffraction by linear
momentum quantization through periodic structures, again
stressing this approach avoids a dual nature to quantum
particles. Momentum conservation is preserved without
retardation. An additional contribution of this work was
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the examination of systems with reduced symmetries. Such
descriptions are more consistent with later formulations of
quantum theory, such as the statistical interpretation of
Ballentine21 or path integral approach of Feynman.22

Storey et al.23 joined this debate on interpretations exam-
ining a familiar “welcher Weg” (which way) experiment
associated with double-slit diffraction, describing the photon
scattering in terms of a momentum representation and quan-
tized momentum transfer. The observation was again put for-
ward that the interference pattern was determined by the
uncertainty principle. Here, it was described that a micro-
wave radiation exchange within the diffracting aperture is
responsible for a transverse momentum “kick” to the scat-
tered photon. Wiseman et al24 provide further perspective
describing a formalism to analyze momentum transfer in
welcher Weg double-slit diffraction experiments using the
Wigner function. This question was also analyzed using
Bohm’s formulation of quantum mechanics in which scat-
tered particles have a definite position and momentum at all
times.25 This approach conceptualizes the interaction and
momentum exchange at the diffracting slits and suggests
the potential application of Bohmian trajectories to single-
slit and other diffraction configurations. This treatment dem-
onstrated the utility of defined particle paths and opens the
possibility that this formalism can accommodate geometri-
cally defined transfer functions that are dependent on the
separation of the path from the aperture boundary proposed
by MET.

The argument for the MET picture will be built in suc-
ceeding sections. Section 2 provides a contrast and compari-
son of optical wave theories with MET noting a common
connection in the Fourier transform. Section 3 examines a
momentum representation of the equations of classical opti-
cal theory to point out their dependence on momentum
exchange at the scattering aperture. Section 4 reviews
single-slit diffraction, demonstrating that scattering probabil-
ities are dependent on momentum state functions of the slit
and suggesting that the scattering will be dependent on the
path of the photons. Section 5 provides a similar analysis of
straight-edge diffraction connecting momentum exchange
probabilities to the analysis of Fresnel zones. Section 6 pro-
vides an analysis, working backward from the straight-edge
diffraction pattern observed, to define the probability distri-
bution for momentum exchange with photons in the plane of
the straight edge. This analysis demonstrates the dependence
of the scattering on the path of the photon. Section 7 extends
the analysis to multiple slits and the Talbot effect. Section 8
reviews diffraction by a circular disc to examine negative
(attractive) momentum dispersion of photons in the plane
of the disc. Section 9 generalizes the MET formalism for
broader application. Section 10 looks at the implications
and predictions for other experimental configurations.

2 Contrasting Pictures of Diffraction
To aid our understanding of this more integrated picture, we
contrast MET with the predominant historical pictures that
have emerged for diffraction phenomena.

2.1 Picture 1: Classical Optical Wave Theory

COW was built on the Huygens–Fresnel principle that
assumes a spherical dispersion of the light as wavelets in
the vicinity of the aperture with phase summation and

interference determining the light intensity at detection.
COW has been very successful in describing the diffraction
of light.26,27 Physicists have translated optical wave theory
into the mathematical formalism of quantum mechanics
that better reflects the statistical foundations of QM (see
Ref. 28). This established a common theoretical foundation
for the diffraction of photons, electrons, and other fundamen-
tal particles based upon the interference for a particle wave.
However, this wave picture is misleading as it implies
a broad extension of a photon wave and that the probability
for a photon path is determined at the point of detection. The
formalism identifies the intensity at a detection point but
maintains an uncertainty in the momentum vector. There
remains a significant gap between the conceptual founda-
tions of wave theory and the descriptions of particle scatter-
ing we obtained from both classical mechanics and the more
recent formulations of quantum theory that invoke quantized
momentum exchange, such as quantum electrodynamics
(QED).29

2.2 Picture 2: Boundary Diffraction Wave Theory

This alternative description of optical diffraction [boundary
diffraction wave (BDW)] assumes that the observed intensity
consists of a superposition of the incident wave transmitted
unperturbed and a diffraction wave or boundary wave
originating at the rim of the aperture. Though less known,
this is viewed to be more “physical” than the standard
Huygens–Fresnel principle and was first qualitatively
expressed by Thomas Young in 1802.19 A rigorous solution
to the straight-edge/half-screen problem was described
by Sommerfeld.30 Miyamoto and Wolf31,32 generalized the
theory of a BDW offered by Maggi-Rubinowicz. A closely
related approach is the geometrical theory developed by
Keller,33 replacing the superposition of incident and diffrac-
tion waves with the principles of geometric optics. This is
similar to Huygens–Fresnel in that the fields associated
with the incident, reflected, and diffracted rays are superim-
posed to define a field amplitude and probability at the point
of detection. Kumar et al.34 demonstrated the utility of this
theoretical approach in describing experimental knife-edge
diffraction while also confirming compatibility with COW.
An important conceptual contribution of this picture is the
direct connection between the aperture and the scattered
wave. However, Kumar35 pointed to an insufficiency to
this approach in that the phase shift required for the diffrac-
tion wave would point to a discontinuity at the geometric
shadow that is not confirmed, suggesting we expand our
thinking on the nature of diffraction. More recently, Umul36

has connected the surface integrals of physical optics, sepa-
rable into two subintegrals, with the potential functions of
BDW theory.

2.3 Picture 3: Momentum Exchange Theory

The interfering wavelets of COW and BDW suggest that the
probability for detecting a diffracted photon is determined on
observation at the point of detection. I have argued these pic-
tures are both conceptually flawed as the probability must be
determined at the location of scattering to preserve conser-
vation of momentum. MET draws from a momentum repre-
sentation and postulates the probability distribution is
determined by the particle path, experimental geometry, and
momentum transfer states at the scattering aperture. Earlier
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formulations7–10 suggested that the experimentally observed
boundaries for momentum transfer, Δp, are a multiple of
Planck’s constant, h, over a periodic dimension, L, such
that Δp ¼ nh∕L, or, frequently experimentally observed

EQ-TARGET;temp:intralink-;e001;63;708Δpx ¼
jh
2L

; (1)

where n and j are integers. Diffraction can be described in
terms of a diffraction force, characterized by momentum
exchange defined by geometric properties of the scattering
structure. The insight emphasized in this paper is that the
momentum exchange associated with diffraction is also
a specific function of the distance of exchange.

2.4 Geometric Correlations of Theories

The distinctions and similarities between these three differ-
ent pictures of diffraction are illustrated in Fig. 1, which was
detailed in an earlier paper.5 The diagrams depict the diffrac-
tion of monochromatic light with a detection point at P and
a reference point for diffraction at O. We assume the x; y
plane is normal to the propagation vector of the light that
aligns with the segment AP. Our plane of interest contains

the propagation vector (light ray) from the source to point P
and the reference point, O. Figure 1(a) illustrates the
Huygens–Fresnel principle of COW, where Huygens wave-
lets are generated in the x; y plane. The segment BP depicts
the path of one wavelet that can be compared with the path

and phase of AP
�!

. In COW, the diffraction field intensity is
calculated via the weighted sum (integral) of all the Huygens
wavelet paths that converge on the detection point, P. The
intensity calculation is derived from the relative phase con-
tribution of each wavelet, dependent on the relative lengths
of the segments, e.g., AP and BP. As the lengths of two sides
and one angle of a triangle always determine the length of the
third side, the lengths of AP and BP uniquely determine AB.
Similarly,OP andAPwill determineOA and thus,OB is also
defined. To clarify, this phase difference, Δphase ¼
−i2πΛ∕λ, between any unperturbed (reference) wavelet of

length, AP, and any dispersed wavelet of length BP
�!

is
a function of the difference in the lengths, Λ ¼ BP − AP.
As BP ¼ BA∕ sin θ and AP ¼ BA∕ tan θ, the phase varia-
tion for a Huygens wavelet at a detection point will always
depend on the angle of deflection and a reference distance
along the x or normal axis

EQ-TARGET;temp:intralink-;e002;326;497Λ ¼ BAð1 − cos θÞ
sin θ

. (2)

Assuming the Fraunhofer region of diffraction and using the
small angle approximation

EQ-TARGET;temp:intralink-;e003;326;432Λ ≅ BA sinðθ∕2Þ ≅ BA

2
sin θ: (3)

This parallels the Fourier transform dependence on the
transverse dimensions in this formalism; recognizing the
Fourier transform directly connects an aperture function to
a far-field function.37 Two wavelet trajectories can be related
through the relation of each to the phase of a reference wave-
let. I emphasize that these geometric relations are axiomatic
and not the result of alternative theoretical considerations.
There is a fundamental connection between an angle of
deflection and the “phase separation.”

Figure 1(b) illustrates BDW theory, where OP
�!

represents
the ray associated with the diffraction wave scattered from
our reference point, O, that might be associated with the
edge of an aperture. AP

�!
is the path of the unperturbed

ray and BP
�!

is the path of a perturbed ray. This approach
sums the phases of all the rays reaching the detection
point, P. From the geometry of this depiction, we can assert
that the phases at the detection point will be dependent on the
distances, OA and OB, and the deflection angle.

