<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:Helvetica;
        panose-1:2 11 6 4 2 2 2 2 2 4;}
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:"Times New Roman",serif;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
p.msonormal0, li.msonormal0, div.msonormal0
        {mso-style-name:msonormal;
        mso-margin-top-alt:auto;
        margin-right:0in;
        mso-margin-bottom-alt:auto;
        margin-left:0in;
        font-size:12.0pt;
        font-family:"Times New Roman",serif;}
span.apple-converted-space
        {mso-style-name:apple-converted-space;}
span.EmailStyle19
        {mso-style-type:personal-reply;
        font-family:"Calibri",sans-serif;
        color:#1F497D;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="blue" vlink="purple">
<div class="WordSection1">
<p class="MsoNormal"><span style="font-size:14.0pt">Good feedback, Richard G.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:14.0pt">Chandra.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"><o:p> </o:p></span></p>
<div>
<div style="border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0in 0in 0in">
<p class="MsoNormal"><b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif">From:</span></b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"> General [mailto:general-bounces+chandra.roychoudhuri=uconn.edu@lists.natureoflightandparticles.org]
<b>On Behalf Of </b>richgauthier@gmail.com<br>
<b>Sent:</b> Thursday, February 22, 2018 12:05 PM<br>
<b>To:</b> Nature of Light and Particles - General Discussion <general@lists.natureoflightandparticles.org><br>
<b>Cc:</b> Oreste Caroppo <orestecaroppo@yahoo.it><br>
<b>Subject:</b> Re: [General] Superluminal double-helix photon model and its inertial mass<o:p></o:p></span></p>
</div>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Hello Chandra and all,<o:p></o:p></p>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<p class="MsoNormal">   Thank you for your comments. Just to remind others: "<span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white">The </span><b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222">Huygens–Fresnel
 principle</span></b><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white"> (named after </span><a href="https://en.wikipedia.org/wiki/Netherlands" title="Netherlands"><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#0B0080;text-decoration:none">Dutch</span></a><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white"> </span><a href="https://en.wikipedia.org/wiki/Physicist" title="Physicist"><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#0B0080;text-decoration:none">physicist</span></a><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white"> </span><a href="https://en.wikipedia.org/wiki/Christiaan_Huygens" title="Christiaan Huygens"><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#0B0080;text-decoration:none">Christiaan
 Huygens</span></a><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white"> and </span><a href="https://en.wikipedia.org/wiki/France" title="France"><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#0B0080;text-decoration:none">French</span></a><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white"> physicist </span><a href="https://en.wikipedia.org/wiki/Augustin-Jean_Fresnel" title="Augustin-Jean Fresnel"><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#0B0080;text-decoration:none">Augustin-Jean
 Fresnel</span></a><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white">) is a method of analysis applied to problems of </span><a href="https://en.wikipedia.org/wiki/Wave_propagation" title="Wave propagation"><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#0B0080;text-decoration:none">wave
 propagation</span></a><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white"> both in the </span><a href="https://en.wikipedia.org/wiki/Far-field_diffraction_pattern" title="Far-field diffraction pattern"><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#0B0080;text-decoration:none">far-field
 limit</span></a><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white"> and in near-field </span><a href="https://en.wikipedia.org/wiki/Diffraction" title="Diffraction"><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#0B0080;text-decoration:none">diffraction</span></a><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white">.
