<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p>Dear John,<br>
    </p>
    <p>Vacuum is, among others, a medium for interactions, e.g.
      long-range: electromagnetism and gravity, the former has charge
      quantization in Gauss law.<br>
    </p>
    <p>It seems there is also third long-range: quantum phase/pilot
      wave, required for quantum phenomena like Mach-Zehnder
      interference, produced due to de Broglie clock/zitterberwegung.</p>
    <p><br>
    </p>
    <p>Wanting to understand vacuum, the simplest scenario seems pair
      creation:</p>
    <p>energy -> electron + positron, with 1/r Coulomb energy
      dependence.</p>
    <p>Charge quantization is constraint of Gauss law, which allows to
      explain e.g. <b>why we cannot create half-electron this way?</b><br>
    </p>
    <p><br>
    </p>
    <p>Personally I know only this topological quantization mechanism -
      making that Gauss law counts topological charge. Do you maybe have
      any hint for an alternative?</p>
    <p>Best,</p>
    <p>Jarek</p>
    <p>ps. Getting 1/r Coulomb energy dependence is nontrivial, but
      realizable e.g. in liquid crystals. Below is field of minus-plus
      pair of topological charges, integrating energy density of the
      field, we get e.g. V(r)~1/r long-range interaction for such
      charges:<br>
    </p>
    <p><img src="cid:part1.RmEOdHb0.5V3sRo0y@gmail.com" alt=""
        width="671" height="153"></p>
    <p><br>
    </p>
    <p><br>
    </p>
    <div class="moz-cite-prefix">W dniu 21.10.2021 o 20:36, John Macken
      pisze:<br>
    </div>
    <blockquote type="cite"
      cite="mid:00fc01d7c6aa$8dd1dd00$a9759700$@macken.com">
      <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
      <meta name="Generator" content="Microsoft Word 15 (filtered
        medium)">
      <!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]-->
      <style>@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}@font-face
        {font-family:Consolas;
        panose-1:2 11 6 9 2 2 4 3 2 4;}@font-face
        {font-family:inherit;}p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin-top:0in;
        margin-right:-4.3pt;
        margin-bottom:0in;
        margin-left:0in;
        text-align:justify;
        font-size:12.0pt;
        font-family:"Times New Roman",serif;}a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}pre
        {mso-style-priority:99;
        mso-style-link:"HTML Preformatted Char";
        margin:0in;
        font-size:10.0pt;
        font-family:"Courier New";}span.HTMLPreformattedChar
        {mso-style-name:"HTML Preformatted Char";
        mso-style-priority:99;
        mso-style-link:"HTML Preformatted";
        font-family:Consolas;}span.EmailStyle21
        {mso-style-type:personal-reply;
        font-family:"Times New Roman",serif;
        color:#20188C;
        font-weight:normal;
        font-style:normal;
        text-decoration:none none;}.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;}div.WordSection1
        {page:WordSection1;}</style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
      <div class="WordSection1">
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C">Jarek,<o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C">So far, my focus has
            been on understanding the properties of the quantum vacuum,
            an electron, and an electron’s forces. I have been using
            terms such as Planck length, Planck force, impedance of
            spacetime, etc. Your question made me realize that there is
            a large body of knowledge that is currently expressed as
            electromagnetism equations that needs to be “translated”
            into the terms I have been using. For example, Section 16 of
            the “Electron’s forces” paper it titled “Charge conversion
            constant”. In this section, I propose that Planck charge (<i>Q</i><sub>p</sub>)
            converts to Planck length (<i>L</i><sub>p</sub>). Therefore,
            the charge conversion constant is <i>Q</i><sub>p</sub>/<i>L</i><sub>p</sub>
          </span><span style="font-size:14.0pt;font-family:"Cambria
            Math",serif;color:#20188C">≈</span><span
            style="font-size:14.0pt;color:#20188C"> 1.16</span><span
style="font-size:14.0pt;font-family:"Arial",sans-serif;color:#20188C">ᵡ</span><span
            style="font-size:14.0pt;color:#20188C">10<sup>17</sup> C/m.