As the relation of Eq. (3) is axiomatic, the scattering prob-
ability distribution derived via the Huygens–Fresnel princi-
ple can always be reframed in terms of momentum exchange
probabilities determined by geometries of the scattering lat-
tice. I will demonstrate that by adopting a momentum rep-
resentation for the mathematical formalism used in COWand
BDW, we can develop a connection to these probabilities and
intensity profiles that our geometric analysis demonstrates
must exist. Familiar tools to make this connection will be
the Fresnel zones and the Fresnel number that can be related
to momentum exchange. Figure 1(c) illustrates MET, where
photons passing the reference point O near B are scattered by

Fig. 1 Three different conceptual pictures for optical diffraction
related to a reference point at O with light intensity measured at P.
(a) COW picture based upon the Huygens–Fresnel principle summing
the interference between wavelets emanating in the x; y plane; (b) the
BDW theory picture with OP representing the diffraction wave; and
(c) the MET picture with the scattering of photons by quantized
momentum exchange determined by the proximity of the scattering
boundary point.
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the exchange of momentum and deflected to P, with the prob-
ability being dependent on the selection rules for momentum
exchange. To clarify, in the momentum representation, where
the photon momentum is p ¼ h∕λ ¼ ℏk, the rotation of the
photon trajectory in the x; z plane, θ, is connected to a change
in momentum along the perpendicular (x) axis, Δpx ¼
p sin θ, and the momentum change (reduction) along the
z-axis, Δpz ¼ pð1 − cos θÞ. Thus, the relative phase varia-
tion will depend on as follows

EQ-TARGET;temp:intralink-;e004;63;653Δphase ¼ −2πΛ
λ

≅
−πBAΔpx

h
≅
−πBA
λe

≅
−BA
2

ke; (4)

where λe used here is associated with an effective wavelength
defining momentum exchange and the phase change is
related to the ratio, BA∕λe. With this conversion, our prob-
abilities for momentum exchange must involve a geometric
summation (integral) at the aperture that parallels the sum-
mation of phases we determine in the far field. This will be
the approach developed further in the next sections of this
paper. We will note an advantage to this approach is that
probabilities can be associated with individual light paths
that simplify the analysis of a broadened set of aperture con-
figurations and experimental conditions. The approach also
provides insight to the phase problem or the Fresnel phase-
shift that is associated with the classical or Fourier represen-
tation of diffraction.

3 Mathematical Foundations for Photon
Diffraction

An excellent visualization of slit diffraction of photons was
provided by Harris et al.,26 who compared the experimental
results from high-resolution diffraction patterns with the
theoretical predictions of optical wave theory in the
Fraunhofer and Fresnel regions and found an excellent agree-
ment between the calculated and observed patterns. This
work produced plots of the scattering patterns at different
distances from the slit that provide an indication of how
the light scattering pattern near the slit progressively fans
out as a detector screen moves farther from the diffracting
slit. From this, we can visualize the distribution of paths fol-
lowed by scattered photons. We can use the COW formalism
to relate to a description of photon diffraction in terms of
quantized momentum transfer. Adopting this approach does
not endorse the wave picture that classical optical theory
presents, but rather it is used to demonstrate the axiomatic
compatibility with our MET formulation for particles. I
will start with a generalized description of light diffraction
based on the Rayleigh–Sommerfeld and the Fresnel–
Kirchoff theories of diffraction. I consider diffraction of
light by an aperture in the x; y plane at z ¼ 0. I assume
a light source treated as a monochromatic plane wave ini-
tially propagating along the z-axis. This can be experimen-
tally modeled with laser light. An additional assumption is
that the source of light is sufficiently dilute that the response
of any detector used is linear to the intensity of light—to the
number of photons reaching the detector. This also assumes
that there is no co-operative phenomenon (interference)
observed at the detector, where photons that are “out-of-
phase” might be observed to interfere due to the response
characteristic of the detector or amplifier.

Starting with the first Rayleigh–Sommerfeld diffraction
formula, the electromagnetic field amplitude at a screen or
detector at X; Y; Z is UðX; Y; ZÞ, where the square of the
amplitude is proportional to the energy flux or flux of photon
particles. This formulation is reviewed in multiple texts on
optical diffraction.19,30,38 If this flux is normalized across the
distribution, it can be used to provide probabilities for detec-
tion of photons. The first integral formula is

EQ-TARGET;temp:intralink-;e005;326;664UðX; Y; ZÞ ¼ 1

iλ

Z
∞

−∞

Z
∞

−∞
Uðx; y; 0ÞZ

r
expðikrÞ

r
dx dy; (5)

where λ is the wavelength, k is the wavenumber, k ¼ 2π∕λ,
and r is the vector length from the deflection point ðx; y; 0Þ in
the aperture plane to the detection point at ðX; Y; ZÞ.
Uðx; y; 0Þ is the field amplitude of the light crossing the
area differential within the aperture at ðx; y; 0Þ. This formal-
ism assumes a dispersion of spherical waves, each of which
emanates from the points ðx; y; 0Þ, which are known as
the Huygens wavelets. Fresnel introduced an additional
obliquity factor to bias the propagation of these wavelets
to the forward or z-direction. We note that optical theory
assumes this dispersion but does not actually provide a basis
for it. Thus, we need to establish a more physical foundation
for our light scattering. Our effort is to look for an alternative,
more-physical conceptualization that retains the demon-
strated predictability of the Huygens–Fresnel principle.

The Kirchoff approximation to the integral integrates only
over the area of the aperture. With the dispersion of light at
ðx; y; 0Þ, the propagation vector has a length

EQ-TARGET;temp:intralink-;e006;326;423r ¼ Z

�
1þ ðX − xÞ2 þ ðY − yÞ2

Z2

�
1∕2

. (6)

We can use the binomial series expansion for r to obtain the
Fresnel approximation applicable in the region, where Z is
large relative to the wavelength and the x and y terms

EQ-TARGET;temp:intralink-;e007;326;344r ≅ Z þ ðX − xÞ2 þ ðY − yÞ2
2Z

. (7)

This approximation thus assumes Z ≅ r. Equation (5)
becomes
EQ-TARGET;temp:intralink-;e008;326;279

UðX; Y; ZÞ ¼ exp ikZ
iλZ

Z
∞

−∞

Z
∞

−∞
Uðx; y; 0Þ exp

�
iπ
λZ

ðX − xÞ2

þ iπ
λZ

ðY − yÞ2
�
dx dy: (8)

This formalism adopts the Fresnel phase-shift of −i ¼
exp−iπ∕2 into the integral that is necessary for COW to
align the theoretical predications with the experimental
observations, though it also has an unclear physical basis.

As pointed out by many authors, the form of Eq. (8) pro-
vides a Fourier transformation of the field flux and is a two-
dimensional convolution with respect to x and y. The expo-
nentials correspond to the transfer function.38–41 As the
momentum of a photon can be expressed in terms of the
wavenumber or wavelength, I will make this relation explicit
in our analysis by the substitution, p ¼ h∕λ. I also note that
the momentum deflections along the x and y axes can be
represented by
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EQ-TARGET;temp:intralink-;e009;63;752Δpx ¼ p sin θ ¼ p
ðX − xÞ

r
≅ p

ðX − xÞ
Z

; (9)

EQ-TARGET;temp:intralink-;e010;63;720Δpy ¼ p sin ϕ ¼ p
ðY − yÞ

r
≅ p

ðY − yÞ
Z

: (10)

These substitutions provide a momentum representation
to our scattering equations (Huygen’s wavelets) and are
extremely useful to illustrate the connection between particle
diffraction and momentum transfer. I have assumed the pho-
ton scattering to be elastic—the energy and wavelength of
light is not changed. Making these substitutions and separat-
ing the exponentials
EQ-TARGET;temp:intralink-;e011;63;606

U ¼ exp iZ2πp∕h
iλZ

Z
∞

−∞

Z
∞

−∞
Uðx; y; 0Þ exp

�
iπλZ

�
Δpx

h

�
2

þ iπλZ

�
Δpy

h

�
2
�
dx dy. (11)

Though we have not represented the polarization of our light
in terms of electric and magnetic field vectors, the transverse
electric field would lie in the x; y plane, thus our momentum
exchange is allowed in this plane.

Assuming the illumination, Uðx; y; 0Þ, is uniform over
the aperture under consideration allows us to separate the
integral
EQ-TARGET;temp:intralink-;e012;63;455

UðX; Y; ZÞ ¼ Uð0Þ expðiZ2πp∕hÞ
i

×
�

1ffiffiffiffiffiffi
λZ

p
Z
x
exp iπλZ

�
Δpx

h

�
2

dx

�

×
�

1ffiffiffiffiffiffi
λZ

p
Z
y
exp iπλZ

�
Δpy

h

�
2

dy

�
: (12)

We here see how the conversion to a momentum represen-
tation has demonstrated that the scattering integrals are de-
pendent upon variables within the perpendicular x; y plane.
We recognize that conservation of momentum along
the z-axis should have some effect on the scattering proba-
bilities, further confirming that Eq. (12) must be considered
an approximation.

4 Single-Slit Diffraction
There are several aperture configurations for which solutions
to the Rayleigh–Sommerfeld formula have been examined in
detail. Analytical solutions to various aperture problems
have been examined in detail by Steane and Rutt.41 One
familiar example is a long narrow slit, d wide, running
along the y-axis, and centered at x ¼ 0. The separate inte-
grals of Eq. (12) are solvable in the traditional fashion
using the Fresnel integrals,42 integrating over x from −d∕2
to d∕2 and assuming the y integral from −∞ to þ∞ gives a
constant. (Note: this assumption that the y integral provides a
constant, uniform dispersion is acceptable for uniform illu-
mination but would not be accurate for a narrow laser beam;
see Fig. 6.) Noting Eqs. (9) and (10), integration can be done
with the substitution in the argument of v ¼ ffiffiffiffiffiffiffiffiffiffiffi

2Z∕λ
p

sin θ
and v 0 ¼ ffiffiffiffiffiffiffiffiffiffiffi

2Z∕λ
p

sin ϕ and using the Cornu spiral,
integral tables, or computer algorithms to generate numerical
solutions.

In the long distance, Fraunhofer limit for slit diffraction,
the angular distribution for the intensity, IX , exhibits the
relation

EQ-TARGET;temp:intralink-;e013;326;719IX ∝ sinc2½ðdπp∕hÞsin σ� where sincμ¼ sin μ

μ
; sincð0Þ¼ 1;

(13)

where σ is the angle of rotation of a ray from the origin of
the aperture to ðX; 0; ZÞ. This shows the primary dependence
for this rotation on the width of the slit. This sinc function
has extrema when the sine function has the value πðnþ 1∕2Þ
and is zero when the sine is πðnþ 1Þ, where n ¼
0;�1;�2;�3; : : : . Substituting the momentum deflection,
Δpx ¼ p sin σ, maxima in the probability of the deflection
of a photon occur whenever

EQ-TARGET;temp:intralink-;e014;326;575Δpx ¼ p sin σ ¼ ΔpS ¼
h
2d

ð2nþ 1Þ ¼ h
λe

¼ ℏke; (14)

where λe is an “effective wavelength” and ke is an “effective
wavenumber,” useful geometric parameters that we can asso-
ciate with a momentum transfer to the photon at the aperture.
There are higher probability values for this effective wave-
length when it is an odd fraction of 2d. We recognize these
momentum transfers parallel the momentum eigenvalues
from the analysis of a one-dimensional square well (particle-
in-a-box) using Schrödinger’s wave equation.8–10 This con-
nection is visualized in Fig. 2, where the wave-like solutions

Fig. 2 Single-slit diffraction in the Fraunhofer limit. The effective
wavelength for momentum transfer, λe , is shown for four different val-
ues of n corresponding to maxima in the diffraction pattern. These are
related to geometrically harmonic solutions to Schrödinger’s wave
equation for a one-dimensional square well. The significance of the
numbered inflection points is described later in Table 2.
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for a square well of width, d, ðψS ¼ A cos 2πx∕λeÞ are
shown with the corresponding values of λe for the first
four values of n.