 It states that every point on a </span><a href="https://en.wikipedia.org/wiki/Wavefront" title="Wavefront"><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#0B0080;text-decoration:none">wavefront</span></a><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white"> is
 itself the source of spherical </span><a href="https://en.wikipedia.org/wiki/Wavelet" title="Wavelet"><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#0B0080;text-decoration:none">wavelets</span></a><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222;background:white">.” </span><span style="font-size:10.5pt;font-family:"Arial",sans-serif;color:#222222"><a href="https://en.wikipedia.org/wiki/Huygens–Fresnel_principle">https://en.wikipedia.org/wiki/Huygens–Fresnel_principle</a></span> .<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">    This principle has been very reliable for predicting diffraction and scattering patterns both for light and for particles like electrons. As I recall, Max Born (who proposed the probability interpretation of the quantum wave function)
 showed that the probability of scattering of electrons from an atom could be modeled by combining an incoming plane wave (corresponding to a beam of incoming electrons) with a spherical wave coming from the scattering object. So the Huygens-Fresnel principle
 applies to electron scattering as well as to light diffraction. All this despite the particle-like properties of both photons and electrons, and despite the fact that the double-slit interference/probability pattern is found even when electrons or photons
 can pass through the double-slit apparatus  only one at a time, where there is no possibility of interaction/interference between two particles in the apparatus at the same time.<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">    The superluminal double-helix photon model doesn’t replace electromagnetic waves and their diffraction properties with pure particles. Rotating oppositely-charged dipoles composed of superluminal energy quanta would generate electromagnetic
 waves which could predict statistically where the dipole photon would be found in the future. And since the generated electromagnetic waves from the dipole photon model would be at the same angular frequency omega as that of the photon model itself, only one
 photon model (with energy E=hbar omega) could be produced as a result of the electromagnetic probability waves radiated from a particular photon model.<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">    So I am confident that the Huygens-Fresnel principle, which has strong experimental support, will not be in contradiction with a workable photon model. I am hopeful that the superluminal charged-dipole double helix photon model will
 be such a model. Time will tell.<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">         Richard<o:p></o:p></p>
</div>
<div>
<div>
<p class="MsoNormal"><br>
<br>
<o:p></o:p></p>
<blockquote style="margin-top:5.0pt;margin-bottom:5.0pt">
<div>
<p class="MsoNormal">On Feb 21, 2018, at 1:39 PM, Roychoudhuri, Chandra <<a href="mailto:chandra.roychoudhuri@uconn.edu">chandra.roychoudhuri@uconn.edu</a>> wrote:<o:p></o:p></p>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<div>
<p class="MsoNormal"><span style="font-size:14.0pt">Richard:<span class="apple-converted-space"> </span></span><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><span style="font-size:14.0pt">We all register, perceive and model the world differently. This is very much like the proverbial bunch of blind men modeling the Cosmic Elephant. My view is as follows, which I have written many many times
 before on this forum. I have not seen anything yet that would help me to change my mind. However, I am open to change simply because we still do not know the ultimate nature of the EM waves.</span><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><span style="font-size:14.0pt">    <span class="apple-converted-space"> </span></span><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><span style="font-size:14.0pt">     As a lifelong experimentalist, I view EM waves as diffractively spreading EM waves, not as “indivisible light quanta”. The entire field of optical science and engineering could not be continuing to flourish
 for several hundred years, without any paradigm shift, without the guidance of the Huygens-Fresnel diffraction integral. QM has not provided us with any rational mathematical equation that can replace this HF integral. Some people have attempted to co-opt
 this HF integral into the quantum domain by replacing (2”pi”/”Lambda”) by “k-vector” and calling it momentum vector and then assigned quantum properties. The problem with “photon” as indivisible energy quanta is that EM waves can share its energy with various
 interactants in multiple steps while sharing any amount of energy. Further, the quadratic energy transfer from the EM waves always precedes amplitude-amplitude stimulation. However, quantized atoms and molecules, of course, can absorb and emit “h‘nu’” quantity
 of energy at any one transition. The emitted packet evolves diffractively. During absorption, the atomic “quantum cup” is filled up out of classical EM waves.</span><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><span style="font-size:14.0pt">     In this regard, I am a follower of Planck, the father of “light quanta”.</span><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><span style="font-size:14.0pt"> </span><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><span style="font-size:14.0pt">Chandra.</span><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:#1F497D"> </span><o:p></o:p></p>
