<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p>Dear John, <br>
    </p>
    <p>Thank you, this is the article I have looked through, but wasn't
      able to find the details.</p>
    <p>We use topological mechanisms like for fluxons quantizing
      magnetic field in superconductor - which can be directly
      translated to electric charges e.g. hedgehog-like configuration
      (realized e.g. in liquid crystals), making Gauss law count
      topological charge:</p>
    <p><img src="cid:part1.kYjjU8Ua.ca8e92Bp@gmail.com" alt=""
        width="731" height="83"></p>
    <p><br>
    </p>
    <p>> 2) All fundamental particles are modeled as rotating waves
      with Planck length amplitude and ħ/2 angular momentum. <br>
    </p>
    <p>Sounds like fluxon magnetic field quantization - to take it to
      point-like electric charge, we can use the above formula.<br>
    </p>
    <p><br>
    </p>
    <p>>The different fundamental particles have different rotation
      rates, different energy and different radii. However, they all
      have the same wave amplitude.  <br>
    </p>
    <p>Sounds like de Broglie clock E = hbar omega = m c^2, confirmed
      for electron:
      <a class="moz-txt-link-freetext" href="https://link.springer.com/article/10.1007/s10701-008-9225-1">https://link.springer.com/article/10.1007/s10701-008-9225-1</a></p>
    <p><br>
    </p>
    <p>> 3) The first order distortion of the surrounding space
      produced by these rotating waves scales only with wave amplitude.
      This distortion does not scale with frequency, with energy, or
      with wavelength. This common wave amplitude is the ultimate source
      of quantized charge. <br>
    </p>
    <p>I don't understand - maybe you could show some formula like above
      - showing Gauss law returning integer multiplicity of e?<br>
    </p>
    <p>Best regards,</p>
    <p>Jarek</p>
    <p><br>
    </p>
    <div class="moz-cite-prefix">On 20.10.2021 20:48, John Macken wrote:<br>
    </div>
    <blockquote type="cite"
      cite="mid:009b01d7c5e3$1a3bbe50$4eb33af0$@macken.com">
      <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
      <meta name="Generator" content="Microsoft Word 15 (filtered
        medium)">
      <!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]-->
      <style>@font-face
        {font-family:SimSun;
        panose-1:2 1 6 0 3 1 1 1 1 1;}@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}@font-face
        {font-family:Consolas;
        panose-1:2 11 6 9 2 2 4 3 2 4;}@font-face
        {font-family:"\@SimSun";
        panose-1:2 1 6 0 3 1 1 1 1 1;}@font-face
        {font-family:Roboto;
        panose-1:0 0 0 0 0 0 0 0 0 0;}@font-face
        {font-family:inherit;}p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin-top:0in;
        margin-right:-4.3pt;
        margin-bottom:0in;
        margin-left:0in;
        text-align:justify;
        font-size:12.0pt;
        font-family:"Times New Roman",serif;}a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}pre
        {mso-style-priority:99;
        mso-style-link:"HTML Preformatted Char";
        margin:0in;
        font-size:10.0pt;
        font-family:"Courier New";}span.HTMLPreformattedChar
        {mso-style-name:"HTML Preformatted Char";
        mso-style-priority:99;
        mso-style-link:"HTML Preformatted";
        font-family:Consolas;}span.EmailStyle22
        {mso-style-type:personal-reply;
        font-family:"Times New Roman",serif;
        color:#20188C;
        font-weight:normal;
        font-style:normal;
        text-decoration:none none;}.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;}div.WordSection1
        {page:WordSection1;}ol
        {margin-bottom:0in;}ul
        {margin-bottom:0in;}</style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
      <div class="WordSection1">
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C">Jarek,<o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C">You
            ask, </span><span style="font-size:14.0pt;color:#20188C">“</span><span
            style="font-size:14.0pt">Why Gauss law can only return
            integer charge?”<span style="color:#20188C"> I will restate
              the question as: What is the source of elementary charge <i>e
              </i>in particles? <o:p></o:p></span></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C">I
            think I do a good job answering this question in the paper </span><b><span
style="font-size:14.0pt;font-family:"Calibri",sans-serif">A
              quantum vacuum model unites an electron’s gravitational
              and electromagnetic forces</span></b><span
            style="font-size:14.0pt;color:#20188C">. </span><span
            style="font-size:14.0pt;color:#20188C"><o:p></o:p></span></p>
        <p class="MsoNormal"
          style="margin-right:0in;text-align:left;background:white"
          align="left"><span style="color:black"><a
              href="http://www.researchgate.net/publication/353049276"
              target="_blank" moz-do-not-send="true"><span
                style="font-size:10.5pt;font-family:inherit;border:none
                windowtext 1.0pt;padding:0in">www.researchgate.net/publication/353049276</span></a></span><span
            style="font-size:10.5pt;font-family:Roboto;color:#111111"><o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C">For
            example, sections of the paper have titles such as: <b>Electron’s
              electric charge</b>, <b>What is electric charge?</b> and
            <b>Charge conversion constant</b>. I have to assume the fine
            structure constant α, but given this constant, the model
            predicts the electrostatic force between two electrons or
            two muons. <o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C">A
            brief summary answer to your question can be broken down
            into the following points.<o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C">1)
            The quantum vacuum is modeled as a sea of vacuum
            fluctuations with amplitude of Planck length. <o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C">2)
            All fundamental particles are modeled as rotating waves with
            Planck length amplitude and </span><span
            style="font-size:14.0pt;font-family:"Cambria
            Math",serif;color:#20188C">ħ</span><span
            style="font-size:14.0pt;color:#20188C">/2 angular momentum.
