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In this paper a set of radial and azimuthal phase functions are reviewed that have a null Strehl ratio, which is
equivalent to generating a central extinction in the image plane of an optical system. The study is conducted in the
framework of Fraunhofer scalar diffraction, and is oriented toward practical cases where optical nulls or
singularities are produced by deformable mirrors or phase plates. The identified solutions reveal unexpected links
with the zeros of type-J Bessel functions of integer order. They include linear azimuthal phase ramps giving
birth to an optical vortex, azimuthally modulated phase functions, and circular phase gratings (CPGs). It is found
in particular that the CPG radiometric efficiency could be significantly improved by the null Strehl ratio
condition. Simple design rules for rescaling and combining the different phase functions are also defined.
Finally, the described analytical solutions could also serve as starting points for an automated searching software
tool. © 2015 Optical Society of America
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1. INTRODUCTION

During the past two decades, there has been a growing interest
in optical systems enabling the creation of zero-irradiance nulls
or “dark holes” at the center of their far-field intensity distri-
butions. One may, for example, cite two types of applications
sustaining quite different purposes:

– On the one hand, laser beams are sometimes carrying an
orbital angular momentum (OAM) resulting in axial nulls, also
named optical vortices or singularities and propagating over an
infinite distance range. The produced intensity distributions
exhibit unique properties exploitable in the fields of particle
manipulation [1], nanotechnology, fundamental experiments
in nonlinear and quantum optics [2], or superresolution [3].
Ways of generating such optical singularities are more or less
simple, including deformable mirrors [4,5], discontinuous
phase plates [6], synthetic holograms [7], spatial light modu-
lators [8], and cylindrical lenses [9], or polarizing components
integrated into interferometric setups [10,11]. They were the
subjects of numerous other theoretical and experimental studies
such as those summarized in the review paper [12] and its ex-
tensive list of bibliographic references.

– On the other hand, the recent discoveries of hundreds,
and very soon thousands, of extrasolar planets and planetary
systems strongly motivates developing new-generation space-
based instrumentation, such as coronagraphs [13,14], enabling
the spectral characterization of their atmospheres and the

recognition of biologic life markers. Furthermore, a new class
of coronagraphic instruments was proposed a few years ago
[15–17], making use of optical vortices located at the telescope
focal plane. Although the present study is limited to phase
manipulation in the pupil plane, we believe that it can easily
be transposed into the telescope image plane without loss of
generality.

In this paper a simple and common approach is presented
for better understanding and optimizing the intensity distribu-
tions generated by an optical system for both types of applica-
tions, also having in mind practicable technical solutions based
on a deformable mirror or phase plates. Incidentally, this study
will be restricted to optical nulls formed in the vicinity of the
image plane of the system, not addressing the question of their
stability in an optical cavity or an optical waveguide, where they
must be solutions of the Helmholtz differential equation.

The present paper is organized as follows: Section 2 presents
the necessary conditions for obtaining a central null in the im-
age plane, derived from a classical expression of the Strehl ratio.
Trivial solutions of these equations are described in Section 3,
including pure azimuthal and axis-symmetric phase distribu-
tions onto a circular pupil. Section 4 deals with the specific case
of circular gratings with equally spaced lines, while the effects of
more complex aperture shape and arrangement are discussed in
Section 5. Finally, a short conclusion is provided in Section 6.
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2. GENERAL RELATIONS AND PROPERTIES

The theoretical framework of the present study is restricted
to first-order Gaussian optics and Fraunhofer scalar diffrac-
tion. The following topics are not covered here: vectorial
models describing wave polarization effects, high numerical
aperture optical systems, and extension to Fresnel diffraction
domain—all subjects that may be the scope of
future work. The study is also limited to the monochro-
matic case, with the exception of Section 4 dealing with
circular gratings.

The coordinate systems and scientific notations employed
throughout this paper are indicated in Fig. 1. They essentially
consist of two normal reference frames �OXY Z � and
�O 0X 0Y 0Z 0�, where Z is the optical axis of the system and
the �OX ;OY � and �O 0X 0; O 0Y 0� planes are attached to its
output pupil and image plane, respectively. It is assumed that
the output pupil is limited by a circular aperture of radius R,
enclosing points P denoted either by their Cartesian coordi-
nates �x; y� or by their polar coordinates �r; θ�. In the image
plane O 0X 0Y 0 located at a distance F from the exit pupil,
points M 0 are denoted by their Cartesian coordinates �x 0; y 0�.
Practically, we are mainly concerned with the luminous

intensity observed at its center O 0, whose coordinates are by
definition (0,0).

The starting point of this study is the Strehl ratio (SR), a
widely used metric evaluating the image quality of an optical
system. Assuming weak aberrations and/or shape errors Δ�x; y�
in the exit pupil of the system, SR is classically defined as
the ratio

SR � Max�PSFΔ�x 0; y 0��∕PSF0�0; 0�; (1)

where PSFΔ�x 0; y 0� is the point spread function of the optical
system in the presence of the wavefront errors Δ�x; y�,
Max�PSFΔ�x 0; y 0�� is the peak value of the PSF in the image
plane, usually located at O 0, and PSF0�x 0; y 0� is the ideal
PSF of the optical system free of aberrations, assuming
Δ�x; y� � 0 over the full exit pupil. Here, it is equal to the
Airy intensity distribution j2J1�r 0�∕r 0j2, where J1 is the
type-J Bessel function at the first order, r 0 � 2π

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 02 � y 02

p
∕λ, and λ is the wavelength of the electromagnetic

field (assumed to be monochromatic).
As in [18,19], we assume that Max�PSFΔ�x 0; y 0�� �

PSFΔ�0; 0�; therefore, from an elementary property of
Fourier transformation,

SR�
����
ZZ

Pupil
aperture

t�x;y�exp�2iπΔ�x;y�∕λ�dxdy∕=
ZZ

Pupil
aperture

t�x;y�dxdy
����
2

;

(2)

where t�x; y� is a real function defined over the whole pupil
area, usable for introducing pupil masks or continuous ampli-
tude apodization, and i � ffiffiffiffiffi

−1
p

.
For what follows, successive assumptions and changes of no-

tations are made:

(1) Replace the wavefront error Δ�x; y� with its associated
phase function φ�x; y� � 2πΔ�x; y�∕λ.