Figure 3 is a picture of a green laser pointer diffracted by
a single, narrow slit, where the paths for the scattered pho-
tons are illuminated by a water vapor fog. This type of exper-
imental set up helps to illustrate how the photon paths are
determined at the slit aperture, though the scattering pattern
can be predicted by the formalism of a wave.

In single-slit experiments examining the near-field, there
appears a minima in the center of the diffraction pattern (see
Harris et al.26). Fresnel’s criteria for such minima assume that
the integration is over four Fresnel zones. I have pointed out
previously that to obtain such a pattern, the magnitude of
momentum transfer must be dependent on the position
within the slit as well as specific momentum eigenvalues
of the slit.6 This relation will be clarified through our exami-
nation of straight-edge diffraction.

5 Straight-Edge Diffraction
The classical derivation of the scattering intensity at a distant
screen for edge diffraction of monochromatic light can be
found in most optics textbooks.19,42 The derivation usually
employs the Rayleigh–Sommerfeld and Fresnel–Kirchoff
theories of diffraction. The experimental setup is illustrated
in Fig. 4, with a long, straight edge located at x ¼ 0.

From the first Rayleigh–Sommerfeld diffraction formula,
Eq. (5), we have derived the illumination field, Uðx; y; 0Þ, in
Eq. (12). For edge diffraction, integration over the y-dimen-
sion will generate a constant that can be combined in the
coefficient, thus, we can focus on the x dependence. Using
a familiar substitution, we obtain as follows

EQ-TARGET;temp:intralink-;e015;326;686ν ¼ −
ffiffiffiffiffiffiffiffi
2λZ

p Δpx

h
¼ −

ffiffiffiffiffiffi
2Z
λ

r
sin θ ≅ −

ffiffiffiffiffiffi
2

λZ

r
ðX − xÞ

¼ −ðX 0 − x 0Þ; (15)

and also use the simplification

EQ-TARGET;temp:intralink-;e016;326;612X ¼ X 0u; x ¼ x 0u; and u ¼
ffiffiffiffiffiffiffiffiffiffiffi
λZ∕2

p
; (16)

where u is the Fresnel scaling factor or coefficient that will
define our dimensional units. The field amplitude is propor-
tional to our revised integral

EQ-TARGET;temp:intralink-;e017;326;551UðX 0; Y 0; Z 0Þ ¼ −iWð0Þ
Z
ν
exp

�
iπν2

2

�
dν; (17)

where the integration is from x 0 ¼ 0 → ∞; thus, ν ¼
−X 0 → ∞. As demonstrated in standard texts, 37,42 the expo-
nential can be separated into a cosine and sine function and
solved using the familiar Fresnel integrals, where

EQ-TARGET;temp:intralink-;e018;326;462CðνÞ ≡
Z

ν

0

cos

�
πν2

2

�
dν and SðνÞ ≡

Z
ν

0

sin

�
πν2

2

�
dν:

(18)

Thus,

EQ-TARGET;temp:intralink-;e019;326;392UðX 0; Y 0; Z 0Þ ¼ −iWð0ÞfCð∞Þ − Cð−X 0Þ
þ i½Sð∞Þ − Sð−X 0Þ�g; (19)

and the irradiance (intensity) is proportional to the complex
square
EQ-TARGET;temp:intralink-;e020;326;324

IX 0 ≈ U2ðX 0; Y 0; Z 0Þ
¼ W2ð0Þf½Cð∞Þ − Cð−X 0Þ�2 þ ½Sð∞Þ − Sð−X 0Þ�2g;

(20)

or using the uniform unobstructed irradiance, Φðx 0
0Þ, as our

proportionality constant
EQ-TARGET;temp:intralink-;e021;326;240

IX 0 ¼ Φðx 0
0Þ

2

�
C2ð∞Þ − 2Cð−X 0ÞCð∞Þ þ C2ð−X 0Þ
þS2ð∞Þ − 2Sð−X 0ÞSð∞Þ þ S2ð−X 0Þ

�

¼ Φðx 0
0ÞAX 0 . (21)

Having used a standard derivation from COW, we can
further deconstruct the components to these equations. In
the illuminated region, where X 0 is positive, we can separate
this irradiance approximation into the sum of two functions
representing attractive and repulsive deflections. These com-
ponent functions are plotted in Fig. 5

EQ-TARGET;temp:intralink-;e022;326;110

IX 0

Φðx 0
0Þ

¼ AX 0 ¼ BX 0 þ ΓX 0 ; (22)

Fig. 4 (a) Diagram of Fresnel diffraction of monochromatic light by a
long, straight edge at x ¼ 0, z ¼ 0, and distant detector screen at
z ¼ Z . The six different photon scattering trajectories are shown,
where Δpx ¼ gh∕x , g ¼ 1 from Eq. (27), three converging at the
detection point, X , Y , Z . (b) Typical Fresnel intensity pattern pro-
duced by edge on distant screen.

Fig. 3 Green (520 nm) laser pointer diffracted by a narrow slit with
beam illuminated by a fog generator. Picture illustrates the probabil-
ities of the paths for scattered photons. (Credit: Quantum Optics Lab
Olomouc 2012.)
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where the sum of the repulsive, positive deflections is esti-
mated by

EQ-TARGET;temp:intralink-;e023;63;474ΓX 0 ¼ 1

2
½2C2ð−X 0Þ þ 2S2ð−X 0Þ� ¼ ½Cð−X 0Þ þ iSð−X 0Þ�2;

(23)

EQ-TARGET;temp:intralink-;e024;63;425ΓX 0 ¼
�Z

X 0

ν¼0

exp

�
iπν2

2

�
dν

�
2

: (24)

The approximate sum of the attractive, negative deflec-
tions is calculated as the difference as follows

EQ-TARGET;temp:intralink-;e025;63;363BX 0 ¼ AX 0 − ΓX 0 ¼ 1

2

�
2C2ð∞Þ þ 2S2ð∞Þ − ½Cð∞Þ
þCð−X 0Þ�2 − ½Sð∞Þ þ Sð−X 0Þ�2

�
;

(25)

EQ-TARGET;temp:intralink-;e026;326;752

BX 0 ¼
�Z

∞

0

exp

�
iπν2

2

�
dν

�
2

−
1

2

�Z
∞

X 0
exp

�
iπν2

2

�
dν

�
2

¼ 1

2
−
1

2

�Z
∞

X 0
exp

�
iπν2

2

�
dν

�
2

; (26)

when X 0 ≥ 0. Thus, we can construct the irradiance in terms
of the sum of two integral functions; one determined from
zero to X 0 and the other from X 0 to ∞. This again displaces
the idea that the irradiance is a result of interference at
a detection point by demonstrating that it can be the sum
of multiple dispersion terms defined at a scattering lattice.

Fresnel provided us with two useful conceptual tools to
describe the summation and interference of Huygens wave-
lets. One is the Fresnel number associated with the scattering
to X, Z, where NF ¼ X2∕λr ≅ X 02∕2. We note the integral,
ΓX 0 , spans the phase interval, NF. A second, related tool is
the Fresnel half-period zones analysis. The half period zones
define the dimensional spacing at the scattering object or
aperture that correspond to half-period phase differences
in dispersed wavelets reaching a specific detection point.
Insight to our edge diffraction is gained referencing these
tools. MET relates these to momentum exchange criteria.

Table 1 provides the relevant dimensions for a Fresnel
zones analysis of our edge diffraction experiment. The
dimension from x ¼ 0 to the edge of each Fresnel half-period
zone is calculated such that there is a half-period difference
at Z, column B. We note that these zone edges approximate
the X 0 inflection points in our analysis of the diffraction pat-
tern of Fig. 5, column E. Also calculated, related to Eq. (4), is
the effective wavelength that would be associated with a
momentum exchange at the aperture that leads to a photon
deflection equal to the length to the zone edge, column C.
Our definition of the momentum exchange coefficient that
can be related to the Fresnel number, column D, will be
developed in the next section that clarifies how these are con-
nected to the calculated coefficient at the profile inflection
points, column F.

Fig. 5 Contributions to the observed diffraction pattern from a straight
edge, AX 0 . ΓX 0 is the relative contribution from repulsive, positive
deflections, Eq. (24), and BX 0 is the relative contribution from attrac-
tive, negative deflections, Eq. (26). ΩX 0 is a derived component of ΓX 0

defined in Eq. (35).

Table 1 Parameters associated with a Fresnel analysis of edge diffraction in Fresnel units. Description of each column is provided in the text.