            The different fundamental particles have different rotation
            rates, different energy and different radii. However, they
            all have the same wave amplitude.  <o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C">3)
            The first order distortion of the surrounding space produced
            by these rotating waves scales only with wave amplitude.
            This distortion does not scale with frequency, with energy,
            or with wavelength. This common wave amplitude is the
            ultimate source of quantized charge. <o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C">4)
            This explanation requires the manual insertion of α<sup>1/2</sup>
            to be exact. Therefore, it is incomplete. However, it
            generates the surprising connection between the electron’s
            electrostatic force and the electron’s gravitational force.
            <o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><span style="font-size:14.0pt;color:#20188C">John<o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <div>
          <div style="border:none;border-top:solid #E1E1E1
            1.0pt;padding:3.0pt 0in 0in 0in">
            <p class="MsoNormal"
              style="margin-right:0in;text-align:left" align="left"><b><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif">From:</span></b><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif">
                Jarek Duda <a class="moz-txt-link-rfc2396E" href="mailto:dudajar@gmail.com"><dudajar@gmail.com></a> <br>
                <b>Sent:</b> Wednesday, October 20, 2021 1:24 AM<br>
                <b>To:</b> <a class="moz-txt-link-abbreviated" href="mailto:general@lists.natureoflightandparticles.org">general@lists.natureoflightandparticles.org</a>;
                <a class="moz-txt-link-abbreviated" href="mailto:john@macken.com">john@macken.com</a><br>
                <b>Subject:</b> Re: [General] Electron's Forces<o:p></o:p></span></p>
          </div>
        </div>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><o:p> </o:p></p>
        <p>Dear John,<o:p></o:p></p>
        <p>Thank you, personally I am mostly interested in models of
          electrons - in your paper I see "quantized wave-based electron
          model", " An electron’s core is a rotating wave in the
          universal <br>
          field."<o:p></o:p></p>
        <p>While I deeply agree with both statements, I don't see the
          details - especially for the most important: charge
          quantization -<b> why Gauss law can only return integer
            charge?</b><o:p></o:p></p>
        <p>With Manfried Faber we get it by interpreting curvature of
          some deeper e.g. unitary vector field, this way Gauss law
          counts topological charge - getting built in charge
          quantization.<o:p></o:p></p>
        <p>Such view is also used in liquid crystals, for which they get
          long-range e.g. Coulomb-like interactions: <a
            href="https://www.nature.com/articles/s41598-017-16200-z"
            moz-do-not-send="true" class="moz-txt-link-freetext">https://www.nature.com/articles/s41598-017-16200-z</a><o:p></o:p></p>
        <p>Here is how I would like to get 3 leptons (slides: <a
href="https://www.dropbox.com/s/9dl2g9lypzqu5hp/liquid%20crystal%20particles.pdf"
            moz-do-not-send="true" class="moz-txt-link-freetext">https://www.dropbox.com/s/9dl2g9lypzqu5hp/liquid%20crystal%20particles.pdf</a>
          - Coulomb between such charges, Klein-Gordon for phase as
          twist of the long axis):<o:p></o:p></p>
        <p><img style="width:6.1875in;height:2.2083in"
            id="Picture_x0020_1"
            src="cid:part2.qXY6V2j7.4jwTtRw4@gmail.com" class=""
            width="594" height="212" border="0"><o:p></o:p></p>
        <p><o:p> </o:p></p>
        <p>Is it close to your explanation of electric charge
          quantization?<o:p></o:p></p>
        <p>With best regards,<o:p></o:p></p>
        <p>Jarek Duda<o:p></o:p></p>
        <p><o:p> </o:p></p>
        <div>
          <p class="MsoNormal" style="margin-right:0in">W dniu
            20.10.2021 o 03:15, John Macken pisze:<o:p></o:p></p>
        </div>
        <blockquote style="margin-top:5.0pt;margin-bottom:5.0pt">
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="font-size:14.0pt;color:#111111;background:white">Hello
              Chandra and All,</span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="font-size:14.0pt;color:#111111;background:white">I
              used to be an active member of this discussion group.