(2) Move from Cartesian coordinates �x; y� to polar coor-
dinates �r; θ�, and replace the differential elements dxdy
with rdrdθ.

(3) Replace r with a reduced radial coordinate ρ � r∕R
along the pupil radius R, with 0 ≤ ρ ≤ 1.

(4) Assume that the resulting phase distribution φ�ρ; θ� can
be expressed as the product of two single-variable phase func-
tions, writing: φ�ρ; θ� � φr�ρ� � φa�θ�.

(5) Assume as well that the transmission function can be
expressed as t�ρ; θ� � tr�ρ�ta�θ�.

One may consider assumptions 4 and 5 as too restrictive
(excluding, for example, coma or astigmatism-like functions)
and artificially limiting the domain of eligible phase distribu-
tions for generating central nulls. It seems, however, that
this domain remains vast enough for studying a variety of
cases presented in the forthcoming Sections 3 and 4.
In addition, the practical realization of axis-symmetric func-
tions φr�ρ� and tr�ρ� may prove much easier by means of
current technology. Therefore, the SR in Eq. (2) can be re-
written as
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Fig. 1. Coordinate systems and scientific notations. (Top) Main
employed coordinates. (Bottom) Case of segmented subpupils as dis-
cussed in Section 5.
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SR �
����
Z

1

ρ�0

tr�ρ� exp�iφr�ρ��ρdρ∕
Z

1

ρ�0

tr�ρ�ρdρ
����
2

×

����
Z

2π

θ�0

ta�θ� exp�iφa�θ��dθ∕
Z

2π

θ�0

ta�θ�dθ
����
2

� jSrSaj2;

(3)

where the integrals Sr and Sa can respectively be defined as
the “radial” and “azimuthal” Strehl ratios in amplitude, being
equal to

Sr �
Z

1

0

tr�ρ� exp�iφr�ρ��ρdρ∕
Z

1

0

tr�ρ�ρdρ; (4a)

Sa �
Z

2π

0

ta�θ� exp�iφa�θ��dθ∕
Z

2π

0

ta�θ�dθ: (4b)

The case of a uniformly illuminated and unvignetted pupil
is of particular interest, because it offers the best radiometric
efficiency, and will serve as basis for this study. It follows that
tr�ρ� and ta�θ� are equal to unity over the full exit aperture, and
Eqs. (3) and (4) are rewritten as

SR � jSrSaj2∕π; (5a)

Sr �
Z

1

0

exp�iφr�ρ��ρdρ; (5b)

Sa �
Z

2π

0

exp�iφa�θ��dθ: (5c)

It can be concluded that searching for phase functions φr�ρ�
or φa�θ� satisfying to the conditions Sr � 0 or Sa � 0 allows
achieving PSF intensity distributions exhibiting an axial null, or
zero-irradiance at the center. Section 3 is entirely devoted to
identifying trivial solutions to these equations. However, three
interesting properties of these phase functions can already be
derived from Eq. (5a):

P1. Any axis-symmetric, or radial phase function φr�ρ�
will not destroy the central null generated by
an azimuthal phase function φa�θ� satisfying to
Sa � 0, when they are added together at the pupil
plane.

P2. Similarly, azimuthal phase functions φa�θ� will not
affect the central null generated by a radial phase
function φr�ρ� fulfilling Sr � 0.

P3. Because jSaj and jSr j ≤ 1, the null depth generated
by any of two azimuthal or radial functions φa�θ�
and φr�ρ� can only be enhanced when they are
added together at the pupil plane.

Alternatively, properties P1 and P2 may be reworded as
follows:

P11 0. Any axis-symmetric phase function φr�ρ� can be
modified so as to generate an axial null, by adding

an azimuthal phase function φa�θ� satisfying to
Sa � 0.

P22 0. Similarly, any azimuthal phase function φa�θ� can
be modified so as to generate an axial null, by add-
ing a radial phase function φr�ρ� fulfilling Sr � 0.

3. TRIVIAL SOLUTIONS

Subsections 3.A and 3.B examine and discuss trivial solutions
to the zero-irradiance conditions Sa � 0 and Sr � 0 for azimu-
thal phase functions φa�θ� and axis-symmetric phase functions
φr�ρ�, respectively.
A. Azimuthal Phase Functions

From Section 2, azimuthal phase functions φa�θ� generating
on-axis null in the image plane of an optical system must fulfill
the necessary condition:

Sa �
Z

2π

0

exp�iφa�θ��dθ � 0: (6)

Trivial solutions for the phase functions φa�θ� can be con-
structed from an integral representation of the type-J Bessel
functions of integer order m [20]:

Jm�z� �
1

2kπim

Z lπ
2�2kπ

lπ
2

exp�i�z cos t � mt��dt; (7)

where k and l also are integers with k > 1 and 0 ≤ l ≤ 3.
Setting t � kθ� lπ∕2 in the integral of Eq. (7) and rewriting
Sa as Sa�z� yields
Sa�z��2πimJm�z�exp�−imlπ∕2�

� exp�−imlπ∕2�
Z

2π

0

exp�ifz cos�kθ� lπ∕2��mkθg�dθ:

(8)

Then the condition Sa�z� � 0 shall be respected if

φa�θ� � zm;n cos�kθ� lπ∕2� � mkθ; (9)

where zm;n is the nth zero of the type-J Bessel function Jm�z�.
For commodity of notation we can set zm;0 � 0 when m ≠ 0,
because the Jm�z� functions—excepting J0�z�—are equal to
zero at the origin. Additionally, Eq. (8) reveals the presence
of a “Gouy-like” phase-shift term equal to −m�1� l�π∕2, that
will be ignored in the remainder of the text.