Fresnel zones analysis Fresnel integrals analysis

A B C D E F

Fresnel
zone # m

Zone edge
x 0
m ¼ ffiffiffiffiffiffiffi

2m
p Zone edge momentum

exchange λ 0e ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2∕x 0

m

p Exchange coefficient
gm ¼ X 02

m ∕8 ¼ m∕4
Calculated inflection

points X 0

Coefficient at
inflection point
g ¼ X 02∕8

1
ffiffiffi
2

p ffiffiffi
2

p
1/4 1.2 0.18

2
ffiffiffi
4

p ffiffiffi
4

p
∕2 1/2 1.9 0.43

3
ffiffiffi
6

p ffiffiffi
6

p
∕3 3/4 2.3 0.69

4
ffiffiffi
8

p ffiffiffi
8

p
∕4 1 2.7 0.94

5
ffiffiffiffiffiffi
10

p ffiffiffiffiffiffi
10

p
∕5 5/4 3.1 1.20

6
ffiffiffiffiffiffi
12

p ffiffiffiffiffiffi
12

p
∕6 6/4 3.4 1.45
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6 Phenomenological Description and Experimental
Curve Fitting

Converting to a momentum representation gives us an alter-
native interpretation for optical diffraction formulas in terms
of momentum exchange corresponding to microwave ener-
gies. We demonstrated the irradiance predications of COW
can be constructed as the sum of attractive and repulsive
momentum exchange terms. In this next section, we will
“reverse engineer” these terms, assuming that they represent
the experimentally observed diffraction patterns and develop
the momentum exchange descriptions that will generate
these patterns. This analysis makes a few simple assump-
tions: (a) photons behave as particles with specific paths
and quantized momentum; (b) photons are scattered in the
vicinity of an aperture or lattice by momentum transfer
with that lattice; (c) the momentum transfer probabilities
are defined by two factors: (1) the momentum exchange
states associated with the lattice and (2) the distance over
which momentum is transferred.

The probability for scattering in MET must result from a
distinct ensemble of exchange potential functions within the
aperture and their cross-section at the path point of photon
scattering. Such an assumption is necessary to generate the
sharp definition of optical diffraction patterns. We note that
BDW theory draws upon the geometry and symmetry of the
scattering boundary or aperture to define the interference
with the incident wave.33 For example, Schwinger et al.43

use the “more physical” approach of BDW and describe
the scattered wave by a long, straight edge as a cylindrical
field, concentric to the edge. We make the distinction
between MET and BDW in that the field in the proximity
of the edge or aperture determines the scattering and not
interference at the point of detection as in BDW.

The similar symmetry requirements may be clarified
by our observation of the scattering of a laser beam by a
long, narrow slit. Note, in Fig. 6, the laser light is scattered
perpendicular to the length of the slit. The scattering field
contributions parallel to the edge must cancel or not contrib-
uted—the parallel scattering is no wider than the origi-
nal beam.

In determining how these fields/potentials interact, we
will make an analogy to Thomson scattering by an electro-
magnetic field in x-ray crystallography, where the structure
factor for a crystal’s geometry is expressed in a reciprocal
phase space that defines x-ray reflections.44 This reciprocal
space representation can be correlated to momentum eigen-
functions of the crystal lattice that determine the scattering
profile. We should be able to define optical scattering from
an aperture in terms of a reciprocal geometry that is corre-
lated with momentum transfer states. A difference from
crystallography is that we do not immediately recognize

a periodic pattern of the scattering electromagnetic field in
reciprocal space. Our analysis will help us converge on
the scattering probabilities for this momentum transfer in
the plane of an aperture.

Our analysis of edge diffraction will assume that the
momentum transfer is a reciprocal function of the distance,
x, between the photon path and edge of the aperture. As with
our analysis for Eq. (21), we assume a summation of
deflected photon paths that converge upon the screen
point ðX; 0; ZÞ scattered from points in the plane of the aper-
ture, ðx; 0;0Þ and thus, Δx ¼ ðX − xÞ. As with BDWanalysis
and experimental observations, we assume the y-contribu-
tions to deflections will cancel. Making the substitution,
Δpx ¼ gh∕x, into Eq. (9), the net potential momentum trans-
fer with an exchange coefficient, g, is expressed by

EQ-TARGET;temp:intralink-;e027;326;587

Δpx ¼ p sin θ ¼ ℏke ¼
h
λe

¼ gh
x

¼ hðX − xÞ
λr

≅
hðX − xÞ

λZ
;

g ≅
ðX 0 − x 0Þx 0

2
: (27)

The diffraction pattern will be determined by the proba-
bilities for the different positive and negative values of g.
Expressing distances in terms of the Fresnel coefficient, u,
we solve Eq. (27)

EQ-TARGET;temp:intralink-;e028;326;473x 0 ≅
X 0

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 02 − 8g

p
2

; (28)

providing the multiple values to x 0 that would deflect to X 0
for a particular coefficient, g. When g is positive, there are
two real solutions for x 0 when X 02 > 8g, and only one real
solution when g is negative. I have depicted the three differ-
ent solutions for x 0 that will deflect to X 0 ¼ 3 in Fig. 4, when
g ¼ �1. The intensity or photon flux at each value of X 0 is
generated using the differentials, Eq. (29), and knowing the
flux at each value of x 0. We will assume the intensity at x 0,
I ¼ Φðx 0Þdx 0, where Φðx 0Þ is the flux for unit length, Δy, at
x 0 from the edge. The differential is used to relate the cross-
section and flux at x 0 to the intensity at X 0

EQ-TARGET;temp:intralink-;e029;326;307

dx 0

dX 0 ≅
�
1

2
� X 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 02 − 8g

p
�
: (29)

For each absolute value of g, there can be up to three dif-
ferent values of x 0 that deflect to each value of X 0. We can
determine the contribution to the intensity from each deflec-
tion cross-section. For g positive, a positive deflection (repul-
sion) from the edge, we obtain

EQ-TARGET;temp:intralink-;e030;326;206x 0
1 ≅

X 0

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 02 − 8g

p
2

; x 0
2 ≅

X 0

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 02 − 8g

p
2

; (30)

where X 02 > 8g. The intensity contribution at X 0, IðþgÞ,
from these deflections will be a function of the probability
for a particular value of g, PrðþgÞ

Fig. 6 Photo of observed diffraction pattern for a He–Ne laser through
a 0.1-mm vertical slit. Photon scattering is perpendicular to the slit.
(Credit: Jordgette 2010.)
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EQ-TARGET;temp:intralink-;e031;63;752

IðX 0;þgÞ ¼Φðx 0
1ÞPrðþgÞdx 0

1∕dX 0 þΦðx 0
2ÞPrðþgÞdx 0

2∕dX 0

¼Φðx 0
1ÞPrðþgÞ

����
�
1

2
−

X 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 02− 8g

p
�����

þΦðx 0
2ÞPrðþgÞ

����
�
1

2
þ X 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 02− 8g

p
�����: (31)

Here, I have used the convention in physics to take the
absolute value of the differential cross-section, so that the
flux contributions will sum positively. This provides a
generic equation allowing us to calculate the intensities
when the illumination is not uniform. The intensity contri-
bution at X 0 from positive deflections will be the sum (inte-
gral) of the contributions from the different values of x 0 from
0 to X 0

EQ-TARGET;temp:intralink-;e032;63;579

IðX 0Þ ¼
Z

X 0∕2

x 0¼0

Φðx 0
1Þ PrðþgÞ

����
�
1

2
−

X 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 02 − 8g

p
�����dx 0

þ
Z

X 0

x 0¼X 0∕2
Φðx 0

2Þ PrðþgÞ
����
�
1

2
þ X 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 02 − 8g

p
�����dx 0;

IðX 0Þ ¼
Z

g¼X 02∕8

g¼0

Φðx 0
1Þ PrðþgÞ

����
�
1

2
−

X 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 02 − 8g

p
�����dg

þ
Z

g¼0

g¼X 02∕8
Φðx 0

2Þ PrðþgÞ
����
�
1

2
þ X 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 02 − 8g

p
�����dg:

(32)

If we assume the illumination beyond the edge is uniform,
expressed by the unobstructed intensity, Φðx 0

0Þ, Eq. (32)
reduces to

EQ-TARGET;temp:intralink-;e033;63;390IðX 0;þgÞ ¼ Φðx 0
0Þ PrðþgÞ

�
X 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 02 − 8g
p

�
: (33)

This provides our basis to calculate Pr(+g) by fitting to
our experimental observations. Equation (33) correlates
with Eq. (24) that relates to our positive deflections.
Assuming Eq. (24) reflects an observed experimental profile,
we connect these relations

EQ-TARGET;temp:intralink-;e034;63;288ΓX 0 ¼ IX 0 ðþgÞ
Φðx 0

0Þ
¼

Z
þg

PrðþgÞ
�

X 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 02 − 8g

p
�
dg

¼
Z
þg

PrðþgÞ
�
1 −

8g
X 02

�
−1∕2

dg: (34)

We note the integral will only be real for g ≤ X 02∕8,
so our integration is limited to g ¼ 0 → X 02∕8. As g
approaches X 02∕8, our denominator approaches infinity.
We can approximate the square root term by a series expan-
sion and adding a delta function, Δ, as g approaches X 02∕8

EQ-TARGET;temp:intralink-;e035;326;752

ΓX 0 ¼
Z

X 02∕8

g¼0

PrðþgÞ
�
1þ Δ

�
X 02

8
− g

��
dg

¼
Z

X 02∕8

g¼0

PrðþgÞdgþ β Pr

�
g ¼ X 02

8

�

¼ ΩX 0 þ β Pr

�
g ¼ X 02

8

�
; (35)

where β is a constant from the integration of the delta func-
tion. We can use Eq. (35) to generate PrðþgÞ by mathemati-
cal iteration and curve fitting techniques. We can make
a first-order approximation for PrðþgÞ assuming a near fall-
off from g ¼ 0, thus the first term of Eq. (35) will generate
a smooth curve going from 0 to ½ as X 02∕8 increases. Such
an approximate curve is shown as ΩX 0 in Fig. 5. Subtracting
Ω from Γ gives us, β PrðX 02∕8Þ, our relative probability.
Using g ¼ X 02∕8 gives the relative probability distribution
for positive g that is plotted in Fig. 7.