              However, when everyone else seemed to be attempting to
              construct electrons out of photons, my participation
              stopped. Now that I see the discussion has broadened, I
              would like to participate again. </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="font-size:14.0pt;color:#111111;background:white">I
              have been developing a model of an electron and the
              quantum vacuum for about 20 years. I started by
              characterizing the physical properties of the quantum
              vacuum. This led to a wave-based model of an electron.
              This model successfully generates an electron’s
              approximate energy, inertia and de Broglie wave
              characteristics. However, then something unexpected
              happened. The electron model also created two types of
              disturbances in the surrounding quantum vacuum. The first
              order effect was found to correspond to the electron’s
              electric/magnetic field. The much weaker, second order
              effect was found to correspond to the electron’s
              gravitational field.</span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="font-size:14.0pt;color:#111111;background:white">Since
              this single model was creating both forces, the model was
              predicting how an electron’s quantum mechanical properties
              should unify the electron’s gravitational and
              electromagnetic forces.  Usually, the goal of an electron
              model is to explain known electron properties. This model
              was going further and predicting there should be
              previously unknown fundamental relationships between the
              electron’s electrostatic force and the electron’s
              gravitational force. This appears to be quantum gravity
              generated on the scale of electrons rather than the scale
              of black holes.</span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="font-size:14.0pt;color:#111111;background:white">These
              predictions have now been proven correct without requiring
              new experiments. The details of this model and the proofs
              of the predictions are in the technical paper titled:<i> </i><b>A
                quantum vacuum model unites an electron’s gravitational
                and electromagnetic forces</b><i>.</i> This paper is
              currently under review by a physics journal. The preprint
              is available at the link below:  </span><span
              style="font-size:14.0pt;color:black">It has received about
              1400 “reads” on ResearchGate in about 3 months.</span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="font-size:14.0pt;color:black"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="color:black"><a
                href="http://www.researchgate.net/publication/353049276"
                target="_blank" moz-do-not-send="true"><span
                  style="font-size:14.0pt;border:none windowtext
                  1.0pt;padding:0in">www.researchgate.net/publication/353049276</span></a></span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;background:white"><span
              style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in"><span
              style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in"><span
              style="font-size:14.0pt;color:#111111;background:white">John
              Macken</span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in"><span
              style="font-size:14.0pt"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span
              style="font-size:11.0pt;font-family:"Calibri",sans-serif"><br>
              <br>
              <o:p></o:p></span></p>
          <pre>_______________________________________________<o:p></o:p></pre>
          <pre>If you no longer wish to receive communication from the Nature of Light and Particles General Discussion List at <a href="mailto:dudajar@gmail.com" moz-do-not-send="true" class="moz-txt-link-freetext">dudajar@gmail.com</a><o:p></o:p></pre>
          <pre><a href=<a href="http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/dudajar%40gmail.com?unsub=1&unsubconfirm=1" moz-do-not-send="true">"http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/dudajar%40gmail.com?unsub=1&unsubconfirm=1"</a>><o:p></o:p></pre>
          <pre>Click here to unsubscribe<o:p></o:p></pre>
          <pre></a><o:p></o:p></pre>
        </blockquote>
        <pre>-- <o:p></o:p></pre>
        <pre>dr Jarosław Duda<o:p></o:p></pre>
        <pre>Institute of Computer Science and Computer Mathematics,<o:p></o:p></pre>
        <pre>Jagiellonian University, Cracow, Poland<o:p></o:p></pre>
        <pre><a href="http://th.if.uj.edu.pl/~dudaj/" moz-do-not-send="true" class="moz-txt-link-freetext">http://th.if.uj.edu.pl/~dudaj/</a><o:p></o:p></pre>
      </div>
    </blockquote>
    <pre class="moz-signature" cols="72">-- 
dr Jarosław Duda
Institute of Computer Science and Computer Mathematics,
Jagiellonian University, Cracow, Poland
<a class="moz-txt-link-freetext" href="http://th.if.uj.edu.pl/~dudaj/">http://th.if.uj.edu.pl/~dudaj/</a></pre>
  </body>
</html>