To summarize, Eq. (9) defines a family of phase functions
φa�θ� generating axial nulls at the focus of any optical system,
and being characterized with four integer numbers m, n, k,
and l :

m is the order of the phase function, giving rise to
linear phase ramps in azimuth;

n is related to the amplitude of the cosine modula-
tion term of the phase function;

k is proportional to the number of oscillations of the
cosine phase term, and to the amplitude of the lin-
ear ramp; and

l is a phase-shift index associated with the cosine
modulation term.
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Setting different criteria upon the previous indices allows
defining two basic classes of nulling azimuthal phase functions,
from which a quasi-infinite number of combinations can be
inferred. By convention, it is assumed that z0;0 � 0, hence
φa�θ� � 0 and no central null is generated in that case.

1. Optical Vortex of Integer Order m

Let us consider the case when m ≠ 0 and n � 0. Since
zm;0 � 0, it is then found that φa�θ� � mkθ, which is indeed
the linear phase ramp giving birth to an optical singularity of
topological charge mk [12]. This type of intensity distribution
is already well characterized and probably does not deserve ad-
ditional graphic representations. This first solution, however,
allows illustrating one of the three properties mentioned in
Section 2, namely P1, stating that an additional axis-symmetric
wavefront error (WFE) term should not affect the null gener-
ated on-axis by an azimuthal phase function. We choose an
optical vortex of topological charge 4, and show in Fig. 2
the effects of a variable amount of defocus on the resulting
PSF intensity distributions. Several elements are displayed:

– Panel A displays a gray-scale map of the PSF generated by
the ideal phase ramp. The mathematical properties of this type
of intensity distribution are very similar to those of laser beams’
optical vortices [12] and were also discussed in [21] for the case
of a uniformly illuminated pupil being considered here. The X 0
and Y 0 axes in this figure are scaled in terms of λ∕D, as well as
in all other PSF vignettes depicted in the present paper. Their
side length is equal to 128λ∕D.

– Panels B and C show gray-scale maps of the PSF gener-
ated by the same phase ramp, defocused by �2λ and �4λ, re-
spectively. While the axial null is preserved as expected, one also
distinguishes an apparent enlargement of the dark
central region.

– Panel D simulates an interferogram of the same phase
ramp defocused by �4λ. One notes its spiral-like aspect sug-
gesting a possible definition of the spiral phase distributions as
the association of a linear azimuthal phase ramp with any type
of axis-symmetric function.

– Finally, Panels E and F depict intensity slices of the three
PSFs (A, B, and C) along the X 0-axis (marked by thin white
lines in panels A, B, and C). In Fig.2(E), the curves’ maxima
have been arbitrarily set to 1, while in Fig. 2(F) they are
normalized in energy and plotted in logarithmic scale. The
latter confirm that the darkened area slightly increases with
defocus.

All the PSFs were computed numerically, using a fast
Fourier transform algorithm with a pupil sampling of at least
512 × 512 and a zero-padding factor of 4 to avoid aliasing
effects. These characteristics remain the same throughout
the whole study. It has also been checked that higher pupil
sampling is required when greater integer numbers m, n,
and k are considered, typically superior to 10.

2. Azimuthal Cosine Modulation

In this case, we set the index m � 0; therefore, the azimuthal
phase function is equal to φa�θ� � z0;n cos�kθ� lπ∕2�, where
the linear phase term in θ vanishes, and only the zeros of the
Bessel function J0�z� need to be considered. The general aspect
of this type of phase distribution is illustrated in Fig. 3. Here

the WFE appear as classical Siemens star test patterns (used for
optical component characterization). The figure also depicts
the associated interferograms, to which were added two fringes
of vertical tilt for the sake of illustration. When compared to the
classical optical vortex discussed above, the azimuthal
cosine modulation shows no 2π-phase jumps or discontinuity
in the XY plane, except at the origin O where it could be elim-
inated by piercing a central hole (see Subsection 5.A dealing

Fig. 2. Intensity distributions of a defocused optical vortex of topo-
logical charge 4. A, ideal PSF; B, defocused PSF by�2λ; C, defocused
PSF by �4λ; D, interferogram associated with C; E, X 0-slices of PSF
A, B, and C along the thin white lines (linear scale); F, same curves as
in E with logarithmic scale. The X 0 and Y 0 axes are scaled in terms of
λ∕D, and the side length of vignettes A, B, and C is 128λ∕D.
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with centered obscuration). This advantage may be of some
practical importance during the manufacturing or development
process.

In Fig. 4, typical PSF intensities formed by azimuthal cosine
functions having variable indices n and k are reproduced into
vignettes of 128λ∕D side length each. Their general aspect is
that of a dark central region surrounded by 2k satellite intensity
peaks. Only a careful examination of the side diffraction lobes
reveals that the symmetry order of the PSF pattern is actually
equal to 2k when k is even and to k when it is an odd number.
One also notes that the angular size of the nulled area is regu-
larly increasing with the index k, and that the strength of the
sidelobes also increases with the index n corresponding to
higher values of z0;n. As in the previous subsection, we also
checked that the central null is preserved with variable amounts
of defocus (not shown in the figure).

