<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <div class="moz-forward-container"><span
        style="mso-ansi-language:EN-US" lang="EN-US">Dear colleagues,</span></div>
    <div class="moz-forward-container"><span
        style="mso-ansi-language:EN-US" lang="EN-US"><br>
      </span></div>
    <div class="moz-forward-container"><span
        style="mso-ansi-language:EN-US" lang="EN-US">I have recently
        started and trying to warm up "models-of-particles" (</span><span
        style="mso-ansi-language:EN-US" lang="EN-US"><span
          style="mso-ansi-language:EN-US" lang="EN-US">e.g. as solitons)
        </span>Google email group with ~40 physicists and have just
        found this looking related one. We have also a bit more general
        QM foundations online seminar (
        <a class="moz-txt-link-freetext" href="http://th.if.uj.edu.pl/~dudaj/QMFNoT">http://th.if.uj.edu.pl/~dudaj/QMFNoT</a></span> ) - talks are
      welcomed, I can also add to the email group.</div>
    <div class="moz-forward-container">Let me briefly introduce myself (
      <a class="moz-txt-link-freetext" href="http://th.if.uj.edu.pl/~dudaj/">http://th.if.uj.edu.pl/~dudaj/</a> ). I have education in Physics
      (PhD), computer science (PhD) and mathematics (MSc). I am
      interested in physics foundations since ~2006 when I have started
      <a moz-do-not-send="true"
        href="https://en.wikipedia.org/wiki/Maximal_entropy_random_walk">MERW
      </a>(alongside <a moz-do-not-send="true"
        href="https://en.wikipedia.org/wiki/Asymmetric_numeral_systems">ANS</a>)
      showing where disagreement between diffusion and QM comes from
      (only approximating crucial maximal entropy principle), then in
      2009 I have started working on particle models as topological
      solitons, which turned out expansion of Faber's model of electron
      (slides: <a class="moz-txt-link-freetext" href="https://www.dropbox.com/s/aj6tu93n04rcgra/soliton.pdf">https://www.dropbox.com/s/aj6tu93n04rcgra/soliton.pdf</a> ).<br>
    </div>
    <br>
    <div class="moz-forward-container"><span
        style="mso-ansi-language:EN-US" lang="EN-US"><br>
      </span></div>
    <div class="moz-forward-container"><span
        style="mso-ansi-language:EN-US" lang="EN-US">Let me start with
        this general view thered/question, also to get some glimpse
        about your group:<br>
      </span>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US">Most of us would like to use topological
          mechanisms to stabilize field configurations into </span><span
          style="mso-ansi-language:EN-US" lang="EN-US"><span
            style="mso-ansi-language:EN-US" lang="EN-US">localized </span>models
          of particle (?) </span></p>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US">There is a large variety on both topological and
          particle sides here, so maybe let us try to discuss the most
          promising correspondences e.g. to properties like electric
          charge, spin, baryon number - to target in such models.</span></p>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US">Here are some very basic topological structures –
          what should they correspond to?</span></p>
      <p class="MsoNormal"><br>
        <span style="mso-ansi-language:EN-US" lang="EN-US"><span
            style="mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin;
            mso-ansi-language:EN-US" lang="EN-US"><span
              style="mso-list:Ignore"><span style="font:7.0pt
                "Times New Roman"">  </span></span></span><span
            style="mso-ansi-language:EN-US" lang="EN-US"><b>1) 2D
              topological charge</b> in cross-section e.g. in
            fluxons/Abrikosov vortex in superconductors. It agrees with
            quantum rotation operator: rotating spin ‘s’ particle by phi
            angle, the phase rotates by phi * s. Topological constraint
            resembles Ampere's law here e.g. for fluxon carrying quant
            of magnetic field, what might be related with spins
            corresponding to magnetic dipole moments (?)</span></span></p>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US"><span style="mso-ansi-language:EN-US"
            lang="EN-US"><span
              style="mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin;
              mso-ansi-language:EN-US" lang="EN-US"><span
                style="mso-list:Ignore"><span style="font:7.0pt
                  "Times New Roman"">  </span></span></span><span
              style="mso-ansi-language:EN-US" lang="EN-US"><b>2)  </b></span></span></span><span
          style="mso-ansi-language:EN-US" lang="EN-US"><span
            style="mso-ansi-language:EN-US" lang="EN-US">Such vortices
            can form <b>knot</b><b>-like structures</b>: which can be
            relatively stable local minima, but are not global – they
            could decay especially in </span><span
            style="mso-ansi-language:EN-US" lang="EN-US"><span
              style="mso-ansi-language:EN-US" lang="EN-US">high
              temperature</span>.</span></span></p>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US"><span style="mso-ansi-language:EN-US"
            lang="EN-US"><span style="mso-ansi-language:EN-US"
              lang="EN-US"><span
                style="mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin;
                mso-ansi-language:EN-US" lang="EN-US"><span
                  style="mso-list:Ignore"><span style="font:7.0pt
                    "Times New Roman"">  </span></span></span><span
                style="mso-ansi-language:EN-US" lang="EN-US"><b>3) </b></span></span></span></span><span
style="mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin;
          mso-ansi-language:EN-US" lang="EN-US"><span
            style="mso-list:Ignore"><span style="font:7.0pt "Times
              New Roman""></span></span></span><span
          style="mso-ansi-language:EN-US" lang="EN-US"><b>3D topological
            charge</b> e.g. hedgehog-like localized configuration.
          Gauss-Bonnet theorem acts as Gauss law with built-in charge
          quantization here: integrating field’s curvature over closed
          surface, we get 3D topological charge inside, which has to be
          integer.</span></p>
      <span
        style="mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin;
        mso-ansi-language:EN-US" lang="EN-US"><span
          style="mso-list:Ignore"><span style="font:7.0pt "Times
            New Roman""></span></span></span><span
        style="mso-ansi-language:EN-US" lang="EN-US"></span><span
        style="mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin;
        mso-ansi-language:EN-US" lang="EN-US"><span
          style="mso-list:Ignore"><span style="font:7.0pt "Times
            New Roman""></span></span></span><span
        style="mso-ansi-language:EN-US" lang="EN-US"><img
          src="cid:part3.C394FD8D.2C4BEFA7@gmail.com" alt="" class=""> <br>
      </span>
      <p class="MsoNormal"><span style="mso-no-proof:yes"><br>
        </span><span style="mso-ansi-language: EN-US" lang="EN-US"></span></p>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US">Baryon number doesn’t seem to have Gauss law (?)
          and usually is believed that it can be violated in extreme
          temperatures – during baryogenesis just after Big Bang, or for
          Hawking radiation inside Black Hole.</span></p>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US">So personally I would assign: 2D charge ->
          spin, 3D charge -> electric charge, baryon number as
          example of knotting.</span></p>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US">But e.g. Skyrmion models disagree: assigning 3D
          charge -> baryon number, and usually neglecting electric
          charge and spin.<br>
        </span></p>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US">So which assignment is the most promising? Why?</span></p>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US">Best,</span></p>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US">Jarek Duda<br>
        </span></p>
      <p class="MsoNormal"><span style="mso-ansi-language:EN-US"
          lang="EN-US">ps. Related: is photon number conserved e.g. as
          topological? If not, why single photon does not dissipate? (I
          would bet on angular momentum)</span></p>
    </div>
  </body>
</html>