            I have said that this length conversion is “polarized
            length”, not the omni-directional length of a meter stick. <o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C">Your question about
            Gauss law makes it obvious that a lot more development of
            this concept is required. Terms such as “electric flux” need
            to be translated into properties of the quantum vacuum. This
            will require introducing vectors and perhaps other
            properties into my simplified charge conversion constant.
            This is a big job requiring expertise in electromagnetism. <o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C">On another subject,
            it has been less than 2 days since I posted the information
            about my article to this group on </span><span
            style="font-size:14.0pt;color:maroon">natureoflightandparticles.org</span><span
            style="font-size:14.0pt;color:#20188C">. In the
            approximately 40 hours since posting the paper, it has
            received over 60 “reads” on ResearchGate. This is a great
            increase in the download rate.  <o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C">John<o:p></o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <p class="MsoNormal" style="margin-right:0in"><span
            style="font-size:14.0pt;color:#20188C"><o:p> </o:p></span></p>
        <div>
          <div style="border:none;border-top:solid #E1E1E1
            1.0pt;padding:3.0pt 0in 0in 0in">
            <p class="MsoNormal"
              style="margin-right:0in;text-align:left" align="left"><b><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif">From:</span></b><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif">
                Jarek Duda <a class="moz-txt-link-rfc2396E" href="mailto:dudajar@gmail.com"><dudajar@gmail.com></a> <br>
                <b>Sent:</b> Wednesday, October 20, 2021 8:25 PM<br>
                <b>To:</b> John Macken <a class="moz-txt-link-rfc2396E" href="mailto:john@macken.com"><john@macken.com></a>; Nature
                of Light
                <a class="moz-txt-link-rfc2396E" href="mailto:general@lists.natureoflightandparticles.org"><general@lists.natureoflightandparticles.org></a><br>
                <b>Subject:</b> Re: [General] Electron's Forces<o:p></o:p></span></p>
          </div>
        </div>
        <p class="MsoNormal" style="margin-right:0in;text-align:left"
          align="left"><o:p> </o:p></p>
        <p>Dear John, <o:p></o:p></p>
        <p>Thank you, this is the article I have looked through, but
          wasn't able to find the details.<o:p></o:p></p>
        <p>We use topological mechanisms like for fluxons quantizing
          magnetic field in superconductor - which can be directly
          translated to electric charges e.g. hedgehog-like
          configuration (realized e.g. in liquid crystals), making Gauss
          law count topological charge:<o:p></o:p></p>
        <p><img style="width:7.625in;height:.8645in"
            id="Picture_x0020_2"
            src="cid:part2.g09yoF1b.Nfnk0zJO@gmail.com" class=""
            width="732" height="83"><o:p></o:p></p>
        <p><o:p> </o:p></p>
        <p>> 2) All fundamental particles are modeled as rotating
          waves with Planck length amplitude and ħ/2 angular momentum. <o:p></o:p></p>
        <p>Sounds like fluxon magnetic field quantization - to take it
          to point-like electric charge, we can use the above formula.<o:p></o:p></p>
        <p><o:p> </o:p></p>
        <p>>The different fundamental particles have different
          rotation rates, different energy and different radii. However,
          they all have the same wave amplitude.  <o:p></o:p></p>
        <p>Sounds like de Broglie clock E = hbar omega = m c^2,
          confirmed for electron: <a
            href="https://link.springer.com/article/10.1007/s10701-008-9225-1"
            moz-do-not-send="true" class="moz-txt-link-freetext">https://link.springer.com/article/10.1007/s10701-008-9225-1</a><o:p></o:p></p>
        <p><o:p> </o:p></p>
        <p>> 3) The first order distortion of the surrounding space
          produced by these rotating waves scales only with wave
          amplitude. This distortion does not scale with frequency, with
          energy, or with wavelength. This common wave amplitude is the
          ultimate source of quantized charge. <o:p></o:p></p>
        <p>I don't understand - maybe you could show some formula like
          above - showing Gauss law returning integer multiplicity of e?<o:p></o:p></p>
        <p>Best regards,<o:p></o:p></p>
        <p>Jarek<o:p></o:p></p>
        <p><o:p> </o:p></p>
        <div>
          <p class="MsoNormal" style="margin-right:0in">On 20.10.2021
            20:48, John Macken wrote:<o:p></o:p></p>
        </div>
        <blockquote style="margin-top:5.0pt;margin-bottom:5.0pt">
          <p class="MsoNormal" style="margin-right:0in"><span