Though this curve in Fig. 7 can be derived from exper-
imental observations, we have correlated it to calculated
Fresnel pattern of Fig. 4 and the resulting inflection points
are tabulated in Table 1. By connecting these relations,
we observe the harmonic probability profile in Fig. 7(a)
can be modeled by a diminishing function with a frequency
approximated by the form

Fig. 7 Relative probability distribution for the different values of g
(dashed). The distribution for positive g is obtained by fitting the
momentum exchanges of Eqs. (33) and (35) to the curve, ΓX 0 , of
Fig. 5. The shape of this profile can be confirmed experimentally.
(a) Solid curve is the harmonic function in Eq. (36). (b) Solid curve
is the sum of Gaussian distributions at þg maxima in Eq. (39).
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EQ-TARGET;temp:intralink-;e036;63;752 PrðþgÞ ∝ cos2 π

�
X 02

4
−
b
2

�
× exp

�
−X 02

8a

�

¼ cos2 π

�
2g −

b
2

�
× exp

�
−jgj
a

�
; (36)

with a and b used to fit to the curve. Local minima and
maxima are as follows

EQ-TARGET;temp:intralink-;e037;63;6654g − b ≅ m − 1; g ≅
ðm − 1Þ

4
þ b

4
; (37)

where m ¼ Fresnel zone number, 1,2,3,. . . From experi-
mental curve fitting of Eq. (36), b ≅ 0.8 and a ≅ 3. The
higher probability points (maxima) shown in Table 1 are
when the Fresnel zone numbers are odd, or alternatively
when

EQ-TARGET;temp:intralink-;e038;63;567g ≅
j
2
þ 0.2; where m ¼ 2jþ 1; j ¼ 0;1; 2;3; : : : :

(38)

The local maxima are at increments of Δp ¼ h∕2x.
Alternatively, these probability maxima for g might be asso-
ciated with momentum transition states for the aperture with
behavior resembling spectral lines with broadening defined
by Gaussian or Lorentzian statistical distributions. In this
case, we might model the probability of þg by a summation
resembling

EQ-TARGET;temp:intralink-;e039;63;436 PrðþgÞ ∝
X
j

cj exp
−½g − ð2jþ bÞ∕4Þ�2

w2
; (39)

where the coefficients, cj, may correspond to the density
of accessible states. This is plotted in Fig. 7(b) with the
curve fitting of cj ¼ exp−½ð1∕aÞð2jþ bÞ∕4�, b ≅ 0.8, and
w ¼ 0.17.

Though our curve fitting set b ≅ 0.8, for insight to the
geometric selection rules for momentum exchange and the
Fresnel zone analysis of optical theory, we will examine set-
ting b ¼ 1, such that the inflection points for g correspond to
g ¼ m∕4. These track the values for gm in Table 1, column D.
The probability of Eq. (36) then relates to the sine function

EQ-TARGET;temp:intralink-;e040;63;277 PrðþgÞ ∝ ðsin2 2πgÞ exp
�
−jgj
a

�

¼ ðsin2 ke · xÞ exp
�
−jke · xj
2πa

�
: (40)

Local maxima in momentum exchange from Eq. (27) are
thus approximated where
EQ-TARGET;temp:intralink-;e041;63;181

Δpx ¼ ℏke ¼
h
λe

¼ g
h
x
≅
ð2jþ 1Þh

4x
;

and thus x ≅
2jþ 1

4
λe: (41)

From Eq. (41), the higher probabilities for momentum
exchange are found when the effective wavelength is an
odd fraction of 4x. This relation illuminates the connection
between the momentum exchange selection rules and the

Fresnel phase-shift of −π∕2 adopted in Eq. (5). With
Eq. (40), we come full-circle on our predictions of Sec. 2.4,
demonstrating diffraction as a harmonic function of momen-
tum transfer in the plane of the aperture.

The relationship between the effective wavelength for
momentum exchange and the distance to the edge is graphi-
cally illustrated in Fig. 8, where a sine function for different
solutions for λe in Eq. (41) is superimposed on the x-axis of
our edge experiment with the value set to 0 at x ¼ 0. We note
in Fig. 8 how the selection rules for momentum exchange
identify an effective wavelength (momentum) that relates
to the exchange distance to the photon path. This suggests
a geometric relationship between the properties of the
momentum exchange particles or electromagnetic potential
near the aperture and the path of the scattered photons.

When we bring two long, straight edges toward each
other, we create a single-slit diffraction configuration. We
can directly relate the predicted exchange maxima from
Fig. 8 with the single-slit scattering predictions shown in
Fig. 2. We assume a slit separation, d. We can equate the
relations for the maxima in the effective wavelength proba-
bilities for both experimental configurations

EQ-TARGET;temp:intralink-;e042;326;157λe ¼
2d

ð2nþ 1Þ ¼
4x

ð2jþ 1Þ ; jjj ≤ jnj: (42)

Thus, the maxima in the probability for exchange are
observed when the values for x, the distance from the photon
path to the edge, are given by

Fig. 8 Straight-edge diffraction. Graphical representation of four
solutions to Eq. (41), where momenta exchange are maxima.
Superimposed on the x -axis is sin 2πx∕λe for the different values
of the effective wavelength for momentum exchange, λe . The photon
path is at x0 from the edge.
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EQ-TARGET;temp:intralink-;e043;63;469x ¼ dð2jþ 1Þ
2ð2nþ 1Þ : (43)

These positions correspond to the inflection points for the
sinusoidal functions plotted in Figs. 2 and 8. The calculations
for the different values for n and j are shown in Table 2. This
table shows the values for x associated with these maxima
and provides a number label for these inflection points in
the figures. The values for n define the momentum eigenval-
ues for the maxima in exchange and the values for j define
the distance of the photon paths from the edge that will

exchange momentum with these values. The square of the
harmonic functions plotted in Figs. 2 and 8 is related to
the probability of momentum exchange at each point. We
note the amplification of specific values of λe from multiple
paths. Scattering solutions are shown for half of the single
slit as each half is symmetric. The total dispersion (diffrac-
tion pattern) would be the sum across all points in the slit.

This diffraction by a narrow slit is sketched in Fig. 9 for
a configuration in the near-field, where the half width of the
slit, d∕2, is equal to two Fresnel zones (total of four over slit),
Z ≅ d2∕8λ. The figure depicts the higher probability scatter-
ing trajectories only from positions 1 through 6 labeled
in Fig. 2 and Table 2. The magnitudes of the deflections
are defined by the effective wavelengths for momentum
exchange, column one of Table 2. Figure 9 helps us visualize
how this momentum exchange scattering can replace the
concept of Huygens wavelets produced at the aperture. At
d∕2, there is the highest probability for scattering and the
most probable six deflections are shown. Figure 9 illustrates
how we would see an intensity minima at the center of the
profile for this screen distance, as predicted by Fresnel and
experimentally documented (see Harris et al.26). In the far-
field, Fraunhofer limit where the intensity profile can be
described by Eq. (13), the peak in the center of the profile
corresponds to n ¼ 0, j ¼ 0, and g ¼ 1∕4. In this case, the
momentum exchange determining this center is ΔpS ¼
�h∕4x, for each half-slit width from x ¼ 0 to d∕2.

7 Multiple Slits and Talbot Effect
We may examine the COW treatment of multiple-slit diffrac-
tion provided by Born and Wolf1 that merges the intensity
profile for a single-slit with that for multiple slits [see
Eqs. (13) and (14)]

EQ-TARGET;temp:intralink-;e044;326;388IX ∝
�
sin NðLπp∕hÞ sin σ

sinðLπp∕hÞ sin σ

�
2

sinc2½ðdπp∕hÞ sin σ�; (44)

Table 2 Equating the maxima in the probabilities for the effective
wavelengths for single-slit and straight-edge diffraction allows us to
calculate the distance of the photon path from the edge for these
momentum transfers. Position numbers correspond to the location
of the inflections at these values of x in Figs. 2 and 8.

λe n j x from edge
Figs. 1 and 7
position #

2d 0 0 d∕2 1

2d∕3 1 1 d∕2 2

2d∕3 1 0 d∕6 3

2d∕5 2 2 d∕2 4

2d∕5 2 1 3d∕10 5

2d∕5 2 0 d∕10 6

2d∕7 3 3 d∕2 7

2d∕7 3 2 5d∕14 8

2d∕7 3 1 3d∕14 9

2d∕7 3 0 d∕14 10

Fig. 9 (a) Deflection of parallel light paths from different positions within a single slit of width d . Higher
probability deflections correspond to positions 1 through 6 in Fig. 2 and Table 2. (b) Fresnel intensity pattern
at a distance Z ≅ d2∕8λ from the aperture corresponding to ∼4 Fresnel zones. (c) Intensity pattern at
Z ≅ 2d2∕λ, one Fresnel zone, first minima at 2d from center where λe ¼ d (see intensities in Harris et al.26).
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where N is the number of equally spaced parallel slits. (The
point for the zero angle of deflection is taken perpendicular
to each slit.) The intensity has maxima when the denomina-
tor in the first term is zero; when the argument of the sine is
zero or an integral multiple of π, whenever

EQ-TARGET;temp:intralink-;e045;63;402Δpx ¼ p sin σ ¼ ΔpM ¼ jh
L
; (45)

where j is an integer. Using an operator formalism more
familiar to quantum mechanics, Van Vliet20 recently updated
the description of multiple-slit diffraction in terms of quan-
tized momentum transfer in increments related to the slits’
separation, L: Δp ¼ jh∕L, in alignment with classical optics.

Harris et al.26 provide useful experimental results for dou-
ble-slit optical diffraction in the far-field, where the slit sep-
aration (12.68 mm) is large compared to the slits’ width
(0.65 mm). The experimental intensity pattern is consistent
with the theoretical predictions with deflection increments at
Δp ¼ jh∕L. The pattern also exhibited the contribution of
each of the narrow slits to the dispersion. We have seen
from our analysis [Fig. 9(c)] that in the far-field, the most
probable contribution to the scattering from a single slit cor-
responds to ΔpS ¼ �h∕2d, with these two dispersion pro-
files summing to a single peak distribution at the distant
screen and additional peaks at ΔpS ¼ ð2nþ 1Þh∕2d. With
the existence of a second or multiple slits in the experiment,
the dispersion with momentum exchange increments,
Δp ¼ jh∕L, can be added to the single-slit profiles if an
additional functional dependence is imposed as with
Eq. (44). Equation (44) was suitable for the Fraunhofer
region, but we would like to consider deflections in the
nearer field, Fresnel region by integrating the phase shift
of π∕2 into our analysis. In this case, the most probable
momentum deflections for the double slit would correspond
to a form

EQ-TARGET;temp:intralink-;e046;326;752Δp ¼ ð2nþ 1Þh
2d

� ð2jþ 1Þh
2L

: (46)

Similar to our analysis of a single slit in Fig. 2, we note
that the most probable values for momentum exchange due
to the slit separations also resemble the solutions to a one-
dimensional square well, where the width of the well is 2L
and the origin for the x dimension is centered at one slit

EQ-TARGET;temp:intralink-;e047;326;664ψM ¼ A cos
2πx
λe

¼ A cos
2πxð2jþ 1Þ

2L
: (47)

If, as with our single-slit analysis, the probability for momen-
tum exchange at x is proportional to the square of this func-
tion, there is highest probability for momentum exchange
with photons at each slit.