</div>
<div>
<div style="border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0in 0in 0in">
<div>
<p class="MsoNormal"><b><span style="font-size:11.0pt;font-family:"Calibri",sans-serif">From:</span></b><span class="apple-converted-space"><span style="font-size:11.0pt;font-family:"Calibri",sans-serif"> </span></span><span style="font-size:11.0pt;font-family:"Calibri",sans-serif">General
 [<a href="mailto:general-bounces+chandra.roychoudhuri=uconn.edu@lists.natureoflightandparticles.org"><span style="color:purple">mailto:general-bounces+chandra.roychoudhuri=uconn.edu@lists.natureoflightandparticles.org</span></a>]<span class="apple-converted-space"> </span><b>On
 Behalf Of<span class="apple-converted-space"> </span></b><a href="mailto:richgauthier@gmail.com"><span style="color:purple">richgauthier@gmail.com</span></a><br>
<b>Sent:</b><span class="apple-converted-space"> </span>Wednesday, February 21, 2018 1:36 PM<br>
<b>To:</b><span class="apple-converted-space"> </span>Nature of Light and Particles - General Discussion <<a href="mailto:general@lists.natureoflightandparticles.org"><span style="color:purple">general@lists.natureoflightandparticles.org</span></a>><br>
<b>Cc:</b><span class="apple-converted-space"> </span>Oreste Caroppo <<a href="mailto:orestecaroppo@yahoo.it"><span style="color:purple">orestecaroppo@yahoo.it</span></a>>; martin Mark van der <<a href="mailto:martin.van.der.mark@philips.com"><span style="color:purple">martin.van.der.mark@philips.com</span></a>><br>
<b>Subject:</b><span class="apple-converted-space"> </span>[General] Superluminal double-helix photon model and its inertial mass</span><o:p></o:p></p>
</div>
</div>
</div>
<div>
<p class="MsoNormal"> <o:p></o:p></p>
</div>
<div>
<div>
<p class="MsoNormal"><span style="font-size:11.5pt">Hi Chandra, John, Martin and all,</span><o:p></o:p></p>
</div>
<div>
<div>
<p class="MsoNormal"> <o:p></o:p></p>
</div>
<div>
<div>
<p class="MsoNormal"><span style="font-size:11.5pt">   I just wanted to share (attached below as a PDF file) my latest article on the superluminal double-helix model of the photon and the derivation of its inertial mass:  “Entangled double-helix superluminal
 photon model defined by fine structure constant has inertial mass M=E/c^2”. It’s also at<span class="apple-converted-space"> </span><a href="https://richardgauthier.academia.edu/research"><span style="color:purple">https://richardgauthier.academia.edu/research</span></a><span class="apple-converted-space"> </span>(at
 the bottom of the page). I originally proposed the superluminal double-helix photon model in 2002 (see Appendix in my article). Comments are of course welcome. It’s interesting that the identical superluminal double-helix photon model was discovered independently
 by Oreste Caroppo in Italy in 2005. He suggests that the concept of the double-helix photon was overlooked by Maxwell, though consistent with Maxwell’s equations. Electromagnetic waves may carry circulating dipoles of opposite charge, even in a vacuum, that
 generate these electromagnetic waves. The discovery of the photon would not have been such a surprise if Maxwell had not overlooked this possibility. See Caroppo's </span><span style="font-size:14.5pt">“Maxwell’s error, the great original sin of modern physics”
 at</span><span style="font-size:11.5pt"> <a href="http://fiatlux.altervista.org/abstract-maxwell-s-error-the-great-original-sin-of-modern-physics-with-a-new-unification-the-model-explains-photon-.html"><span style="color:purple">http://fiatlux.altervista.org/abstract-maxwell-s-error-the-great-original-sin-of-modern-physics-with-a-new-unification-the-model-explains-photon-.html</span></a><span class="apple-converted-space"> </span>.
  Many physics theories of the past 150 years would have to be revisited and perhaps revised in the light of the double-helix photon approach, writes Caroppo.</span><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal"><span style="font-size:14.5pt">   </span><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal"><span style="font-size:11.5pt"> all the best,</span><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal"><span style="font-size:11.5pt">         Richard</span><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal"> <o:p></o:p></p>
</div>
</div>
</div>
</div>
<div>
<div>
<div>
<div>
<p class="MsoNormal"> <o:p></o:p></p>
</div>
<div>
<div>
<p class="MsoNormal"> <o:p></o:p></p>
</div>
</div>
</div>
</div>
</div>
<p class="MsoNormal"><span style="font-size:9.0pt;font-family:"Helvetica",sans-serif">_______________________________________________<br>
If you no longer wish to receive communication from the Nature of Light and Particles General Discussion List at<span class="apple-converted-space"> </span></span><a href="mailto:richgauthier@gmail.com"><span style="font-size:9.0pt;font-family:"Helvetica",sans-serif;color:purple">richgauthier@gmail.com</span></a><span style="font-size:9.0pt;font-family:"Helvetica",sans-serif"><br>
<a href="</span><a href="http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/richgauthier%40gmail.com?unsub=1&unsubconfirm=1"><span style="font-size:9.0pt;font-family:"Helvetica",sans-serif;color:purple">http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/richgauthier%40gmail.com?unsub=1&unsubconfirm=1</span></a><span style="font-size:9.0pt;font-family:"Helvetica",sans-serif">"><br>
Click here to unsubscribe<br>
</a></span><o:p></o:p></p>
</div>
</blockquote>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</div>
</div>
</body>
</html>