Finally, it must be emphasized that similar cases of phase
functions φa�θ� have already been reported in the literature.
They were first mentioned by Dyson in the same paper where
he describes circular gratings [22], but without discussing their
nulling properties. Later, Ojeda-Castañeda et al. [23] described
discontinuous azimuthal functions generating null axial irradi-
ances. Also, Topuzoski and Janicijevic [24] studied the proper-
ties of continuous phase functions when illuminated by

Gaussian laser beams. To our knowledge, however, this is
the first time that the necessary condition φa�θ� �
z0;n cos�kθ� lπ∕2� for generating axial nulls is formulated.

3. Discontinuous Azimuthal Cosine Functions

As can be seen in Fig. 3, the azimuthally cosine-modulated
phase functions φa�θ� presented in the previous paragraph
are all centrosymmetric. As well, the irradiance distributions
they form at the image plane can be seen in Fig. 4.
However, such central symmetry is not a necessary condition
for achieving a central null. As a counterexample one may con-
sider the discontinuous azimuthal cosine (DAC) phase func-
tion,

φa�θ� � z0;n cos��k � 1∕2�θ�; (10)

where θ ∈ �0.2π�, z0;n is the nth zero of the type-J Bessel func-
tion J0�z�, and k is the same index as previously. It is not dif-
ficult to show that this function also generates a central
extinction, since its Strehl ratio Sθ�z� is equal to 2πJ0�z�
for any k number (see Appendix A).

The properties of these DAC phase functions are illustrated
in Fig. 5, showing their interferograms and resulting intensity
distributions when k � 2 (panels A and B) and k � 3 (panels
C and D). The interferograms first reveal an azimuthal discon-
tinuity along the X-axis at the polar angle θ � 0. From Eq. (10)
this phase jump is equal to 2z0;n waves, since φa�θ� tends to-
ward z0;n when θ → 0 and −z0;n when θ → 2π. Second, the
PSF in vignettes B and D have lost their centrosymmetry with
respect to point O 0, but still exhibit a symmetry with respect to
the Y 0-axis. These intensity maps may also be considered as
intermediate cases between those presented on the first hori-
zontal strip of Fig. 4.

Fig. 3. Examples of periodic azimuthal phase functions (3D plots)
and their interferograms. The four digits indicate the index values m,
n, k, and l . Interferograms are simulated with two fringes of vertical
tilt each.

Fig. 4. Intensity distributions produced by periodic azimuthal phase
functions. The four digits indicate the index values m, n, k, and l . The
side length of PSF vignettes is 128λ∕D.
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Another interesting property of DAC functions is their
carried OAMs, which is discussed in the next subsection.

4. Orbital Angular Momentum

Although not the main scope of this paper, it is quite easy to
estimate the OAM of the presented azimuthal phase functions.
Following [25] and under the hypotheses and notations
employed in this paper, the OAM generated by a uniformly
illuminated pupil and normalized with respect to the total
intensity gives in the pupil plane

OAM � Im

�Z
1

ρ�0

Z
2π

θ�0

a��ρ; θ� ∂a�ρ; θ�
∂θ

ρdρdθ

�

∕=
Z

1

ρ�0

Z
2π

θ�0

ρdρdθ; (11a)

where Im denotes the imaginary part of a complex number, � is
its complex conjugate, and

a�ρ; θ� � exp�i�φr�ρ� � φa�θ���: (11b)

Then Eqs. (11) readily reduce to

OAM � 1

2π

Z
2π

0

∂φa�θ�
∂θ

dθ � φa�2π� − φa�0�
2π

: (12)

For linear azimuthal phase ramps, the previous relation
promptly leads to a normalized OAM equal to mk, which is
the expected result. For a cosine-modulated phase as defined
in Subsection 3.A.2, it is found that OAM � 0, which is com-
pliant with demonstrations using a quantum optics formalism
[26]. For the DAC functions of Subsection 3.A.3, however, it
yields

OAM � z0;n
2π

�cos�2π�k � 1∕2�� − 1� � −
z0;n
π

: (13)

This is an unusual example of an optical beam carrying a
noninteger OAM and still producing full central extinction.
Assuming that the term “vortex” is reserved to optical beams
carrying an OAM differing from zero, this last result raises
some questions about how the expressions optical vortex,
central null, and optical singularity are interpreted in the
present paper.

(1) There is no straightforward relation between OAM and
the null it may form at the image plane center. For example, the
continuous cosine-modulated phase functions φa�θ� defined in
Subsection 3.A.2 do not carry any OAM, while actually gen-
erating central nulls.

(2) Conversely, the presence of an OAM is not sufficient
for a beam to create a central null. For example, it can easily
be verified that the Strehl ratios of linear phase ramps having
noninteger topological charge are not strictly equal to zero,
hence their extinction is incomplete.

Therefore, the notions of optical vortex and central null are
not equivalent, none of them ensuring the existence of the
other. Other examples of nonvortex beams generating central
nulls are the axis-symmetric phase functions φr�ρ� described in
forthcoming Subsection 3.B and Section 4.

The term “singularity” itself also has several different mean-
ings. From the experimental point of view, it is often associ-
ated with the intrinsic stability of a vortex beam affected by
slight lateral misalignments in the optical system. Using this
definition a singularity is basically equivalent to a vortex in the
framework of first-order Fourier optics to which this study is
restricted, because the PSFs are invariant and thus stable in the
whole field of view of the optical system. Practically, these
favorable conditions are respected if the diffracting elements
are located at the exit pupil of the system, or in optically
conjugated planes.

Finally, there exist other relevant definitions of optical sin-
gularities, referring either to the undetermined value of phase
function s at the pupil center, to phase jumps encountered on
the �0.2π� contour, or to more rigorous mathematical concepts
[27]. Discussing them exhaustively is, however, beyond the
initial scope of this study.