              style="font-size:14.0pt;color:#20188C">Jarek,</span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in"><span
              style="font-size:14.0pt;color:#20188C"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C">You
              ask, “</span><span style="font-size:14.0pt">Why Gauss law
              can only return integer charge?”<span
                style="color:#20188C"> I will restate the question as:
                What is the source of elementary charge <i>e </i>in
                particles? </span></span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C">I
              think I do a good job answering this question in the paper
            </span><b><span
                style="font-size:14.0pt;font-family:"Calibri",sans-serif">A
                quantum vacuum model unites an electron’s gravitational
                and electromagnetic forces</span></b><span
              style="font-size:14.0pt;color:#20188C">. </span><o:p></o:p></p>
          <p class="MsoNormal"
            style="margin-right:0in;text-align:left;background:white"
            align="left"><span style="color:black"><a
                href="http://www.researchgate.net/publication/353049276"
                target="_blank" moz-do-not-send="true"><span
                  style="font-size:10.5pt;font-family:inherit;border:none
                  windowtext 1.0pt;padding:0in">www.researchgate.net/publication/353049276</span></a></span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C">For
              example, sections of the paper have titles such as: <b>Electron’s
                electric charge</b>, <b>What is electric charge?</b>
              and <b>Charge conversion constant</b>. I have to assume
              the fine structure constant α, but given this constant,
              the model predicts the electrostatic force between two
              electrons or two muons. </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C">A
              brief summary answer to your question can be broken down
              into the following points.</span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C">1)
              The quantum vacuum is modeled as a sea of vacuum
              fluctuations with amplitude of Planck length. </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C">2)
              All fundamental particles are modeled as rotating waves
              with Planck length amplitude and </span><span
              style="font-size:14.0pt">ħ<span style="color:#20188C">/2
                angular momentum. The different fundamental particles
                have different rotation rates, different energy and
                different radii. However, they all have the same wave
                amplitude.  </span></span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C">3)
              The first order distortion of the surrounding space
              produced by these rotating waves scales only with wave
              amplitude. This distortion does not scale with frequency,
              with energy, or with wavelength. This common wave
              amplitude is the ultimate source of quantized charge. </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C">4)
              This explanation requires the manual insertion of α<sup>1/2</sup>
              to be exact. Therefore, it is incomplete. However, it
              generates the surprising connection between the electron’s
              electrostatic force and the electron’s gravitational
              force. </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"><span style="font-size:14.0pt;color:#20188C">John</span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in"><span
              style="font-size:14.0pt;color:#20188C"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in"><span
              style="font-size:14.0pt;color:#20188C"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in"><span
              style="font-size:14.0pt;color:#20188C"> </span><o:p></o:p></p>
          <p class="MsoNormal" style="margin-right:0in"><span
              style="font-size:14.0pt;color:#20188C"> </span><o:p></o:p></p>
          <div>
            <div style="border:none;border-top:solid #E1E1E1
              1.0pt;padding:3.0pt 0in 0in 0in">
              <p class="MsoNormal"
                style="margin-right:0in;text-align:left" align="left"><b><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif">From:</span></b><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif">
                  Jarek Duda </span><a href="mailto:dudajar@gmail.com"
                  moz-do-not-send="true"><span
                    style="font-size:11.0pt;font-family:"Calibri",sans-serif"><dudajar@gmail.com></span></a><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif"> <br>
                  <b>Sent:</b> Wednesday, October 20, 2021 1:24 AM<br>
                  <b>To:</b> </span><a
                  href="mailto:general@lists.natureoflightandparticles.org"