7.1 Talbot Effect

A comprehensive review of the Talbot effect and its many
applications in modern optics has been presented by Wen
et al.45 The Talbot effect is associated with Fresnel diffraction
of coherent, monochromatic light by an extended, multiple-
slit grating, periodic in the transverse direction. The effect is
observed in the formation of a perfect image of the grating
(Talbot image or Fourier image) at a distance, 2ZT ¼ 2L2∕λ
and a contrast reversed image (also a Talbot image) at
ZT ¼ L2∕λ, where ZT is referred to as the Talbot distance.
These Talbot images have also been termed “Fresnel images”
or “self images.”

An optical experiment to observe the Talbot effect is
sketched in Fig. 10. We may use the Fresnel–Kirchoff dif-
fraction formula, Eq. (8), to derive a solution

EQ-TARGET;temp:intralink-;e048;326;400UðXÞ ∝
Z

∞

−∞
UðxÞ exp

�
iπ
λZ

ðX − xÞ2
�
dx

¼
Z

∞

−∞
UðxÞ exp

�
iπλZ

�
Δpx

h

�
2
�
dx: (48)

Following Goodman’s Fourier analysis,19 the grating,
with slits perpendicular to x, can be modeled as a transmit-
ting structure with amplitude transmittance

EQ-TARGET;temp:intralink-;e049;326;293UðxÞ ¼ 1

2

�
1þ q cos

�
2πx
L

��
: (49)

I would note that if q is 1 [Eq. (49)], this transmission
function has the same form as the square of our momentum
eigenfunctions in Eq. (47)—these are Fourier frequency
components of our grating geometry. This points to the
clear connection between MET and the Fourier analysis to
describe multiple-slit diffraction. Using a transfer function
approach to develop a solution, the intensity distribution was
found to be as follows

EQ-TARGET;temp:intralink-;e050;326;160IðXÞ∝1þ2q cos

�
πλZ
L2

�
cos

�
2πx
L

�
þq2 cos2

�
2πx
L

�
: (50)

We observe when

EQ-TARGET;temp:intralink-;e051;326;104

πλZ
L2

¼ 2πn or Z ¼ 2nL2

λ
¼ 2nZT; (51)

Fig. 10 The optical Talbot effect. Diagram of the dispersion of mono-
chromatic light through an extended grating on left with narrow, par-
allel slits at increments of L. The six most probable momentum
exchanges at each slit are shown as rays connecting to the primary
Talbot image on the right. This illustrates the “Talbot carpet” with dou-
ble-frequency and triple-frequency images.
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there is a perfect image of the grating reformed at the screen
(see Fig. 10). At odd multiples ZT , we see a contrast reversal
with an intense spot whenever x ¼ ð2jþ 1ÞL∕2. This is the
secondary Talbot image. In Fig. 10, light rays representing
the six most probable dispersions from each slit are drawn
from each grating slit to these spots at ZT . Dispersions
between these rays must have low probability to retain the
dark areas between these spots. We can calculate the higher
probability momentum exchanges associated with the deflec-
tions of these rays. The effective wavelength, λe, for these
transfers is

EQ-TARGET;temp:intralink-;e052;63;367λe ≅
λZ
Δx

¼ 2λZT

ð2jþ 1ÞL ¼ 2L
ð2jþ 1Þ ;

ΔpM ¼ h
λe

≅
ð2jþ 1Þh

2L
;

(52)

consistent with Eq. (46) and confirming the Talbot effect is
due to quantized momentum exchange at the grating.

8 Diffraction by an Opaque Circular Disc:
Poisson’s Spot

We can learn more about the probabilities for momentum
exchange by examining a very similar experiment, the dif-
fraction by an opaque circular disc, which can give our
experimental predictions for negative g. A typical experi-
ment can be configured as our Fig. 4, replacing our long
straight edge with a circular disc. This configuration is
assumed in Fig. 11. This experiment has an interesting his-
tory. In 1818, Poisson used Fresnel’s wave theory to predict a
spot in the middle of a circular shadow, thereby suggesting
that Fresnel’s theory was absurd. This spot was later
observed by Arago giving strong endorsement to Fresnel’s
wave theory of light in preference over Newton’s corpuscular
theory.46 This observation has subsequently been referred to
as Poisson’s spot or the spot of Arago. It is useful to dem-
onstrate that this spot can be explained in terms of photon
dispersion through momentum exchange.

Lucke47 has noted the problems of accurately predicting
the intensity profile within the shadow of an opaque disc
using the familiar wave theory diffraction integrals. He
has demonstrated that the Rayleigh–Sommerfeld formulas
can lead to accurate descriptions near the central axis, though
the approximations become less accurate toward the edge.
Lucke has also shown that Fourier propagation, an alterna-
tive approach to analyzing a diffraction problem, will repro-
duce the more accurate Rayleigh–Sommerfeld equation
predictions. As previously noted, the Fourier components
to the intensity can always be related to light path rotation
and momentum exchange at the aperture.

8.1 Fresnel Zone Analysis

Opaque disc diffraction is readily described through Fresnel
zone analysis. Our experimental configuration can be related
to Table 1, where we define the Fresnel half zones, column
B, from the edge. In Fig. 11, we count Fresnel half zones
from the center of our disc. Depicted is an experimental
configuration corresponding to a disc radius, a 0 ¼ R 0

3, cor-
responding to three Fresnel zones. The different zone lengths
and corresponding effective wavelengths are the same as in
Table 1. Noting the cylindrical symmetry of this configura-
tion, the intensity pattern as a function of the radius at the
screen will resemble the pattern in Fig. 3 for X 0 > a 0, as
we can align the x-axis with the radial axis of cylindrical
coordinates for ϕ ¼ 0. The radial symmetry of this experi-
ment will cause the negative deflections of light near the
edge of the disc to be concentrated at the center axis of
the shadow forming a Poisson’s spot. The spot will vary
in diameter according to the number of Fresnel half zones
associated with the radius of the disc. We observed an
area element at the aperture, ρdρ dϕ, with a light intensity,
ΦðρÞ, with a functional radial displacement, fðρÞ, has a
concentrating factor ρ∕R 0 (R 0 is the radial coordinate at
the screen) for an area element at the screen. The deflected
light intensity at R 0 being proportional to Φ 0ðR 0Þ ¼
fðρÞΦðρÞρ∕R 0. This also resembles the concentrating effect

Fig. 11 Diffraction by an opaque circular disc with similar experimental conditions to Fig. 4. Different
deflected photon paths are shown. Poisson’s spot or spot of Arago is observed at the center of the
shadow. Depicted is an experimental configuration, where the opaque disc has a radius of three
Fresnel half zones (shown). Dimensions shown are in Fresnel units.
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we would see for a wide electron beam deflected by a pos-
itively charged circular disc.

As in Table 1, the effective wavelength can be calculated
for momentum exchange with a photon path that deflects a
photon of the length of the Fresnel zone radius. Depicted in
Fig. 11 is the dispersion of photon paths from a distance of
R 0 − R 0

3 from the edge of the disc. The solid paths are asso-
ciated with a deflection of jgj ¼ 3∕4 and λ 0

e ¼
ffiffiffi
6

p
∕3. Interior

to this is the dashed path for a deflection of jgj ¼ 1∕4 and
λ 0
e ¼

ffiffiffi
2

p
. The deflections for g ¼ −3∕4 converge near the

central axis. We note from Fig. 8 that the same effective
wavelength for deflection, λ 0

e ¼
ffiffiffi
6

p
∕3, is associated with

deflections from just one third of the distance to the edge,
ðR 0 − R 0

3∕3Þ, which is a different g ¼ −1∕4 deflection
shown as the hashed paths closest to the edge. The net effect
of a disc with a radius of three Fresnel zones is a widened
spot in the center of the shadow due to the convergence of
these multiple photon paths.

We note from this analysis that the relation between the
effective wavelength for momentum exchange, column C,
Table 1, and the deflection of a half zone, column B,
when we set this equal to the radius, a 0

EQ-TARGET;temp:intralink-;e053;63;510λ 0
e ¼

�
2

x 0
m

�1
2 ¼ x 0

m

m
¼ a 0

m
; λe ¼

a
m
: (53)

From the Fresnel zone analysis that describes the shadow
profile, the odd values of m define the maxima in the inten-
sity profile and when the center spot is observed. There are
higher probabilities for momentum exchange when the effec-
tive wavelength is an odd fraction of the disc radius defined
by the Fresnel number

EQ-TARGET;temp:intralink-;e054;63;399λe ¼
a

ð2jþ 1Þ and Zj ≅
a2

ð2jþ 1Þλ : (54)

We also note from the analysis of double-slit diffraction
that there may be additional higher probability momentum
transfer states within the disc that focus to the axis when

EQ-TARGET;temp:intralink-;e055;63;320λe ¼
4a

ð2jþ 1Þ and Zj ≅
4a2

ð2jþ 1Þλ : (55)

8.2 General Formalism

Sections 6–8 provided phenomenological descriptions of dif-
fraction without invoking a wave character to the scattered
photons. Here, I present the principles developed for MET in
a more generalized mathematical formalism drawing upon
our earlier reference to elastic Thomson scattering to inte-
grate the role of polarization. In COW theory, the depend-
ence on polarization is a degree of freedom for only the
incident wave, whereas in MET, the polarization of the
momentum exchange state and the incident light can vary
independently. We have seen that COW equations, e.g.,
[Eq. (5)], can be related to momentum exchange probabilities
dependent upon the geometries at an aperture and that this
relation is implied through the properties of the Fourier trans-
form. We replaced the concept of propagating Huygens
wavelets with the deflection of photon paths connected to
specific selection rules for exchange with specific momen-
tum states of the aperture. MET moves us from defining

the probability of photon diffraction at a distant detection point
to defining the probability where the photon is scattered. The
critical differences from historical approaches are the assump-
tions of narrowly defined paths for the scattered photons and
specific locations determining the momentum exchange.