B. Axis-Symmetric Phase Functions

As in Subsection 3.A, we first write the necessary condition for
an axis-symmetric phase function φr�ρ� to generate zero irra-
diance at the center of the image plane:

Sr �
Z

1

0

exp�iφr�ρ��ρdρ � 0: (14)

Making use of the same basic mathematical relation (7), and
setting t � 2kπρ2 � lπ∕2 into its integral and neglecting
the Gouy phase-shift terms, trivial solutions for φr�ρ� can
be written as

Sr�z� � Jm�z�∕2

�
Z

1

0

exp�ifz cos�2kπρ2 � lπ∕2� � 2mkπρ2g�ρdρ:

(15)

Fig. 5. Interferograms (panels A and C) and intensity distributions
(B and D) produced by two discontinuous cosine functions φa�θ� de-
fined by Eq. (10). The four digits indicate the index values m, n, k,
and l . Interferograms are shown with two fringes of vertical tilt. The
side length of PSF vignettes is 128λ∕D.
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Hence the condition Sr�z� � 0 implies that

φr�ρ� � zm;n cos�2kπρ2 � lπ∕2� � 2mkπρ2; (16)

where zm;n are again the zeros of the Jm�z� functions and the
indices m, n, k, and l play the same role as in Subsection 3.A,
this time with respect to the phase function φr�ρ�.
1. Pure Defocus

The case when n � 0 and m ≠ 0 leads to an axis-symmetric
function φr�ρ� � 2mkπρ2. This is the most trivial solution
for achieving a central null, corresponding to an axial defocus-
ing of the image plane with respect to its nominal position.
Here the necessary condition for obtaining a zero-irradiance
at the center is that φr�ρ� must be a multiple of 2π.
Remembering that the phase error associated with a defocus
dz also writes φr�ρ� � πdzR2ρ2∕λF 2 following the notations
in Fig. 1 and that ρ is a reduced pupil coordinate, it is found
that the locations of the nulls along the Z-axis are multiples
of the quantity dz � 2λF 2∕R2. This is an academic result
appearing in [28], Section 8.8.

2. Radial Cosine Modulation

A last trivial solution is found when setting the index
m to zero, leading to the axis-symmetric function
φr�ρ� � z0;n cos�2kπρ2 � lπ∕2�. This is an aperiodic cosine
function of variable frequency that will be designated by the
acronym ACVF in the following. This type of function is illus-
trated in the lower right panel of Fig. 6, showing an example of
an interferogram where 10 fringes of tilt at 45 deg were added
for the sake of illustration (one may recognize in this picture
some resemblance with polishing errors of large mirrors, some-
times affected with high spatial frequency defects near their
rim). In the five other vignettes are displayed gray-level maps
of the produced PSF for variable index values n, k, and l . They
exhibit a few similarities with respect to those presented in
Subsection 3.A.2 for azimuthal phase functions, such as
enlargement of the central darkened area with index k, or
strength enhancement of the external diffraction rings with in-
dex n. We also observe the effects of changing the value of index
l from 0 to 1, which is equivalent to replacing the cosine func-
tion in φr�ρ� with a sine function, still preserving the nulled
region at the center but decreasing its width and inverting the
contrast within the side rings area (bottom left panel of the
figure). Finally, it must be noticed that the general definition
of Sr�z� in Eq. (15) implies that the ACVF function can be
associated with discrete amounts of defocusing (as defined in
the previous paragraph) without destroying the axial null.
This was confirmed by additional numerical simulations that
are not presented in this paper.

Although being rigorous mathematical solutions of Eq. (14),
the ACVF solutions do not provide sharp PSF intensity distri-
butions in the image plane of an optical system. For that pur-
pose we should rather envisage true periodic functions, i.e.,
circular gratings with equally spaced lines that are the scope
of the next section.

4. APPLICATION TO CIRCULAR GRATINGS

Since the original work of Dyson [22], circular gratings have
been the subject of numerous studies and papers. In their most

popular versions, they appear as a set of equally spaced, con-
centric circular slits [29]. Unequally spaced line gratings have
also been designed, such as circular Dammann gratings [30].
These types of gratings intrinsically suffer from transmission
losses, and their efficiency is even more degraded by important
energy leaks at the central lobe of their PSF. Hence the purpose
of this section is twofold:

– to define circular phase gratings (CPGs) built from con-
tinuous phase functions φr�ρ� without line or groove obscuring
factors,

– to impose a null SR constraint (or zero-irradiance at the
PSF center) in order to maximize the concentrated flux in the
side diffraction rings.

Moreover, here consideration is given only to cosine phase
functions of amplitude z fulfilling the condition

Sr�z� �
Z

1

0

exp�iz cos�2kπρ��ρdρ � 0: (17)

At first glance the integral in Eq. (17) may look intractable,
and the relation (7) cannot help in solving it. However, it can

Fig. 6. Intensity distributions produced by an axis-symmetric
ACVF phase function. The four digits indicate the index values m,
n, k, and l . The side length of PSF vignettes is 128λ∕D. The lower
right panel depicts one example of interferogram with 10 fringes of tilt
at 45 deg.
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be demonstrated that Sr�z� � J0�z�∕2, where J0�z� is again
the type-J Bessel function of zero order (see Appendix B).
Hence the necessary condition for achieving the null Strehl
ratio is

φr�ρ� � z0;n cos�2kπρ�: (18)