                  moz-do-not-send="true"><span
                    style="font-size:11.0pt;font-family:"Calibri",sans-serif">general@lists.natureoflightandparticles.org</span></a><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif">; </span><a
                  href="mailto:john@macken.com" moz-do-not-send="true"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif">john@macken.com</span></a><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif"><br>
                  <b>Subject:</b> Re: [General] Electron's Forces</span><o:p></o:p></p>
            </div>
          </div>
          <p class="MsoNormal" style="margin-right:0in;text-align:left"
            align="left"> <o:p></o:p></p>
          <p>Dear John,<o:p></o:p></p>
          <p>Thank you, personally I am mostly interested in models of
            electrons - in your paper I see "quantized wave-based
            electron model", " An electron’s core is a rotating wave in
            the universal <br>
            field."<o:p></o:p></p>
          <p>While I deeply agree with both statements, I don't see the
            details - especially for the most important: charge
            quantization -<b> why Gauss law can only return integer
              charge?</b><o:p></o:p></p>
          <p>With Manfried Faber we get it by interpreting curvature of
            some deeper e.g. unitary vector field, this way Gauss law
            counts topological charge - getting built in charge
            quantization.<o:p></o:p></p>
          <p>Such view is also used in liquid crystals, for which they
            get long-range e.g. Coulomb-like interactions: <a
              href="https://www.nature.com/articles/s41598-017-16200-z"
              moz-do-not-send="true" class="moz-txt-link-freetext">https://www.nature.com/articles/s41598-017-16200-z</a><o:p></o:p></p>
          <p>Here is how I would like to get 3 leptons (slides: <a
href="https://www.dropbox.com/s/9dl2g9lypzqu5hp/liquid%20crystal%20particles.pdf"
              moz-do-not-send="true" class="moz-txt-link-freetext">https://www.dropbox.com/s/9dl2g9lypzqu5hp/liquid%20crystal%20particles.pdf</a>
            - Coulomb between such charges, Klein-Gordon for phase as
            twist of the long axis):<o:p></o:p></p>
          <p><img style="width:6.1875in;height:2.2083in"
              id="Picture_x0020_1"
              src="cid:part3.DN49KbfD.FcghusBh@gmail.com" class=""
              width="594" height="212" border="0"><o:p></o:p></p>
          <p> <o:p></o:p></p>
          <p>Is it close to your explanation of electric charge
            quantization?<o:p></o:p></p>
          <p>With best regards,<o:p></o:p></p>
          <p>Jarek Duda<o:p></o:p></p>
          <p> <o:p></o:p></p>
          <div>
            <p class="MsoNormal" style="margin-right:0in">W dniu
              20.10.2021 o 03:15, John Macken pisze:<o:p></o:p></p>
          </div>
          <blockquote style="margin-top:5.0pt;margin-bottom:5.0pt">
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="font-size:14.0pt;color:#111111;background:white">Hello
                Chandra and All,</span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="font-size:14.0pt;color:#111111;background:white">I
                used to be an active member of this discussion group.
                However, when everyone else seemed to be attempting to
                construct electrons out of photons, my participation
                stopped. Now that I see the discussion has broadened, I
                would like to participate again. </span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="font-size:14.0pt;color:#111111;background:white">I
                have been developing a model of an electron and the
                quantum vacuum for about 20 years. I started by
                characterizing the physical properties of the quantum
                vacuum. This led to a wave-based model of an electron.
                This model successfully generates an electron’s
                approximate energy, inertia and de Broglie wave
                characteristics. However, then something unexpected
                happened. The electron model also created two types of
                disturbances in the surrounding quantum vacuum. The
                first order effect was found to correspond to the
                electron’s electric/magnetic field. The much weaker,
                second order effect was found to correspond to the
                electron’s gravitational field.</span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="font-size:14.0pt;color:#111111;background:white">Since
                this single model was creating both forces, the model
                was predicting how an electron’s quantum mechanical
                properties should unify the electron’s gravitational and
                electromagnetic forces.  Usually, the goal of an
                electron model is to explain known electron properties.