In an earlier paper, I examined the question whether the
larger values for g were a result of higher order momentum
exchanges or multiple exchanges.5 Multiple exchanges
would align with the suggestions by Storey et al.23 and
Scully et al.48 that the momentum kicks derive from multiple
momentum exchanges with the scattered particle. Though
viable, at issue with that interpretation is the necessary inter-
action time for multiple exchanges with a passing photon.
This issue might be addressed by pulsed laser experiments.

Here, I assume the possibility of higher order momentum
transfer. We have noted from Eq. (41) and Fig. 8, the geo-
metric selection rules for momentum exchange that defines
these probabilities. There are momentum exchange states at
the aperture that selectively interact with the paths of passing
photons resulting in quantized momentum exchange. We
saw the effective wavelengths or wavenumbers for momen-
tum exchange corresponded to those of photons with micro-
wave energies. We know from Planck’s black body radiation
equation that an absorbing material body will be in thermal
equilibrium, absorbing and emitting microwave frequencies.
The absorber will have a broad spectrum of internal frequen-
cies. Brillouin scattering derives from the observation that
phonons of a lattice will scatter light. With the Kapitsa–Dirac
effect, we observe the diffraction of particle waves by a stand-
ing electromagnetic wave.49 Thus, our assumption of har-
monic momentum states at an aperture involved in particle
scattering is consistent with other observations in electrody-
namics and allows for connecting mathematical descriptions.

We have noted the probability for a specific momentum
transfer, PrðkjÞ, would contain several components. One
would be the frequency or probability density of states at
the aperture, AjðkjÞ, that could exchange momentum with
a resulting vector for kj, Δpj

��! ¼ ℏkj. These momentum
exchange states are geometric and material functions in
the x; y plane of the aperture. A second is the probability
of scattering at x; y at the aperture due to the interaction
of the passing photon with a specific geometric function
that exchanges momentum of kj, BðkjÞ ðx; y; 0Þ. Thus,
EQ-TARGET;temp:intralink-;e056;326;280 PrðkjÞ ∝ AjðkjÞBðkjÞðx; y; 0Þ: (56)

The light scattered from a volume element at ðx; y; 0Þ will
be proportional to the intensity of incident light, Φν, times
this probability of exchange, summed over the probability
density of the different kj values. In our straight-edge experi-
ment, we were able to develop the profile of Pr½gðx → XÞ� for
positive g by curve fitting. We saw in Eqs. (40) and (47) the
probability for momentum exchange at a specific point was
proportional to the square of the harmonic solutions to the
Schrödinger equation for particular momentum values,
φðkjÞ at specific distances from the edge

EQ-TARGET;temp:intralink-;e057;326;138AjφjðkjÞ ¼ Aj sin kj · x;BðkjÞ ∝ sin2 kj · x ¼ φ�
jφj:

(57)

I will continue to reference our straight-edge experimental
configuration to provide clarity for our general formalism.
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We have assumed that the scattering for positive and negative
values of kj has equal probability, suggesting that the coef-
ficients are equal. The sine function solutions to Eq. (57)
have two degrees of freedom, positive and negative values,
that we connect with the sign of the momentum exchange
vector, kj.

We can leverage the mathematical analogy to cylindrical
harmonic vectors in complex space that is used in quantum
mechanics to expand the degrees of freedom in our descrip-
tion of the momentum exchange states and scattered pho-
tons. Such harmonic functions can be used to represent
momentum state functions

EQ-TARGET;temp:intralink-;e058;63;620Ciψ iðpiÞ ¼ −iCi expðipi · r∕ℏÞ; (58)

where

EQ-TARGET;temp:intralink-;e059;63;578piψ i ¼ ℏkiψ i ¼ −iℏ
d
dr

ψ i: (59)

(This formalism is referenced with caution noting that uncer-
tainty and reduced determinism is codified in the formalism
with the use of complex numbers. Hestenes50 suggests the
internal spin rotation of quantum particles is real, as indi-
cated by the Dirac equation, concluding the formalism
should be reinterpreted to reflect real spatial variables.) As
our scattering is elastic, involving absorption and emission
of energy at our aperture, we might diagram our momentum
exchange by

EQ-TARGET;temp:intralink-;e060;63;443ψ−
a ðpÞ þ ψ−

ν → ψþ
a ð−pÞ þ ψþ

ν ðþ2pÞ; (60)

where ψa and ψν represent states of the aperture and incident
photon, respectively, and the positive and negative super-
scripts designate before and after momentum exchange.
With our momentum exchange, ℏkj ¼ 2p.

We have noted the similarity of the geometric symmetry
of the BDWs43 to the harmonic solutions of the momentum
wavefunctions of an aperture—the momentum vectors of
both are perpendicular to the aperture boundary. For simpli-
fication, we assume that these momentum functions resulting
in exchange are always perpendicular to the boundary and
the phase is the projection on the difference vector, r − rb,
between the boundary, rb, and the position, r, in (or near) the
plane of the aperture. The generalized momentum states that
might exchange momentum are of the form

EQ-TARGET;temp:intralink-;e061;63;258Caψa ¼ −iCa exp i
kj
2
· ðr − rbÞ: (61)

The probability density at r is as follows

EQ-TARGET;temp:intralink-;e062;63;205 PrðkaÞ ∝ Ca

�
1

2
−
1

4
ðψ4

a þ ψ�4
a Þ

�
: (62)

I would again note that Wiseman et al.24,25 describe an
alternative general formalism for diffraction referencing
the Wigner function and Bohmian mechanics. This formal-
ism adopts a momentum representation for particle wave
function

EQ-TARGET;temp:intralink-;e063;326;752ψ̃ðp; tÞ ¼ 1ffiffiffiffiffiffiffiffi
2πℏ

p
Z

drψðr; tÞ exp ip · r
ℏ

: (63)

The perturbation of the wave function under momentum
exchange is represented by

EQ-TARGET;temp:intralink-;e064;326;696ψ̃ ξðp; 0þÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πℏNξ

p
Z

dp 0ψ̃0ðp − p 0; 0−ÞÕξðp 0Þ; (64)

where the initial momentum wave function of incident light,
ψ̃0ðp; 0−Þ, is convolved with Õξðp 0Þ to give the final wave
function, ~ψξðp; 0þÞ. ~Oξðp 0Þ is the amplitude to transfer
momentum, p 0, giving the momentum vector result indexed
by ξ. The momentum transfer function in this formalism
can be correlated to the momentum exchange functions of
the aperture or lattice. We might represent this connection
through

EQ-TARGET;temp:intralink-;e065;326;562OξðxÞ ¼
ffiffiffiffi
N

p
ξ expðikj · xÞ; (65)

where kj connects to our momentum exchange values, such as
in Eqs. (14), (41), and (46).

To this point, we have neglected the effects of polarization
of the scattered photon relative to the momentum exchange
functions. These terms can be integrated into the cross-sec-
tion here. We can connect a polarization vector, Ea, to our
momentum exchange function that is perpendicular to the
vector kξ. The distribution of polarizations may correspond
to the distributions in our harmonic phase rotations. This
may allow us to analyze the possible contribution of state
polarization to the diffraction pattern, examining the func-
tional dependence of this polarization related to that of
the scattered photon, uðEν · EjÞ. Such interactions for edge
diffraction have been noted.51 (This may be related to the
requirement that the exchange function is perpendicular to
the aperture boundary.) Equation (64) is modified to

EQ-TARGET;temp:intralink-;e066;326;352ψ̃ ξðp;0þÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πℏNξ

p
Z

dp 0ψ̃0ðp−p 0;0−ÞuðEν ·EjÞÕξðp 0Þ:

(66)

9 Experimental Implications and Predictions
MET provides a simplification to the analysis of diffraction
for a broadened set of experimental configurations, where
the variable paths and intensity of the diffracted light must
be taken into account. We find such conditions frequently
with the diffraction of narrow laser beams. The approach
may also simplify analysis of polygon apertures such as tri-
angles. We can illustrate with scattering by a straight edge.
Figure 7 predicts the distribution of light at the aperture point
distance, x 0, for a narrow width of light, dx 0. This condition
of light scattered at such a point may be approximated by a
very narrow, collimated laser beam. For such a laser beam,
the theoretical predictions using Eqs. (9) and (21) based upon
the Huygens–Fresnel principle, might be replaced using the
experimentally generated probability for momentum exchange
Pr½gðx 0 → X 0Þ� in Eq. (40), associated with the specific val-
ues of g that scatter photons to X 0
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EQ-TARGET;temp:intralink-;e067;63;483

IðX; 0; ZÞ ∝
Z
x
Φðx; y; 0Þj dx

dX
j Pr½gðx → XÞ�dx

∝
Z
x
Φðx; y; 0Þj dx

dX
jðsin2 2πgÞ exp

�
−jgj
a

�
dx; (67)

where Φðx; y; 0Þ is the intensity at the aperture. We might set
up an experiment that replicates the geometry of the appa-
ratus in Fig. 4. Under uniform illumination of this experi-
mental configuration, the third peak in the diffraction pattern
would be found near X1 ¼ 3u, (X 0

1 ¼ 3). Thus, with this con-
figuration and location of our detector at Z, we can set a laser
beam centered at x 0 ¼ 1 above our thin diffracting edge.
From Eq. (27), we obtain

EQ-TARGET;temp:intralink-;e068;63;332X 0 ¼ x 0 þ 2g
x 0 ; ΔX 0 ¼ 2g

x 0 : (68)

Thus, with a very narrow laser beam of photons at x 0 ¼ 1,
the scattering probability or intensity profile will resemble
that for g in Fig. 7 except for a scaling factor of 2. The
broader the beam or the greater the width of our photon
detector field, the broader and more poorly resolved our
peaks will be.