One can see that from the four integers m, n, k, and l de-
fined in Section 3, only n and k remain meaningful, being re-
spectively proportional to the amplitude and frequency of the
cosine-modulated phase function. In the upper part of Fig. 7
are shown four gray-scale maps of the generated PSF in the
focal plane of the optics, for indices n � 1 and k ranging from
1 to 4. As expected they reveal large and centered nulled areas of
regularly increasing size, limited by a bright double-side diffrac-
tion ring concentrating most of the incoming power. Slices of
the irradiance patterns along the X 0-axis and normalized for
constant PSF energy are given in the lower part of the figure.
The curves confirm the existence of a dual structure diffraction
pattern where the weaker ring is always located inside the
brightest. This specific behavior of CPGs was already reported

in [31] where under some approximations it was demonstrated
that only a phase-shifted cosine function can generate a single
diffraction ring. However, our numerical simulations (not re-
produced here) proved that the Strehl ratio is not totally can-
celed in that case, unless making use of property P2 in Section 2
and adding to φr�ρ� one of the azimuthal phase functions
φa�θ� defined in Subsection 3.B. Also, it has been verified that
increasing the indices n (i.e., n ≥ 2) has the same consequences
as in Section 3, reinforcing the optical power in the external
diffraction rings and consequently reducing the CPG effi-
ciency. This means that the optimal choice for the phase
amplitude is limited to z0;1 in practice.

By definition a diffraction grating operates over a finite
spectral band, and the PSF formed in the image plane varies
as function of wavelength. It implies that the central extinction
generated by a nulling CPG shall be maintained over its
full spectral range, or at least inferior to a certain limit.
Numerical simulations were then undertaken for a CPG opti-
mized at a reference wavelength λ0 � 0.5 μm and indices n �
1 and k � 4. Their results are illustrated in Fig. 8, showing the
intensity distributions produced at λ0, λ � 0.52 μm and
λ � 0.54 μm. The three gray-level maps on the top clearly il-
lustrate the progressive emergence of a parasitic peak at the PSF
center. In the lower panel of the figure is also plotted the central
intensity peak value as a function of the wavelength λ.
Assuming that for high k numbers the power enclosed in
the central lobe of the PSF remains negligible with respect
to the energy radiated in the first ring, one may empirically
define the useful spectral range of the CPG as the wavelength
domain where the central PSF peak remains inferior to the
brightest diffracted ring (this criterion is indicated by dashed
lines in the figure). In this particular example it would
be estimated as δλ � 0.462–0.542 μm, corresponding to
δλ∕λ � 16.5%.

Fig. 7. Intensity distributions produced by equally spaced circular
phase gratings for n � 1 and increasing values of the k index. (Bottom)
X 0-slices of the PSF along the thin white lines. The side length of PSF
vignettes is 128λ∕D.
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Fig. 8. Influence of wavelength on the central null in the case of an
equally spaced circular phase grating with n � 1 and k � 4. (Top)
Intensity distributions produced at the reference wavelength
λ0 � 0.5 μm (A), λ � 0.52 μm (B), and λ � 0.54 μm (C).
(Bottom) Curve of the peak intensity at PSF center versus λ.
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As for all phase functions presented in this paper, we finally
studied the influence of defocusing the axial null, finding its
degradation to be much slower than on the diffraction rings
with identical amounts of aberration. Thus it can be concluded
that a typical “diffraction-limited” requirement (e.g., WFE
inferior to λ∕4 peak-to-valley) should be sufficient for preserv-
ing good on-axis light rejection, at least when extreme nulling
rates are not desired.

5. COMPLEX APERTURE SHAPES

In Sections 3 and 4 this study was restricted to phase functions
φa�θ� and φr�ρ� generating null Strehl ratios from a nonob-
structed circular pupil of radius R. Discussed below are the ef-
fects of more complex, truncated aperture shapes that can be
geometrically described by the amplitude apodizing functions
tr�ρ� and ta�θ� appearing in Eq. (4). The effects of pupil trun-
cation or masking can be summarized into five additional prop-
erties of the nulling phase functions φa�θ� and φr�ρ�:

P4. Central nulls generated by azimuthal phase func-
tions φa�θ� will not be affected by any axis-
symmetric obscuration tr�ρ� centered in the pupil
plane.

P5. Similarly, central nulls generated by axis-symmetric
phase functions φr�ρ� will not be affected by any
azimuthal truncation ta�θ� in the pupil plane.

P6. Axis-symmetric phase functions φr�ρ� generating
central nulls from a full circular pupil can be re-
scaled so as to preserve the central null in the
presence of axis-symmetric obscuration tr�ρ�.

P7. Similarly, azimuthal phase functions φa�θ� gener-
ating central nulls from a full circular pupil can be
rescaled so as to preserve the central null in the
presence of azimuthal truncation ta�θ�.

P8. Different types of phase functions φr�ρ� or φa�θ�
generating a central null from different subaper-
tures with azimuthal truncation ta�θ� or axis-
symmetric obscuration tr�ρ� can be juxtaposed
within a single circular aperture, and still produce
together a central null.

Some of the previous properties will be illustrated with the
help of a few examples provided in the three following subsec-
tions: Subsection 5.A deals with the simplest case of unaffected
phase functions (P4 and P5), Subsection 5.B explains how to
rescale their pupil coordinates when needed (P6), and
Subsection 5.C shows how they can be combined spatially
(P8). It must be noted that the properties P4, P7, and P8 have
already been reported for optical vortices of integer order
m [12,32].

A. Case of Unmodified Phase Functions

From P4 and P5, one or several axis-symmetric pupil masks
should not alter the extinction produced by a nulling azimuthal
phase function, and reciprocally. Using the polar coordinates θ
and ρ in Fig. 1, such masks generally appear as a sectioned ring

shown in the lower part of the figure, where θ and ρ are
bounded by four known geometrical parameters.

Azimuthal
truncation:

ta�θ�: � 1 if θ1 ≤ θ ≤ θ2 and ta�θ�: � 0
elsewhere,

Axis-symmetric
mask:

tr�ρ�: � 1 if ρ1 ≤ ρ ≤ ρ2 and tr�ρ�: � 0
elsewhere
(for a central obscuration, ρ1 is the obscu-
ration rate and ρ2 � 1).