                This model was going further and predicting there should
                be previously unknown fundamental relationships between
                the electron’s electrostatic force and the electron’s
                gravitational force. This appears to be quantum gravity
                generated on the scale of electrons rather than the
                scale of black holes.</span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="font-size:14.0pt;color:#111111;background:white">These
                predictions have now been proven correct without
                requiring new experiments. The details of this model and
                the proofs of the predictions are in the technical paper
                titled:<i> </i><b>A quantum vacuum model unites an
                  electron’s gravitational and electromagnetic forces</b><i>.</i>
                This paper is currently under review by a physics
                journal. The preprint is available at the link below:  </span><span
                style="font-size:14.0pt;color:black">It has received
                about 1400 “reads” on ResearchGate in about 3 months.</span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="font-size:14.0pt;color:black"> </span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="color:black"><a
                  href="http://www.researchgate.net/publication/353049276"
                  target="_blank" moz-do-not-send="true"><span
                    style="font-size:14.0pt;border:none windowtext
                    1.0pt;padding:0in">www.researchgate.net/publication/353049276</span></a></span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;background:white"><span
                style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
            <p class="MsoNormal" style="margin-right:0in"><span
                style="font-size:14.0pt;color:#111111;background:white"> </span><o:p></o:p></p>
            <p class="MsoNormal" style="margin-right:0in"><span
                style="font-size:14.0pt;color:#111111;background:white">John
                Macken</span><o:p></o:p></p>
            <p class="MsoNormal" style="margin-right:0in"><span
                style="font-size:14.0pt"> </span><o:p></o:p></p>
            <p class="MsoNormal"
              style="margin-right:0in;text-align:left" align="left"><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif"><br>
                <br>
                <br>
              </span><o:p></o:p></p>
            <pre>_______________________________________________<o:p></o:p></pre>
            <pre>If you no longer wish to receive communication from the Nature of Light and Particles General Discussion List at <a href="mailto:dudajar@gmail.com" moz-do-not-send="true" class="moz-txt-link-freetext">dudajar@gmail.com</a><o:p></o:p></pre>
            <pre><a href=<a href="http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/dudajar%40gmail.com?unsub=1&unsubconfirm=1" moz-do-not-send="true">"http://lists.natureoflightandparticles.org/options.cgi/general-natureoflightandparticles.org/dudajar%40gmail.com?unsub=1&unsubconfirm=1"</a>><o:p></o:p></pre>
            <pre>Click here to unsubscribe<o:p></o:p></pre>
            <pre></a><o:p></o:p></pre>
          </blockquote>
          <pre>-- <o:p></o:p></pre>
          <pre>dr Jarosław Duda<o:p></o:p></pre>
          <pre>Institute of Computer Science and Computer Mathematics,<o:p></o:p></pre>
          <pre>Jagiellonian University, Cracow, Poland<o:p></o:p></pre>
          <pre><a href="http://th.if.uj.edu.pl/~dudaj/" moz-do-not-send="true" class="moz-txt-link-freetext">http://th.if.uj.edu.pl/~dudaj/</a><o:p></o:p></pre>
        </blockquote>
        <pre>-- <o:p></o:p></pre>
        <pre>dr Jarosław Duda<o:p></o:p></pre>
        <pre>Institute of Computer Science and Computer Mathematics,<o:p></o:p></pre>
        <pre>Jagiellonian University, Cracow, Poland<o:p></o:p></pre>
        <pre><a href="http://th.if.uj.edu.pl/~dudaj/" moz-do-not-send="true" class="moz-txt-link-freetext">http://th.if.uj.edu.pl/~dudaj/</a><o:p></o:p></pre>
      </div>
    </blockquote>
    <pre class="moz-signature" cols="72">-- 
dr Jarosław Duda
Institute of Computer Science and Computer Mathematics,
Jagiellonian University, Cracow, Poland
<a class="moz-txt-link-freetext" href="http://th.if.uj.edu.pl/~dudaj/">http://th.if.uj.edu.pl/~dudaj/</a></pre>
  </body>
</html>