Figure 12 provides a predicted plot for such an experi-
mental diffraction pattern that might be observed for a nar-
row Gaussian laser beam centered at ðx 0

b; y
0
bÞ with an

intensity cross-section defined by

EQ-TARGET;temp:intralink-;e069;63;181Φðx 0; y 0Þ ¼ Ab exp
−ðx 0 − x 0

bÞ2
a 02 exp

−ðy 0 − y 0
bÞ2

a 02 ; (69)

where a 0, the width at 1∕e, is set to equal 0.2. We note, if we
enter this beam distribution in Eq. (8) replacing the uniform
illumination, the equation remains separable into x and y
components as in Eq. (12). The integration of the y-compo-
nent for our straight-edge experiment generates a Gaussian
distribution centered at y 0

b and indicates our y distribution
should be independent from our x distribution. Thus, the

profile of Fig. 12 predicts x dependence of the diffraction
profile for a series of spots centered at Y 0 ¼ y 0

b, the center
of the laser beam, which can be set at y 0

b ¼ 0.

10 Discussion

10.1 Photon

MET relies upon a clear distinction between photon diffrac-
tion and optical interference. COW and BDW have retained
broad acceptance because the wave formalism provides
accurate analysis for both. A more complete picture for
optics utilizing quantized and localized photons would
have to explain interference and other observations that
are based on phase and polarization. The success of MET
in describing diffraction scattering brings further attention
to the question whether a model for the photon can be devel-
oped with the necessary properties.

Several authors have suggested that the photon is geomet-
rically extended in space.52,53 In a recent paper, I also pointed
out that the relativistic transformation of photon wavelength
giving the relativistic Doppler effect provides further evi-
dence that the wavelength is associated with a real, quantized
geometric property of the photon.54 In other words, the real
geometric length of a photon is λ ¼ h∕p. In another paper,
I speculated about a plausible photon model based upon four
connected epsilon loops with similarity to the loops we find
in string theory.55 The rationale for that model is beyond the
scope and intent of this paper. However, I reference it to sug-
gest the feasibility of a model with more of the attributes
required. This is illustrated in Fig. 13, where the four epsilon
loops provide polarization, phase, and a length of λ to the
photon. Two negative labeled epsilons can form an electron;
two positive epsilons a positron; and a positive–negative pair
a neutrino. Each epsilon contributes h∕4λ or ℏ∕4r to the
momentum of the photon.

10.2 Diffraction Force

QED has been a very successful theory to explain the inter-
actions of electromagnetic particles.29 In QED, we would
describe a momentum change associated with the electro-
magnetic force by the transfer of a virtual photon over zero
proper time and might depict this in a Feynman diagram.
Photon diffraction may provide us with a very useful exper-
imental model for the study of quantized momentum transfer
and the model of virtual particles suggested by QED because
photon scattering is determined by a limited set of particle
momentum exchanges. Thus, diffraction experiments may

Fig. 12 Predicted plot for an experimental straight-edge diffraction
pattern for a narrow, collimated Gaussian laser beam based on the
probabilities for g from Fig. 7 and Eqs. (39) and (41). The laser is cen-
tered at ðx 0; y 0Þ ¼ ð1;0Þ, with the origin at the edge and a 0 ¼ 0.2 in
Fresnel units. (Beam divergence is neglected though substantial.)
The key prediction is the peak separations. The broader the laser,
the less resolved these peaks will be. An obliquity factor has been
estimated to diminish the intensity from the center of the beam,
thus the relative heights of the different peaks are poorly estimated.

Fig. 13 Photon particle model. Conceptualization of a photon consist-
ing of four connected epsilon loops that give rise to the phase, polari-
zation, and extended length and width of the photon.55
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allow us to probe this phenomenon more deeply. For optical
diffraction, our scattering is elastic as there is no apparent
change in the wavelength and energy of the scattered pho-
tons. Thus, momentum transfer is treated as a particle scat-
tering problem. We have described optical diffraction as
involving the reflection (absorption and emission) of real
or virtual photons from an edge, aperture, or lattice with
additional z-momentum exchange taking place to ensure
conservation of momentum and energy. This exchange
might also be depicted by the exchange of two particles
with momentum transfer in opposite directions.

If we can attribute a real length to a photon as in Fig. 13,
then the picture of a virtual photon as a dimensionless point
that arises in the vacuum of space and transitions from par-
ticle i to particle j may be misleading. If a virtual photon
would have similar geometric characteristics as a real pho-
ton, then a virtual or real photon could actually bridge
the gap between two interacting particles. Such a photon
could form the channel between two particles that facilitates
the exchange or transfer of momentum. Momentum is
exchanged across this photon channel with the possibility
that his channel remains intact. This virtual photon channel
may provide the structure and geometry to the space between
interacting particles manifesting the properties of a geo-
metric field or vector potential. We note that the incre-
ments of momentum transfer defined in Eq. (41), Δp ¼
ð2jþ 1Þh∕4x, suggests that the material components of
exchange may have a different relation of momentum to
length than defined for a real photon.

Analogous to the electromagnetic field, the diffraction
force may have an inverse squared dependence on distance.
If neutral particles were diffracted by a dipole interaction
associated with an electromagnetic field, the magnitude of
the force would fall off with higher orders of power of
the distance. We note that experimental observations of dif-
fraction of starlight by the limb of the moon suggest that the
formulation of the diffraction force is consistent to larger dis-
tances and, therefore, does not fall off at higher powers of
distance. To provide a benchmark for this, we might refer
to Fig. 4 and calculate the distances from the moon that are
scattering solutions to the diffraction pattern. In a Fresnel
diffraction pattern resulting from lunar occultation of star-
light of 500-nm wavelength, the third maxima are observed
at about 30 m from the geometric shadow.56–58 From Eq. (28),
noting the distance to the moon is 384 × 106 m, we can cal-
culate the values for x that converge on this position of 30 m.
The two approximate solutions are 15.2 and 36.6 m for
g ¼ �1.2. These are the distances from the limb of the
moon that deflect starlight to 30m from the geometric shadow.
This calculation dispels a common notion that the diffraction
force is very short range (on the order of the wavelength) or
must drop off extremely rapidly. Lunar occultation reinforces
the premise that diffraction is determined at the location of
scattering, not at distant point of detection. However, the long
range of this force gives us a very broad definition for the rel-
ative location of momentum exchange. Lunar occultation also
reinforces the very large magnitude of this diffraction force
and the associated momentum exchanges. This observation
begs the question of how the diffraction of starlight is man-
ifested with the multiple microwave frequency exchanges that
must occur in the 2 s it passes over the surface of the sun
before reaching us on earth.

This diffraction force extends across a diffracting aperture
and well beyond a diffracting edge, where the measurement
of an electric field is negligible. Nevertheless, we see a sig-
nificant influence on the diffracted particle. This suggests
similarity to the Aharonov–Bohm effect, which predicts that
even where the electromagnetic fields vanish, the electro-
magnetic potentials in the quantum domain can have signifi-
cant influence.59 This effect has been confirmed in electron
diffraction experiments by double slits that are perturbed by
a solenoid.60 Could this diffraction force and the A-B effect
be variations on the same quantum phenomenon? As with
the A-B effect on diffracted electrons, could we observe the
A-B effect on photons by modifying the electromagnetic
potentials in the vicinity of our diffracting apertures?

10.3 Physics of a Connected Universe

Early observations of the wave-like properties of light led
scientists to hypothesize that “luminiferous ether” permeated
the universe as a medium for the propagation of light waves.
The Michelson–Morley experiment and Einstein’s special
relativity suggested that an ether medium for the propagation
of light did not exist. QED assumes the space between par-
ticles is not a vacuum, but rather consists of a quantum field
teeming with “virtual” particles that constitute the medium of
exchange for quantum forces. QED eliminates the issue of
a preferred frame for quantum fields by the assumption that
virtual particles are exchanged in proper time and exchange
begins and ends at a real, material particle. Laughlin states,
“The modern concept of the vacuum of space, confirmed
every day by experiment, is a relativistic ether. But we do
not call it this because it is taboo.”61 Dirac saw that a rela-
tivistic ether was needed to explain electrodynamics.62 There
is a renewed discussion of the role of a permeating material
connecting our universe, but physicists are necessarily dis-
tinguishing this from the properties of a classical ether.63–65

Wilczek64 has preferred to refer to this as “the Grid.”
Roychoudhuri65 has used the term a “complex tension field.”
Our revised description of diffraction phenomena suggests
the quantum field or vector potential can replace the concept
of the luminiferous ether as the origin for our observed wave-
like properties. The analysis suggests that a virtual particle
exchange channel could exist, establishing the field between
interacting particles and potentially defining the structure of
this space. This bears great similarity to the interconnected-
ness of particles resulting in the “implicate order,” suggested
by Bohm in his derivation of quantum theory.66,67 We have
already noted a relation of the defined path formalism of
Bohmian mechanics to the concepts presented in MET.

11 Summary
Diffraction can be described by a statistical ensemble of par-
ticle paths determined by quantized momentum transfer
related to a Fourier analysis of an aperture, where the scat-
tering probabilities are defined at the location of scattering.
Scattering probabilities are determined by at least two impor-
tant factors: (1) the momentum transfer states of the scatter-
ing lattice and (2) the distance over which momentum is
transferred between the lattice and scattered particle. Unique
to MET is this dependence on the specific path of the
scattered particle and location of momentum transfer. A
detailed analysis of optical wave theory demonstrates that
the underlying formalism can be connected to this quantized
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momentum exchange. This has been demonstrated for a
number of diffraction scenarios. Diffraction, which is treated
as a particle scattering phenomenon, must be contrasted with
interference, which is associated with detection when a
multiplicity of photons with a correlation of their phases
can mutually influence their interactions. Some optical phe-
nomena can involve both diffraction and interference.

Diffraction can be described in terms of particle exchange
using nomenclature familiar to QED. The transfer of
momentum defines the diffraction force, which appears to
have a universal construct linking fundamental particles,
as it applies to neutral and charged particles. The manifes-
tation of this dispersive force at the location of scattering
provides an alternative to the Huygens–Fresnel principle,
eliminating a critical defect in COW and its picture of
Huygens wavelets by preserving conservation of momen-
tum. This force provides a basis for quantum uncertainty
that does not rely on a wave-character attributed to the scat-
tered particle. MET assumes an integration of electromag-
netic interactions at points along the photon path to derive
the transfer probability that may simplify the analysis of a
broadened set of aperture configurations and experimental
conditions. Our analysis suggests that the associated real
or virtual photons might form a channel that actually bridges
the space over which the momentum is transferred. An
examination of lunar occultation of starlight indicates that
this diffraction force is of longer range than is generally
thought for diffraction.
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