In Fig. 9, panels A and B illustrate the case of a cosine azi-
muthal phase function φa�θ� with indices m, n, k, and l equal
to 0, 3, 4, and 0, respectively. The phase function is obscured
by a circular ring from ρ � 0.3 to ρ � 0.7, that is actually the
addition of two axis-symmetric masks with �ρ1; ρ2� � �0; 0.3�
and �ρ1; ρ2� � �0.7; 1�. In A is shown a picture of the masked
interferogram with 10 fringes of tilt at 45 deg. The gray-level
map of the resulting PSF is provided in the vignette B. It has to
be compared with the reference intensity distribution formed
by the unmasked pupil appearing in the lower left corner of
Fig. 4. One can see that the central null is left unaltered, in
spite of visible enhancement of the side diffraction lobes due
to the presence of the mask.

Also in Fig. 9, Panels C and D provide an example of an
azimuthally truncated pupil in the form of a four-branch
Siemens star (panel C), standing for a quadripod supporting
the secondary mirror of a telescope. This case may be of special
interest for vortex coronagraph applications [15–17], where the
usual support legs of constant thickness are harmful to the cen-
tral extinction. Here this mask has been applied to a CPG with
indices n � 1 and k � 4, thereby generating the intensity dis-
tribution reproduced in panel D of Fig. 9 (the reference PSF
with no pupil obscuration is shown in Fig. 7). It can be verified
that the dark central area is unchanged, though the effect of the
four star branches is clearly visible on the bright diffraction
rings. It must also be noticed that for the sake of realism
the pupil mask also includes a minimal central obscuration
by a factor ρ1 � 0.1. Therefore, the CPG function φr�ρ� also
had to be rescaled along the aperture radius,
following the rules explained next in Subsection 5.B.

B. Phase Scaling in Truncated Apertures

When an axis-symmetric phase function φr�ρ� or an azimuthal
phase function φa�θ� is associated with the same type of pupil
mask function [respectively tr�ρ� and ta�θ��, the expressions
of the radial and azimuthal Strehl ratios Sr and Sa in
Eqs. (5b) and (5c) become

Sr �
Z

ρ2

ρ1

exp�iφr�ρ��ρdρ; (19a)

Sa �
Z

θ2

θ1

exp�iφa�θ��dθ: (19b)

Then the necessary conditions for attaining a central extinc-
tion Sr � 0 and Sa � 0 can only be fulfilled by changing the
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integration variables ρ and θ, leading to the definition of new
coordinates ρ 0 and θ 0 in order to rescale the integration do-
mains. In Table 1 is given, for each type of phase function
φr�ρ� and φa�θ� appearing in this paper, the mathematical re-
lationships usable for defining the rescaling coordinates and
thus ensuring PSF axial extinction.

Finally, presented in panels E and F of Fig. 9 is the case of an
ACVF phase function φr�ρ� of indices 0, 1, 2, and 1 fitted to a
central obscuration ρ1 � 0.4, illustrated by its interferogram
(E) and the resulting PSF (F). When confronted to its reference
intensity distribution in the lower left corner of Fig. 6, one can
see that the central null is still unaffected, but accompanied by
an apparent energy leak toward the outer PSF rings caused by
phase function rescaling.

C. Spatial Combination of Phase Functions

From the above properties P4 to P7 and elementary addition
of the integral domains, it is straightforward to demonstrate
that all types of phase function φr�ρ� and φa�θ� defined and
eventually scaled so as to respect the conditions Sr � 0 or
Sa � 0 over nonintersecting subapertures tr�ρ� and ta�θ�,
can be spatially combined into a single circular pupil and
together produce an axial null. This probably opens the door
to a vertiginous infinity of such “mixed” phase functions hav-
ing the ability to generate central extinctions of various sizes.
It is the reason why only one example is provided here, based
on arbitrary parameters. This is the case illustrated in Fig. 10,
where the phase function is composed of a linear azimuthal
phase ramp of topological charge 4 delimited by ρ1 � 0.1

Fig. 9. Preservation of the central null generated by phase functions
φa�θ� or φr�ρ� with complex aperture shapes. A and B, case of a cosine
azimuthal phase function φa�θ� of indices 0, 3, 4, and 0, obscured by a
circular ring from ρ � 0.3 to ρ � 0.7, illustrated by an interferogram
(A) and the resulting PSF (B). C and D, Case of a CPG function φr (ρ)
with indices n � 1 and k � 4, with an axis-symmetric quadripod and
a central obscuration ρ1 � 0.1, illustrated by the interferogram (C)
and PSF (D). E and F, Case of an ACVF phase function φr�ρ� of
indices 0, 1, 2 and 1 fitted to a central obscuration ρ1 � 0.4, illus-
trated by the interferogram (E) and PSF (F). All interferograms are
shown with 10 fringes of tilt at 45 deg and the side length of PSF
vignettes is 128λ∕D. The reference PSFs are respectively shown in
Figs. 4, 7, and 6.

Table 1. Summary of Rescaling Coordinates Usable
for Different Nulling Phase Functions

Name and Section
Phase Function/

Rescaling Coordinate

Linear and cosine
azimuthal functions,
§ 3.A

φa�θ� � zm;n cos�kθ 0 � lπ∕2� � mkθ 0

θ 0 � �θ − θ1�∕�θ2 − θ1�

Aperiodic cosine
function (ACVF),
§ 3.B

φr�ρ� � zm;n cos�2kπρ 02 � lπ∕2�
�2mkπρ 02 ρ 02 � �ρ2 − ρ21�∕�ρ22 − ρ21�

Circular phase
grating (CPG),
§ 4

φr�ρ� � z0;n cos�2kπρ 0�
ρ 0 � �ρ − ρ1�∕�ρ2 − ρ1�

Fig. 10. Juxtaposition of two phase functions in the exit pupil
plane; from a linear azimuthal phase ramp of topological charge 4
delimited by ρ1 � 0.1 and ρ2 � 0.6, and an ACVF phase function
of indices j � 1 and k � 2 delimited by ρ1 � 0.6 and ρ2 � 1.
A, Interferogram of the composed WFE; B, PSF generated by the lin-
ear azimuthal phase ramp alone; C, PSF generated by the ACVF alone;
D, PSF generated by the mixed phase function. The side length of PSF
vignettes is 128λ∕D.
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and ρ2 � 0.6, and of a square-cosine axis-symmetric phase
function with indices j � 1 and k � 2, limited by ρ1 �
0.6 and ρ2 � 1. The figure shows the resulting interferogram
(panel A), individual PSF generated by each of the individual
phase functions (panels B and C), and the PSF resulting
from their juxtaposition (panel D). As expected the central
null is preserved, but one also notes a loss of axis-symmetry
due to the presence of the linear azimuthal phase ramp.

Many other interesting examples of composed phase
functions could have been added in this section. It is likely,
however, that identifying the most promising solutions can
only be achieved using automated searching software, specially
developed for that purpose.

6. CONCLUSION

In this paper a set of radial and azimuthal phase functions φr�ρ�
and φa�θ� were reviewed that have a null Strehl ratio, which is
equivalent to generating a null at the center of the image plane
of an optical system. This study was conducted in the frame-
work of Fraunhofer far-field scalar diffraction, and oriented to-
ward practical cases where the on-axis extinction is produced by
means of a deformable mirror or phase plates. The identified
solutions revealed unexpected links with the zeros of type-J
Bessel functions of integer order. They include linear azimuthal
phase ramps giving birth to an optical vortex, azimuthally
modulated phase functions and CPGs. It was found in particu-
lar that the CPG radiometric efficiency could be significantly
improved by the null SR condition. Simple design rules for
rescaling and combining these different phase functions were
also defined or revisited.

In this study only analytical and continuous phase functions
fulfilling the central null condition were considered. It can be
reasonably conjectured that other analytical solutions exist, in-
cluding a number of discontinuous or stepped functions built
from the previous solutions. More generally, it is likely that the
same approach could be followed in a fully numerical manner,
looking for either discrete or continuous phase shapes. We fi-
nally note that, although not addressed in this paper, the search
for null Strehl ratios can be extended to the pupil apodizing
functions tr�ρ� and ta�θ�, as defined in Section 2. This may
obviously lead to already known amplitude profiles, such as
Laguerre–Gauss polynomials [12], but it may also lead to iden-
tifying new classes of complex amplitude functions enabling the
generation of various sorts of optical nulls and singularities. In
this respect, the analytical solutions described in this paper
could serve as starting points for an automated searching soft-
ware tool.

APPENDIX A: COMPUTING FUNCTION Sθ�Z �
FOR DISCONTINUOUS COSINE PHASE
DISTRIBUTIONS (DAC)

In this appendix is demonstrated the identity

Sθ�z� �
Z

2π

0

exp�iz cos��k � 1∕2�θ��dθ � 2πJ0�z�; (A1)

for any integer k. Setting the new variable t � �k � 1∕2�θ into
the integral, Sθ�z� becomes

Sθ�z� �
1

k � 1∕2

Z
2kπ�π

0

exp�iz cos t�dt: (A2)

Applying Eq. (7) with m � l � 0 one finds

Sθ�z� �
2kπJ0�z�
k � 1∕2

� 1

k � 1∕2

Z
π

0

exp�iz cos t�dt: (A3)

Simple integral manipulation and again employing Eq. (7) also
leads toZ

π

0

exp�iz cos t�dt �
Z

0

−π
exp�iz cos t�dt

� 1

2

Z �π

−π
exp�iz cos t �dt � πJ0�z�:

(A4)

Inserting Eq. (A4) into Eq. (A3), it directly follows that
Sθ�z� � 2πJ0�z�, hence demonstrating Eq. (A1).

APPENDIX B: COMPUTING FUNCTION SR�Z �
FOR CIRCULAR PHASE GRATINGS (CPG)

In this appendix is demonstrated the equality

Sr�z� �
Z

1

0

exp�iz cos�2kπρ��ρdρ � J0�z�∕2; (B1)

for any integer k ≠ 0. First setting a new variable t � 2πρ into
the integral, Sr�z� can be rewritten as

Sr�z� �
Z

2π

0

exp�iz cos kt �tdt∕4π2; (B2)

or, separating the real and imaginary parts,

Sr�z��
�Z

2π

0

cos�z cos kt�tdt� i
Z

2π

0

sin�z cos kt�tdt
�
∕4π2;

(B3)

where i � ffiffiffiffiffi
−1

p
. Developing the cosine and sine functions ac-

cording to Jacobi’s identities [20]:

cos�z cos t� � J0�z� � 2
X�∞

n�1

�−1�nJ2n�z� cos�2nt�; (B4)

sin�z cos t� � 2
X�∞

n�0

�−1�nJ2n�1�z� cos��2n� 1�t�; (B5)

the real and imaginary parts of Sr�z� can be written as

Real�Sr�z�� � J0�z�∕2

�
X�∞

n�1

�−1�nJ2n�z�
Z

2π

0

cos�2nkt�tdt∕2π2;

(B6)

Im�Sr�z�� �
X�∞

n�1

�−1�nJ2n�1�z�
Z

2π

0

cos��2n� 1�kt�tdt∕2π2:

(B7)

Simple integration by parts allows demonstrating thatR
2π
0 cos�nt�tdt � 0 for any integer n ≠ 0, finally leading to
Sr�z� � J0�z�∕2 and demonstrating Eq. (B1).
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